
Incentive-Aware Routing in DTNs

Upendra Shevade Han Hee Song Lili Qiu Yin Zhang

The University of Texas at Austin

{upendra, hhsong, lili, yzhang}@cs.utexas.edu

Abstract—Disruption tolerant networks (DTNs) are a class of
networks in which no contemporaneous path may exist between
the source and destination at a given time. In such a network,
routing takes place with the help of relay nodes and in a store-
and-forward fashion. If the nodes in a DTN are controlled by
rational entities, such as people or organizations, the nodes
can be expected to behave selfishly and attempt to maximize
their utilities and conserve their resources. Since routing is an
inherently cooperative activity, system operation will be critically
impaired unless cooperation is somehow incentivized. The lack
of end-to-end paths, high variation in network conditions, and
long feedback delay in DTNs imply that existing solutions for
mobile ad-hoc networks do not apply to DTNs.

In this paper, we propose the use of pair-wise tit-for-tat (TFT)
as a simple, robust and practical incentive mechanism for DTNs.
Existing TFT mechanisms often face bootstrapping problems
or suffer from exploitation. We propose a TFT mechanism
that incorporates generosity and contrition to address these
issues. We then develop an incentive-aware routing protocol
that allows selfish nodes to maximize their own performance
while conforming to TFT constraints. For comparison, we also
develop techniques to optimize the system-wide performance
when all nodes are cooperative. Using both synthetic and real
DTN traces, we show that without an incentive mechanism, the
delivery ratio among selfish nodes can be as low as 20% as
what is achieved under full cooperation; in contrast, with TFT
as a basis of cooperation among selfish nodes, the delivery ratio
increases to 60% or higher as under full cooperation. We also
address the practical challenges involved in implementing the
TFT mechanism. To our knowledge, this is the first practical
incentive-aware routing scheme for DTNs.

I. INTRODUCTION

Disruption tolerant networks (DTNs) are a class of networks

in which no contemporaneous path may exist between the

source and destination at a given time. Different from tra-

ditional networks, data in DTNs are opportunistically routed

toward the destination by leveraging temporary connection.

When nodes in a DTN are controlled by rational entities,

such as people or organizations [1], [3], [5], they can behave

selfishly and try to only maximize their own utility without

considering the system-wide criteria. A selfish user may drop

others’ messages and excessively replicate its own messages

to increase its own delivery rate while significantly degrading

other users’ performance or even cause starvation. Since DTNs

have limited connectivity, if any, simply removing selfish

nodes results in serious performance penalty. Therefore it is

necessary to design incentive-aware routing for DTNs in order

to fully take advantage of temporary connections.

While there has been considerable work on studying selfish

behavior and designing incentive-aware routing schemes (e.g.,

[10], [13], [14], [15], [17], [21]), to our knowledge, this paper

is the first one that studies these issues in DTNs. The lack of

contemporaneous path, high variation in network conditions,

difficulty to predict mobility patterns, and long feedback delay

make the problem very different from the traditional networks

like Internet and mobile ad hoc networks. Therefore the

existing solutions do not directly apply.

In this paper, we first study the impact of selfish behaviors

in DTNs. Using simulation based on both synthetic and real

mobility traces, we show that the presence of selfish users can

degrade total delivered traffic to less than 20% as what can be

delivered under full cooperation.

Motivated by the significant damage caused by selfish

users, we propose the use of pairwise tit-for-tat (TFT) as a

simple, robust, and practical incentive mechanism for DTNs.

Existing TFT mechanisms often face bootstrapping problems

or suffer from exploitation. We propose a TFT mechanism that

incorporates generosity and contrition to address these issues.

We then develop an incentive-aware routing protocol that

allows selfish nodes to maximize their individual utilities while

conforming to TFT constraints. We also address the practical

challenges involved in implementing the TFT mechanism. To

the best of our knowledge, this is the first practical incentive-

aware routing scheme for DTNs. We evaluate the effectiveness

of our incentive-aware routing scheme using both synthetic

and real DTN traces. Our results show that with TFT as a

basis of cooperation among selfish nodes, the total delivered

traffic increases to 60% or higher as under full cooperation.

Our main contributions can be summarized as follow.

• We study the impact of selfish behavior in DTNs and

show that it results in serious performance degradation.

• We develop a practical incentive-aware routing scheme

based on the TFT mechanism for selfish users to optimize

their own performance without significant degradation of

system-wide performance.

• We demonstrate the effectiveness of our incentive-aware

routing scheme using trace-driven simulation.

The rest of the paper is organized as follow. In Section II, we

survey related work. We motivate the incentive-aware routing

problem for DTNs in Section III. We present cooperative DTN

routing in Section IV and selfish DTN routing in Section V.

We describe our evaluation methodology in Section VI and

performance results in Section VII. We conclude in Sec-

tion VIII.

II. RELATED WORK

DTN routing. Routing decisions in DTNs must be made in the

absence of end-to-end contemporaneous paths and with limited

and possibly stale information about the network. There is

a large body of work on routing in DTNs. Most existing

schemes are incidental in nature [1]: they do not explicitly

optimize a specific performance metric, but opportunistically

routes data when temporary connection becomes available.

For instance, in epidemic routing [22], whenever two nodes

meet, they exchange all messages that the other does not have.

Since epidemic routing is essentially flooding, its overhead

is high. To reduce the overhead, utility-based replication has

been proposed, where nodes replicate data over the best

contacts according to some utility (e.g., based on previous

mobility [11]). However the effect of how utility relates to the

desired performance metrics is unclear. In contrast, RAPID [1]

explicitly tries to optimize system-wide metrics such as av-

erage delay while incorporating resource constraints, and is

shown to be highly effective. Motivated by RAPID, our routing

protocol also explicitly optimizes user performance based on

the network conditions. However, in contrast to RAPID, which

considers only mean link delays, our protocol considers both

the mean and variance of link delays and as a result, is robust

against high variability in link characteristics. In addition,

RAPID only considers global performance objective, whereas

our work explores the effects of selfish users in the system.

Incentive mechanisms. Cooperation in the presence of selfish

agents has been extensively studied in the Internet, mobile

ad-hoc networks, wireless mesh networks, and peer-to-peer

applications. Most existing work falls into one of the following

three categories. The first category attempts to identify misbe-

having nodes and isolate them from the network [13]. These

protocols usually assume a set of trusted nodes that can detect

and verify misbehavior that results in the selfish node being

denied participation in the network. The fear of detection and

punishment motivates nodes to cooperate. The second category

is based on credits, where nodes earn credits by forwarding

packets. These credits can then be used to obtain forwarding

service from any node in the system. However, existing credit-

based protocols require either secure hardware [4] or trusted

centralized banks [26]. In the third category of solutions,

nodes reciprocate good or bad behavior on part of the peer

in a tit-for-tat fashion [15], [10], [21]. A node autonomously

lowers service to a neighbor if it detects that the neighbor

is misbehaving, and fully cooperates with the neighbor if no

misbehavior is detected. This leads to partial and probably

temporary isolation of misbehaving nodes.

We choose tit-for-tat (TFT) as the incentive mechanism for

DTN routing. In TFT, every node forwards as much traffic

for a neighbor as the neighbor forwards for it. In this way,

rather than attempting to detect misbehavior, our approach

focuses on detecting good behavior. In our solution, packet

acknowledgement acts as the proof of work done by a next-

hop. This positive feedback allows a node to engage in bal-

anced exchange with its neighbors—rewarding good behavior

with equal reciprocal service and ignoring “misbehavior”. In

case of the punishment-based approaches, the strong reaction

to misbehavior (isolation of the node by peers) is justified

only if we have high confidence that the mechanism has very

low false positives, so that innocents are not punished, and

very low false negatives, so that miscreants cannot get away

by flying under the radar. In case of DTNs, there are no

reliable ways to detect misbehavior. The existing watchdog

mechanism [14] designed for ad hoc networks cannot work in

DTNs since it assumes that the sender can listen for the next

hop’s transmissions to detect if the next hop properly forward

the traffic and this assumption fails to hold in DTNs since these

two nodes are often disconnected. In addition, due to large

variability in mobility patterns and network condition, a node

may not be able to deliver a packet within its target deadline in

spite of its best intentions. Therefore, the potentially high false

positive and false negative in detecting selfish nodes render

punishment-based scheme unsuitable for DTNs. In addition,

the TFT-based incentive mechanism does not require trusted

nodes or special hardware, which fits well with decentralized

and low-cost DTNs we envision.

Previous papers (e.g., [10], [15], [21]) have laid the game-

theoretic foundation for the use of TFT in wireless networks.

The existing TFT mechanisms face bootstrapping problems or

suffer from exploitation. We propose a TFT mechanism with

generosity and contrition to address these issues. Furthermore,

our protocol tolerates significantly large feedback delay in

DTNs and supports multi-hop paths (as opposed to single-hop

paths in [21]).

TFT has been particularly successful in combating free-

riding behavior in P2P file sharing systems. TFT is used to

ensure that only agents who actively contribute are allowed to

download files from others. Bit-torrent [7] employs a variant

of TFT, where k top-performing neighbors in an interval are

given equal download rates in the next interval. Analyzing this

strategy and improving upon it have been the focus of several

recent papers([16], [12]). TFT based file sharing is different

from TFT-based routing in DTN in the following ways. First,

file sharing is a purely bilateral transaction between two nodes,

while routing typically involves interactions among multiple

relaying nodes, thus complicating analysis. Second, DTN has

large feedback delay and high uncertainty, which makes it

critical to address bootstrapping and exploitation. Third, the

bilateral nature of file sharing also implies that a neighbor’s

performance can be evaluated directly, while we must rely on

end-to-end acknowledgements to do the same in case of DTN

routing. Due to these important differences, we cannot directly

apply the TFT mechanism for file sharing to DTN routing.

III. MOTIVATION

In this section, we motivate the need for incentive mech-

anisms by demonstrating that network performance incurs

serious degradation without an incentive mechanism. We then

identify several important research questions on incentive-

aware routing in the DTN context.

The need for incentive mechanism. We compare the per-

formance of fully cooperative DTNs with DTNs consisting of

only selfish nodes. Results for the fully cooperative network

are obtained by formulating the DTN routing problem as an

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 30 40 50 60 70

D
e

liv
e

ry
 R

a
ti
o

Deadlines (in seconds)

Self. without TFT

(a) Synthetic trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 2000 3000 4000 5000 6000 7000

D
e

liv
e

ry
 R

a
ti
o

Deadlines (in seconds)

Self. without TFT

(b) Haggle trace

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

D
e

liv
e

ry
 R

a
ti
o

Deadlines (in seconds)

Self. without TFT

(c) ZebraNet trace

Fig. 1. Comparison of fully cooperative DTN against non-cooperative DTN, where the y-axis shows the ratio between delivery rate under a selfish DTN
and that under a cooperative DTN.

Linear Program, which is solved using the CPLEX solver [8].

In the absence of any incentive mechanism to facilitate co-

operation, the rational strategy is to free-ride if possible and

not relay traffic for anyone else, since there is nothing to be

gained by doing so and no notion of penalty in not relaying.

If all the nodes in the network follow this strategy, everyone

drops relay requests from others implying that packet delivery

is only possible when the source directly meets the destination.

We use the fraction of packets delivered within deadline as

the performance metric. As shown in Figure III, the delivery

rate reduces to only 20% of what is achieved under full

cooperation in the synthetic trace, to only 70% in the Haggle

trace [18], and to only 60% in the ZebraNet trace [23]. The

higher delivery rate in Haggle is due to its higher network

connectivity.

These results further confirms our intuition and shows that

unless cooperation is somehow incentivized, system operation

will be critically impaired. A network of selfish entities

needs an incentive mechanism that can act as a basis for

such cooperation. As justified in Section II, in this paper

we choose TFT as the incentive mechanism because it fits

well to the unique characteristics of DTNs, such as lack of

contemporaneous path, large feedback delay, high variation in

network conditions, and unpredictable mobility.

Research questions. In the rest of this paper, we focus on

understanding the following two “prices” in the context of

incentive-aware DTN routing.

• The price of anarchy (PoA) — Under the given incentive

mechanism, what is the performance that can be achieved

when all DTN nodes are selfish relative to the optimal

performance that can be achieved when all DTN nodes

are cooperative?

• The price of incentive mechanism (PoI) — Assuming

that all users are cooperative, what is the performance

penalty that can be achieved under a given incentive

mechanism relative to the optimal performance without

the incentive mechanism?

PoA and PoI are complementary with each other: PoA

quantifies the effectiveness of an incentive mechanism in

limiting the damage of selfish nodes, whereas PoI quantifies

the performance loss of cooperative nodes due to the presence

of the incentive mechanism. In this paper, we show that with

our design, TFT can achieve both low PoA and low PoI for

DTN routing.

IV. COOPERATIVE DTN ROUTING

We first study the following two cooperative DTN routing

schemes. The first scheme optimizes the global objective when

everyone is cooperative. This is an interesting baseline since

it provides an upper-bound of the performance under TFT

constraints. The second scheme optimizes the global objective

under TFT constraints. By comparing the performance of these

two schemes, we can estimate the PoI of TFT. In the next

section, we consider DTN routing under TFT constraints when

nodes are selfish.

Routing objective. Throughout this paper, we consider max-

imizing total delivered traffic within a given deadline. This

is a natural and useful optimization objective. While DTN

applications tend to be much more tolerant to delays, it is

often useful to be able to impose some application-specific

deadline (as opposed to waiting for the delivery for ever).

When the deadline is equal to infinity, the objective translates

to maximizing the total delivered traffic. Finally, although

we only present results for this optimization objective, our

algorithms can directly support other optimization objectives,

such as minimizing total delay.

A. Global Optimal

In this paper, we consider the delivery ratio within a

given deadline as the performance metric. The problem of

maximizing total delivery ratio within a given deadline over

all flows can be solved in the following four steps.

Candidate path generation. First, we generate a set of can-

didate paths for each given flow by enumerating all possible

paths between its source and destination that have at most

3 hops (similar to RAPID [1]). By limiting the length of

candidate paths, the number of candidate paths for each flow

is bounded by O(n2), where n is the total number of nodes.

Path performance computation. Next, for each path of a

flow, we compute the delivery ratio within a given deadline

if the flow is routed through this path. Since the inter-contact

time may not follow any well-known distribution, for gener-

ality we compute a lower bound of the delivery ratio using

Chebyshev’s Inequality [24], which holds for any distribution.

Specifically, we first compute the mean and variance of the

waiting time on each link as follows. Given a link between two

nodes, we break time into ON periods (in which the two nodes

are in contact) and OFF periods (in which the two nodes are

not in contact). We assume that if a packet arrives during an

ON period, it can be delivered immediately (i.e., the waiting

time is 0); if a packet arrives during an OFF period, it can

be delivered at the beginning of the next ON period (i.e.,

the waiting time is equal to the residual time in the current

OFF period). For simplicity, we ignore the propagation delay

during ON periods because it is typically much smaller than

the duration of OFF periods. Assuming that the packet arrival

time is uniformly distributed, we can then compute the mean

and variance of the waiting time on this link.

We can then approximate the delivery ratio (within a given

deadline) for an end-to-end path as follows. For any given

path, let random variable X denote the total waiting time.

Let µ and σ2 denote the mean and variance of X . µ and

σ2 can be computed by summing up the mean and variance

of the waiting times on different links on this path (under the

assumption that these waiting times are independent). Let D

denote the desired deadline. Then according to Chebyshev’s

Inequality, the delivery ratio within the deadline D can be

bounded as follows:

Pr(X ≤ D) =1−Pr(X ≥ D)

=1−Pr(X − µ ≥ D− µ)

≥1−

(

σ

D− µ

)2

(1)

Route optimization. Then we maximize the total delivery

ratio within the deadline for all flows by formulating the

problem as the linear program (LP) shown in Figure 2. Here

X f ,i is the traffic allocation of flow f on path i; Pf ,i is the

lower bound of the delivery ratio when traffic of flow f is

routed through path i given by Inequality (1); Capi denotes

the smallest capacity of all links on path i. Constraint C1

specifies the capacity constraint, i.e., the total amount of traffic

routed through path i should not exceed the capacity of path

i. Constraint C2 mandates that the total traffic assignment for

flow f does not exceed the demand of flow f by a factor of

RepFactor, where the replication factor RepFactor is a control

parameter that can be tuned to improve the total delivery ratio

at the cost of more replication traffic. In our evaluation, we

keep RepFactor constant at 3.

Online optimization. Finally, to deal with fluctuations in

traffic demands and network connectivity, we break time into

segments and perform route optimization at the beginning of

each segment based on predicted traffic demands and path

performance. Specifically, we use the exponentially weighted

moving average (EWMA) of past values to predict the traffic

demands and the mean and variance of path waiting time for

the current segment. We then use these predicted values in the

Input : Flows,Demand(f),Pf ,i,Capi

Out put : X f ,i

max: ∑
f∈Flows

∑
i

X f ,iPf ,i

Subject to:

[C1] ∑
f∈Flows

X f ,i ≤ Capi ∀i

[C2] ∑
i

X f ,i ≤ RepFactor ∗Demand(f) ∀ f

Fig. 2. LP formulation to maximize delivered traffic within a given deadline.

above LP formulation to optimize the routes for the current

segment. The routes remain unchanged until the beginning of

the next segment.

B. Global Optimal with TFT Constraints

Next we incorporate the TFT mechanism when maximizing

total delivered traffic. This can be achieved by adding the

following TFT constraints into the LP shown in Figure 2. The

TFT constraints simply state that the total amount of traffic

through link A → B is equal to the total amount of traffic in

the opposite direction (i.e., through link B → A).

∑
f

∑
i:AB∈Pathi

X f ,i = ∑
f

∑
j:BA∈Path j

X f , j ∀nodes A,B (2)

TFT constraints with generosity: The basic TFT constraints

(as described above) have problems with bootstrapping. When

two nodes meet for the first time, since no packets have ever

been successfully relayed by the other node, the basic TFT

prevent any relaying. To address this issue, generous TFT

enables initial cooperation of up to ε , which allows a node

to send ε number of packets more than it has earned the

right to send by relaying in the previous interval. Generous

TFT is also useful for handling asymmetric traffic demands

by absorbing traffic imbalance up to ε amount. The ε value is

important. A larger value loosens TFT constraints and yields

better performance and faster bootstrapping when everyone is

cooperative. On the other hand, it also means that a selfish

node is less cooperative since this generosity can be exploited

by the node. We model exploitation as follows. Every selfish

node checks if it has performed enough work in the previous

interval to be able to satisfy its predicted demand for the

upcoming interval without requiring any generosity from the

neighbor. If not, it has incentive to provide generosity in

order to get increased service in the next interval. Otherwise

(i.e., if its predicted service rate is no less than its predicted

demand), it has no incentive to provide any generosity to that

neighbor. In addition, it assumes that the neighbor will provide

it generosity. As a result, it does ε less work and can get away

with it if the other node indeed does provide ε generosity. In

Section VII, we empirically study the impact of generosity.

TFT constraints with generosity and contrition: Generos-

ity alone is still insufficient. While it can absorb transient

asymmetry in delivery of up to ε , any imbalance exceeding ε

 0

 5

 10

 15

 20

 25

 30

 16 18 20 22 24 26 28 30

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in Intervals)

Generosity only, No Drop, Total
Contrition only, No Drop, Total

Generosity only, With Drop, Total
Generosity only, With Drop, Flow A
Generosity only, With Drop, Flow B

(a) Two-flow case. Generosity only and Contrition

only (ε = 1)

 0

 5

 10

 15

 20

 25

 30

 16 18 20 22 24 26 28 30

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in Intervals)

Generosity only, No Drop, Total
Contrition only, No Drop, Total

Generosity + Contrition, With Drop, Total
Generosity + Contrition, With Drop, Flow A
Generosity + Contrition, With Drop, Flow B

(b) Two-flow case. Contrition + Generosity (ε = 1)

 0

 100

 200

 300

 400

 500

 600

 700

 30 35 40 45 50 55 60 65 70

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Deadline (in seconds)

Gen = 0.02, Gen only
Gen = 0.02, Gen+Con
Gen = 0.04, Gen only

Gen = 0.04, Gen+Con
Gen = 0.1, Gen only

Gen = 0.1, Gen+Con

(c) 20 Node Topology

Fig. 3. Effect of Generosity, Contrition and Generosity + Contrition. (ε = 1)

could lead to lengthy retaliation between two neighbors. This

is illustrated in the following example.

Consider a toy topology of four nodes with two flows

A → B → C and B → A → D, each with a demand of 10

packets/interval. When network connectivity is stable, gen-

erosity allows relays A and B to gradually increase their

cooperation until their demands are satisfied after which both

will attempt to exploit the other. However, generous TFT can

cause protracted vendetta between neighbors if one of them

delivers less packets than expected for the other, possibly due

to variation in mobility. This is demonstrated in Figure 3 (a),

where outage on link B→C in interval 19 causes zero packets

to be delivered for A’s flow in that interval. Since this drop

in delivery exceeded ε , A retaliates in the next interval by

delivering correspondingly less. In interval 21, generous TFT

constraints require B to retaliate back, which sets off a long-

lasting vendetta.

Contrition solves this problem by refraining from reacting

to a valid retaliation to its own mistake. With contrite TFT,

B realizes that A’s reaction in interval 20 was due to its

own actions in interval 19, and so does not lower traffic in

interval 21. This way cooperation is restored from interval 21.

In addition, since contrition does not always provide leeway

like generous TFT, it cannot be exploited. However, contrition

cannot work by itself either in case of DTN routing. Contrition

only provides a way to return to stability after perturbation,

but provides no way to reach that stability, i.e., as Figure 3

(a) shows, it does not provide any way for cooperation to

bootstrap like generosity does.

Hence, we propose a novel variant of TFT by combining

generosity and contrition. The generosity component enables

bootstrapping and absorbs transient asymmetries, while con-

trition prevents mistakes from causing endless retaliation. Fig-

ure 3 (b) shows that by interval 21, contrition and generosity

working together allow total delivery to recover from the

outage in interval 19.

In Figure 3 (c), we show that the above argument re-

mains valid even for a larger topology of twenty nodes.

We compare the number of packets delivered for different

values of generosity and different packet deadlines. Packet

delivery increases with increasing generosity as TFT condi-

tions are loosened to accommodate asymmetric demand. More

importantly, TFT with both generosity and contrition prevents

unnecessary retaliation and outperforms TFT with generosity

alone by up to 30% in some cases.

V. SELFISH DTN ROUTING

The previous section describes methods for optimizing

routes when all nodes in a DTN are cooperative. In this

section, we present a practical distributed protocol that allows

selfish users to optimize their individual performance while

conforming to TFT constraints.

Our routing protocol consists of the following three com-

ponents: (i) every node periodically exchanges link state, (ii)

each source computes the forwarding paths based on link state

and uses source routing to send its traffic, (iii) upon receiving

data, each destination sends ACK via flooding and the source

uses it to update its TFT constraints for the next interval.

Link state dissemination: Every node keeps track of the mean

and variance of the waiting time on links between the node

itself and other nodes. It also computes the link capacity using

the duration of the meeting and the bandwidth available during

that time. At the end of every interval, every node floods

these three link metrics so that all nodes have the information

about all links in the network. This is similar to many link

state protocols, such as OSPF. We assume that link state is

disseminated faithfully—we focus on making the data-plane

incentive compatible and leave securing the control plane to

future work.

Route computation: We use source routing to send traffic.

This gives a source complete routing control so that it can

directly optimize its own performance metric. Moreover, if

different senders are interested in optimizing different perfor-

mance metrics (e.g., some want to minimize delay and others

want to maximize delivery rate), this can be easily supported

using source routing. In order to prevent the source route

from being tampered in transit, it is digitally signed by the

sender (e.g., using Hierarchical Identity Based Cryptography

(HIBC) [19], which is shown to be practical for DTNs [20]).

Based on the link state, a source maximizes its total deliv-

ered traffic as follow. For each data packet, a source generates

RepFactor number of packets and specifies complete source

route for each generated packet. The routing strategy is com-

puted at the beginning of every interval. Given average delay,

variance, and link capacity of each link (which is disseminated

throughout the network), a source first computes the delivery

ratio within a given deadline for each path using Equation 1.

The end-to-end ACKs (as described below) indicate how many

packets are successfully delivered on each path for each flow

during the previous interval. Then it can compute the total

background traffic along each path in the previous interval, and

estimate the background traffic volume information in the new

interval using ACK packets of data delivery. Next it updates its

routing strategy in the new interval by moving traffic from the

worst path to the best path in terms of delivery ratio. The move

continues until either link capacity constraint or TFT constraint

is violated. Then it starts to move traffic to the second best

path and so on until all the paths with better delivery rate have

reached their raw link capacity or TFT constraints. Figure 4

outlines the algorithm.

1 src: node ID of flow f ’s source

2 X
prev
f ,i : amount of traffic from flow f is allocated on path i in the previous interval

3 X curr
f ,i : amount of traffic from flow f is allocated on path i in the current interval

4 B
prev
f ,i : amount of background traffic on path i in the previous interval

5 compute the lower-bound of the delivery ratio along each path using Equation 1

6 sort paths in the order of increasing delivery ratio

7 worst = 1; best = totalPaths

8 while P(worst) < P(best)
9 // compute maximum amount of flow f ’s traffic that can be sent on path i

10 TFTCap(best) = infinity;

11 for each relay link k on path best

12 T FTCap(best) = min(T FTCap(best), f orwarded(k));
13 end

14 cap = min(TFTCap(best),Cap(best))−B
prev
f ,i ;

15 // we can move up to moveTotal traffic from the worst to best path

16 moveTotal = min(X
prev
f ,worst,cap);

17 X curr
f ,worst− = moveTotal;

18 X curr
f ,best+ = moveTotal;

19 if X curr
f ,best == cap

20 best = best−1;

21 end

22 if X curr
f ,worst == 0

23 worst = worst +1;

24 end

25 end

Fig. 4. Route computation at selfish nodes.

Note that T FTCap in Figure 4 is based on the total traffic

others have forwarded in the previous interval, denoted as

f orwarded(k,src). However, as all TFT-based schemes, the

actual TFT constraints should be based on the total traffic sent

during the current interval. Moreover the background traffic

along each path may also change over different time intervals.

Therefore the route derived above may not satisfy the actual

TFT constraints. To address the issue, we apply the following

dropping strategy. Let Ti, j and Tj,i denote the total traffic node i

relays for j and the total traffic node j relays for i in the current

interval. If Ti, j > Tj,i + ε , node i ensures TFT by dropping

traffic from j that exceeds Tj,i + ε packets.

ACK dissemination: Upon receiving a packet, the destination

floods an ACK so that we can use it to derive the TFT

constraints for the next interval. In our protocol, acknowledge-

ments serve the following three purposes.

• First, packet acknowledgements generated by the desti-

nation act as proofs of successful relay by intermediate

nodes. Once the packet reaches its destination, the desti-

nation node extracts the source route and the accompany-

ing signature and attaches them to the acknowledgement

packet. The ACK packet is then flooded through the

network. The size of ACK is much smaller than the size

of data traffic, so the ACK overhead should be small.

To further improve efficiency, we can combine multiple

ACK packets into a single ACK during the flooding.

• Second, acknowledgements can provide useful feedback

required by TFT. Specifically, every node receiving the

ACK first verifies the integrity of the attached source

route and then checks if its identifier is present in the

relay list. If it is, then the node increments its local

TFT counters to indicate that the next node in the list

successfully relayed a packet for it. Credit is only given

to relay nodes on the forwarding path.

• Third, flooded acknowledgements disseminate key in-

formation about the network operation to every node.

Each node uses information provided in the ACK to

compute how many packets were sent between every

source and destination pair and along which paths. Since

the ACK contains the entire source route, a node can also

calculate the number of packets traversing every link in

both directions.

VI. EVALUATION METHODOLOGY

We implement the routing protocol described in Section V

in dtnsim from [9]. For comparison purpose, we also evaluate

the routing computed by solving LP as described in Section IV

using CPLEX [8]. We compare different routing schemes by

varying mobility traces and traffic demands. In all evaluation,

we set link capacity to 10 packets/second.

Mobility traces: We use synthetic mobility traces to gain

insights to the routing schemes under controlled scenarios,

and use real traces to assess their performance under realistic

scenarios. We generate synthetic traces as follows. We have

20 nodes and randomly create 114 links among them. We

then generate the ON/OFF time for each link, where the

ON time is kept constant at 1, and the OFF time follows a

Gaussian distribution whose mean and variance are 10 and

0.5, respectively. In addition to the synthetic traces, we also

use the Haggle trace [18] which involves 41 iMotes carried by

IEEE INFOCOM attendees and the ZebraNet trace consisting

of the movement of 20 male zebras in a 6km-by-6km field

each carrying a radio with a range of 500m, generated using

the same methodology as [23].

Traffic demands: To study the impact of traffic demands

on the routing performance, we generate traffic demands as

follows. We first randomly generate 5 flows originating from

each node. We then set the total traffic demands from all

nodes to be either all equal or following a Zipfian distribution.

In Zipfian distribution, the top i-th demand from a node is

proportional to 1/i. We use Zipfian distribution, because a

number of studies show that realistic user demands often

exhibit Zipf-like distributions [2], [6]. Finally, we partition the

total traffic demand at a node to all its flows either equally or

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(a) Synthetic traces over time

 0

 200

 400

 600

 800

 1000

 1200

 30 35 40 45 50 55 60 65 70

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Deadlines (in seconds)
(b) Synthetic traces under different deadlines

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 0 10000 20000 30000 40000 50000 60000 70000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(c) Sampled Haggle traces over time

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 1000 2000 3000 4000 5000 6000 7000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Deadlines (in seconds)
(d) Sampled Haggle traces under different deadlines

 150

 200

 250

 300

 350

 400

 450

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(e) Sampled ZebraNet traces over time

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600 1800

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Deadlines (in seconds)

Coop. without TFT
Coop. with TFT

Self. with TFT
Self. without TFT

(f) Sampled ZebraNet traces under different deadlines

Fig. 5. Impact of different traces.

using Gravity model [25]. In Gravity model, the total traffic

from A to B is proportional to the total outgoing traffic from

A and the total incoming traffic to B. In this way, we have

four spatial distributions: (i) equal/equal, (ii) equal/gravity,

(iii) Zipf/equal, and (iv) Zipf/gravity.

VII. EVALUATION RESULTS

We evaluate the performance of our routing scheme by

varying the mobility, traffic demands, and deadlines.

Impact of different traces: First, we focus on one time

segment in each trace and assume that we know the mean

and variance of ON/OFF time of links between every pair of

nodes during the time segment. In the later evaluation, we will

consider the effects of prediction errors.

Figure 5(a), (c), and (e) plot the total number of delivered

packets within the deadline over time for the synthetic, Haggle,

and ZebraNet traces, respectively. We set the deadline to be

70 seconds for the synthetic trace, 7000 seconds for Haggle

trace, and 1350 seconds for ZebraNet trace. As we would

expect, cooperation without TFT achieves the highest delivery

rate, since there is neither PoA nor PoI. Cooperation with TFT

performs the second best and its difference from that without

TFT is within 7-20% for all traces, which suggests that the

TFT incentive mechanism imposes low cost in the presence

of cooperation and therefore has low PoI: PoI of 20% for

synthetic, 10.5% for Haggle, and 7% for ZebraNet trace. The

performance of selfish users with TFT also achieves low PoA

compared to cooperative counterpart: PoA of 25%, 6%, and

15% respectively. Finally, we observe selfish users without

TFT performs the worst, because without an incentive mech-

anism delivery is only possible when source and destination

directly meet. We note that in Figure 5(e) Selfish with TFT

performs worse than selfish without TFT in the first interval.

This is because the latter delivers only packets destined for

the node in contact, while the former also spends bandwidth

forwarding multi-hop packets over a contact. This causes fewer

packets to be actually delivered to their destinations in the

first interval but helps set stage for TFT cooperation in later

intervals leading to higher delivery.

We demonstrate the effect of deadlines in Figure 5(b), (d),

and (f), which plot the average number of packets delivered

within the deadline. The results are the average over all

intervals after the bootstrap phase is over, so Figure 5(b), (d),

and (f) are the average of 15, 7, and 8 runs, respectively. As

we would expect, packet delivery increases with the deadlines

since packets have more time to reach the destination. More-

over, TFT performs well for a wide range of deadline values.

The only exception is using 1000 second deadline in Haggle

trace, where all routing schemes perform similarly. This occurs

because the deadline is too small to allow multi-hop delivery

and the only possible delivery even under full cooperation is

through direct contact.

From the above comparison of traces, we found that the

performance gap among different cooperation schemes varies

according to the nature of the traces. The rank of the schemes,

however, remains the same regardless of the difference in

the mobility of the traces, indicating that the TFT incentive

mechanism is beneficial for various networks.

Impact of temporal variation in mobility: We now study

the impact of temporal variation in mobility by using the

entire raw Haggle and ZebraNet traces. Since the Haggle

trace captures the mobility of participants at a computer

science conference, it consists of periods of high interactivity

(presumably indicating lunch or break times), interspersed

with low activity periods (presumably indicating conference

sessions). In case of the ZebraNet trace, animal movements

dictate how and when communication can take place. In the

presence of such variation in mobility, we need to estimate the

mean, variance of delay and the bandwidth for every link in

order to compute the source routes.

We compare two estimation schemes. First, we propose a

prediction scheme that uses EWMA values of link character-

istics as estimate for the next interval. Second, we use values

provided by an oracle that has knowledge of the true values

for the next interval. The oracle represents the best possible

estimation.

Figure 6 compares the two estimation methods. For the

Haggle trace (Figure 6(a)), we observe that the prediction

scheme performs within 10% of the oracle which is reasonably

accurate given the high variation in the mobility for the

three days of conference. While the ZebraNet trace results

(Figure 6(b)) do not show any discernible diurnal pattern, it

 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 30000 40000 50000 60000 70000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)

Self. with TFT Oracle
Self. with TFT Prediction

(a) Haggle trace

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)

Self. with TFT Oracle
Self. with TFT Prediction

(b) ZebraNet trace

Fig. 6. Comparison of inter-meeting prediction versus oracle under temporal
variation in mobility. EWMA parameters: α = 0.8, EWMA interval = trace
interval

also has high variability in the node’s movements over time.

Moreover, the EWMA interval size and the total volume of

the packets are order of magnitude less than those of Haggle

traces, making EWMA predictor to follow the oracle’s line

with 21% error.

Comparing the oracle and prediction results, we can observe

that with EWMA-based prediction, the results are reasonably

close to perfect prediction. However, we note that predicting

link properties is an interesting and open problem for DTNs.

Impact of spatial variation in traffic demands: Next we

study the impact of spatial variation in traffic demands using

the synthetic trace. Figure 7 shows the total delivery rates

for different spatial distributions: equal/equal, equal/gravity,

Zipf/equal, and Zipf/gravity, which are described in Sec-

tion VI. Here the number of packets delivered within deadline

represents an average of 15 runs. We observe that the relative

performance across the different routing schemes remains the

same. Moreover, the PoI under a cooperative DTN is around

5%. In addition, without the incentive mechanism, the delivery

rate in a selfish DTN is only around 200 packets/second. In

comparison, with the incentive mechanism, the delivery rate

increases to 500 packets/second for Zipf-distributed demands,

and 600 packets/second for equal demands. These results

demonstrate the effectiveness of our incentive-aware routing

 0

 200

 400

 600

 800

 1000

 1200

Eql/Eql Eql/Grvt Zipf/Eql Zipf/Grvt

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Coop. without TFT
Coop. with TFT

Self. with TFT
Self. without TFT

Fig. 7. Comparison of algorithms under spatial demand difference.

scheme.

Impact of temporal variation in traffic demands: Finally

we compare routing schemes by varying the traffic demands

over time using the synthetic trace. The goal is to understand

the responsiveness of different routing schemes to demand

changes, i.e., whether the algorithm converges after disruption

in demand traffic, and if so, how long it takes for the delivery

ratio to stabilize.

We consider the following six traffic variation scenarios:

(a) increasing and then stabilized demands, (b) decreasing and

then stabilized demands, (c) continuously increasing demands,

(d) oscillating demands, (e) spike at an interval and going back

to the previous demand level, and (f) dip at an interval and

going back to the previous demand level. In all the cases,

every flow has the same demand (i.e., their spatial distribution

follows equal/equal).

As shown in Figure 8, the relative performance of different

routing schemes are consistent across different temporal de-

mand variations. The price of incentive mechanism is small,

and the incentive mechanism significantly improves delivery

rate in a selfish DTN. In addition, the delivery rate adapts

quickly with the change in traffic demands in all cases.

VIII. CONCLUSION

In this paper, we study the impact of selfish behavior

in DTNs and show that it results in serious degradation in

routing performance. We then propose the use of tit-for-tat

(TFT) as a simple, robust and practical incentive mechanism

for DTNs. Making TFT practical for DTNs is challenging

due to the lack of contemporaneous end-to-end paths, high

variation in network conditions, difficult to predict mobility

patterns, and long feedback delay in DTNs. Existing TFT

mechanisms often face bootstrapping problems or suffer from

exploitation in such environment. We therefore propose a

TFT mechanism that incorporates generosity and contrition

to address these issues. We then develop a an incentive-aware

routing protocol that allows selfish users to adaptively optimize

their individual performance subject to TFT constraints. We

also address the practical challenges involved in implementing

the TFT mechanism. Using both synthetic and real DTN

traces, we show that our incentive-aware routing protocol is

effective in fostering cooperation among selfish nodes and can

significantly improve the routing performance.

In this paper, we focus on making the data-plane commu-

nication incentive-compatible. For future work, we will focus

on making the control-plane exchanges incentive-compatible

as well. We also plan to analyze our routing algorithm using

more diverse DTN traces.

Acknowledgments

We thank Cristina Nita-Rotaru and anonymous reviewers for

their helpful comments. This work is supported in part by NSF

Grants CNS-0546755, CNS-0627020, and CNS-0546720.

REFERENCES

[1] A. Balasubramanian, B. Levine, and A. Venkataramani. DTN Routing as

a Resource Allocation Problem. In Proc. of SIGCOMM, pages 373–384,

New York, NY, USA, 2007. ACM.

[2] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker. Web caching

and Zipf-like distributions: evidence and implications˙In Proc. of IEEE

INFOCOM, Mar. 1999.

[3] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine. MaxProp:

routing for vehicle-based disruption-tolerant networks. In Proc. of IEEE

INFOCOM, pages 1–11, Apr. 2006.

[4] L. Buttyán and J.-P. Hubaux. Enforcing service availability in mobile

ad-hoc wans. In Proc. of MobiHoc, pages 87–96, Piscataway, NJ, USA,

2000. IEEE Press.

[5] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott.

Impact of Human Mobility on the Design of Opportunitic Forwarding

Algorithms. In Proc. of IEEE INFOCOM, Apr. 2006.

[6] M. Chesire, A. Wolman, G. M. Voelker, and H. M. Levy. Measurement

and analysis of a streaming-media workload. In Proc. of USITS, Mar.

2001.

[7] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. of the

Workshop on Economics of Peer-to-Peer Systems, 2003.

[8] Cplex. http://www.ilog.com/products/cplex/.

[9] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant Network. In

Proc. of ACM SIGCOMM, pages 145–158, New York, NY, USA, 2004.

ACM.

[10] J. J. Jaramillo and R. Srikant. DARWIN: distributed and adaptive

reputation mechanism for wireless ad-hoc networks. In Proc. of ACM

MobiCom, pages 87–98, New York, NY, USA, 2007. ACM.

[11] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein.

Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and

Early Experiences with ZebraNet. In Proc. of ACM ASPLOS, Oct. 2002.

[12] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. Bittorrent is an

auction: analyzing and improving bittorrent’s incentives. In SIGCOMM,

2008.

[13] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan. Sustaining

cooperation in multi-hop wireless networks. In Proc. of NSDI, pages

231–244, Berkeley, CA, USA, 2005. USENIX Association.

[14] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating Routing Misbehavior

in Mobile Ad Hoc Networks. In Proc. of ACM MOBICOM, Aug. 2000.

[15] F. Milan, J. J. Jaramillo, and R. Srikant. Achieving cooperation in

multihop wireless networks of selfish nodes. In Proc. of workshop on

Game theory for communications and networks (GameNets), page 3,

New York, NY, USA, 2006. ACM.

[16] M. Piatek, T. Isdal, T. E. Anderson, A. Krishnamurthy, and A. Venkatara-

mani. Do Incentives Build Robustness in BitTorrent? In NSDI, 2007.

[17] L. Qiu, Y. R. Yang, Y. Zhang, and S. Shenker. On Selfish Routing in

Internet-Like Environments. In Proc. of ACM SIGCOMM, Aug. 2003.

[18] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau.

CRAWDAD data set cambridge/haggle (v. 2006-09-15). Downloaded

from http://crawdad.cs.dartmouth.edu/cambridge/haggle, Sept. 2006.

[19] A. Seth and S. Keshav. Practical security for disconnected nodes. In

Proc. of NPSEC, 2005.

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(a) Increasing and then stabilized demands

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)

Coop. without TFT
Coop. with TFT

Self. with TFT
Self. without TFT

(b) Decreasing and then stabilized demands

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(c) Continuously increasing demands

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(d) Oscillating demands

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(e) Spike at an interval and back to the previous demand level

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 0 500 1000 1500 2000 2500 3000 3500 4000

#
 P

a
c
k
e

ts
 w

it
h

in
 D

e
a

d
lin

e

Time (in seconds)
(f) Dip at an interval and back to the previous demand level

Fig. 8. Comparison of algorithms under different temporal variations.

[20] A. Seth, D. Kroeker, M. Zaharia, S. Guo, and S. Keshav. Low-cost

Communication for Rural Internet Kiosks Using Mechanical Backhaul.

In Proc. of MOBICOM, Sept. 2006.

[21] V. Srinivasan, P. Nuggehalli, C. Chiasserini, and R. Rao. Cooperation

in wireless ad hoc networks. In Proc. of IEEE INFOCOM, volume 2,

pages 808–817 vol.2, 2003.

[22] A. Vahdat and D. Becker. Epidemic routing for partially connected ad

hoc networks. Technical Report CS-200006, Duke University, Apr. 2000.

[23] Y. Wang, P. Zhang, T. Liu, C. Sadler, and M. Martonosi. CRAW-

DAD data set princeton/zebranet (v. 2007-02-14). Downloaded from

http://crawdad.cs.dartmouth.edu/princeton/zebranet, Feb. 2007.

[24] Wikipedia. Chebyshev’s inequality. http://en.wikipedia.org/wiki/

Chebyshev’s inequality.

[25] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast accurate

computation of large-scale IP traffic matrices from link loads. In Proc.

of ACM SIGMETRICS, 2003.

[26] S. Zhong, J. Chen, and Y. Yang. Sprite: a simple, cheat-proof, credit-

based system for mobile ad-hoc networks. In Proc. of IEEE INFOCOM,

volume 3, pages 1987–1997, Mar.-Apr. 2003.

