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ABSTRACT

Summary: 13C flux analysis studies have become an essential com-

ponent of metabolic engineering research. The scope of these studies

has gradually expanded to include both isotopically steady-state and

transient labeling experiments, the latter of which are uniquely applic-

able to photosynthetic organisms and slow-to-label mammalian cell

cultures. Isotopomer network compartmental analysis (INCA) is the

first publicly available software package that can perform both

steady-state metabolic flux analysis and isotopically non-stationary

metabolic flux analysis. The software provides a framework for com-

prehensive analysis of metabolic networks using mass balances and

elementary metabolite unit balances. The generation of balance equa-

tions and their computational solution is completely automated and

can be performed on networks of arbitrary complexity.

Availability and implementation: MATLAB p-code files are freely

available for non-commercial use and can be downloaded at http://

mfa.vueinnovations.com. Commercial licenses are also available.

Contact: j.d.young@vanderbilt.edu
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1 INTRODUCTION
13C metabolic flux analysis (13CMFA) has emerged over the past

20 years as an important approach to assess in vivo metabolic

phenotypes (Sauer, 2006; Wiechert, 2001). It relies on least-s-

quares regression of isotope labeling measurements and extracel-

lular exchange rates to reconstruct comprehensive flux maps that

depict the flow of carbon throughout intracellular metabolism.

The models applied to the data regression comprise mass bal-

ances and isotopomer balances on all internal nodes of the meta-

bolic network and can often involve many thousands

of equations. Several publicly available software packages have

been developed to facilitate model generation and computa-

tional analysis of steady-state isotope labeling experiments

(ILEs): 13CFLUX2 (Weitzel et al., 2013), FiatFlux (Zamboni

et al., 2005), Metran (Yoo et al., 2008), OpenFLUX (Quek

et al., 2009), FIA (Srour et al., 2011) and influx_s (Sokol et al.,

2012), to name a few. However, none of these packages are cap-

able of simulating transient ILEs wherein 13C labeling measure-

ments are collected before reaching isotopic steady state. This

requires so-called isotopically non-stationary MFA (INST-

MFA) methods, where the isotopomer balances are described

by a system of ordinary differential equations (ODEs) rather

than algebraic equations (Wiechert and Noh, 2005).

Because of the growing prevalence of INST-MFA and the lack

of publicly available software tools to facilitate its application,

we have developed a MATLAB-based software package called

INCA (isotopomer network compartmental analysis) that is

capable of both steady-state MFA and INST-MFA calculations.

As the name implies, the INCA modeling approach is a nat-

ural extension of the well-known compartmental modeling

approaches that have been used for many years to assess

the flow of radioactive tracers within biological networks.

However, unlike those previous radiotracer models, INCA is

able to describe the full isotopomer distributions of measured

metabolites and is therefore capable of distinguishing flux con-

tributions from different metabolic pathways based on the

atomic rearrangements they produce.

2 PROGRAM USAGE

A graphical user interface allows the user to input reaction in-

formation and experimental data to the program, while offering

a variety of powerful analysis tools to design and interpret ILEs

(Fig. 1). All INCA data structures can be loaded and manipu-

lated from the MATLAB command line, and driver routines can

be called directly or invoked within custom MATLAB scripts.

INCA also offers built-in parallelization capabilities for running

compute-intensive functions within a distributed computing

environment. All program features are fully documented in a

60-page user manual, which addresses several advanced model-

ing topics. Two preconfigured example networks are also

provided with INCA.

3 METHODS AND IMPLEMENTATION

3.1 Network specification

INCA applies steady-state mass balances and either steady-state

or transient elementary metabolite unit (EMU) balances to simu-

late ILEs. The balance equations for any user-specified reaction

network are generated based on reaction stoichiometry, com-

partmentation, reversibility and atom transition information

that can be supplied in a simple text format: e.g. ‘A (abc) ¼4
B (ab)þC (c)’. INCA can simultaneously trace multiple atom

types (e.g. C, H) and can properly account for metabolite sym-

metry and atom equivalency based on user input (Antoniewicz

et al., 2007). The resulting network model can be saved in binary

format or exported to other text formats such as FluxML

(Weitzel et al., 2013) or OpenFLUX-compatible FTBL (Quek
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et al., 2009). Whenever an initial flux distribution is supplied by

the user or subsequently modified, INCA checks the mass bal-

ances for consistency and updates the flux values, if necessary, to

preserve mass conservation.

Solution of steady-state EMU balances is accomplished

using a QR decomposition of the state-transition matrix of

each decoupled linear subsystem, followed by matrix inversion

(Antoniewicz et al., 2007). Transient EMU balances are inte-

grated using a custom linear ODE solver that involves comput-

ing the matrix exponential of each state-transition matrix

(Young et al., 2008). Integration tolerances and time-step con-

trols can be adjusted by the user to achieve the desired accuracy

and time resolution. It is also possible to apply quasi–steady-

state assumptions to selected metabolite nodes during the ODE

integration. This will force the labeling at these nodes to respond

instantaneously to changes in the labeling of precursor metabol-

ites, such that local isotopic equilibrium is maintained.

3.2 Network analysis and simulation

INCA provides several analysis routines that can be used to

assess metabolic network properties and to design ILEs, even

before supplying experimental inputs. First, there are built-in

constraint-based analysis methods that can be applied to the

user-specified reaction network (Palsson, 2006): flux balance ana-

lysis, minimization of metabolic adjustment, flux variability ana-

lysis, flux coupling finder, robustness analysis and phenotype

phase plane analysis. Second, INCA can perform either steady-

state or transient simulations of isotopomer distributions based

on user-specified tracer inputs and initial flux and pool size esti-

mates. This is an important tool for identifying optimal tracers,

measurements and sampling time points before initiating experi-

ments. Third, INCA is capable of implementing the optimal

experiment design approach of Mollney et al. (1999) to compre-

hensively search for tracer combinations that maximize param-

eter identifiability.

3.3 Experimental data input

When performing 13C MFA, fluxes are estimated by minimizing

the difference between simulated and experimental measure-

ments. This requires specification of (i) flux measurements, (ii)

isotope labeling measurements and (iii) isotope tracers to the

program. When performing INST-MFA, the user can also spe-

cify pool size measurements. One powerful feature of INCA is

that it allows multiple experiments to be regressed simultan-

eously to generate a single flux map. This can be of interest

when fitting several replicate experiments or parallel labeling ex-

periments with different tracers. Currently, INCA only supports

mass isotopomer distribution data or 1H-NMR fractional en-

richment data. The ability to specify 13C-NMR fine spectra or

tandem MS/MS data to the program is anticipated in a future

release. Steady-state or transient isotopomer measurements can

be entered directly to the graphical user interface, imported from

an Excel spreadsheet or imported from other previously saved

INCA models. INCA can accept any combination of tracer

atoms, including mixtures of different tracers (e.g. 2H and 13C)

or tracers with mass shifts41 (e.g. 18O).

3.4 Metabolic flux analysis

Once the metabolic network and experimental inputs have been

specified, INCA can perform MFA calculations by minimizing

the sum-of-squared residuals (SSR) between simulated and

experimental measurements (Wiechert, 2001). A Levenberg–

Marquardt gradient-based search algorithm is applied to minim-

ize the SSR by adjusting the free flux and pool size parameters.

An active set method is applied to handle the linear inequality

constraints on the adjustable parameters (Gill et al., 1981). The

sensitivity equations required to estimate the Hessian matrix and

gradient vector of the SSR with respect to the fitted parameters

are automatically generated and solved in tandem with the EMU

balances. The search can be initialized with user-specified par-

ameter estimates, or these values can be randomized to minimize

user bias. To increase the odds of finding a global optimum

solution, a ‘multistart’ approach can be used to repeat the par-

ameter search from multiple random initial guesses.
When flux estimation is completed, INCA automatically pro-

vides several statistical metrics that can be used to assess good-

ness-of-fit and to diagnose the source of any mismatch between

simulated and experimental measurements. Local estimates of

uncertainty are obtained from the diagonal elements of the par-

ameter covariance matrix (Antoniewicz et al., 2006). To obtain a

more accurate estimate of parameter uncertainties, INCA can

perform either parameter continuation or Monte Carlo analysis

to calculate confidence intervals. Parameter continuation is per-

formed using a method similar to Antoniewicz et al. (2006);

however, INCA applies flux coupling analysis and a predictor-

corrector method to minimize computational expense. INCA is

also capable of computing confidence intervals using Monte

Carlo analysis as an alternative to parameter continuation.

Although there is no explicit limit on the size of the network

that can be modeled using INCA, memory usage and computa-

tional run times can be considerable when performing INST-

MFA with large networks. The following run times were

obtained for an Escherichia coli example network (Young

et al., 2008) with 92 fluxes (35 free) and 66 metabolite pools

(46 free) on a Dell OptiPlex 790 computer (Rocks 6.0, Intel

Core i7 2600 processor, 4 GB memory):51 s for tracer simula-

tion, �10min for flux estimation (starting from a random initial

guess) and �1h/parameter for calculation of 95% confidence

intervals using the continuation approach. However, INCA’s

parallelization capabilities can be leveraged to minimize the

total time required for multistart MFA and confidence interval

calculations.
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Fig. 1. Steps in the INCA analysis workflow
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