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Abstract The change of customer behaviors and the

fluctuation of spot prices can affect the benefits of elec-

tricity retailers. To address this issue, an incentive-based

demand response (DR) model involving the utility and

elasticity of customers is proposed for maximizing the

benefits of retailers. The benefits will increase by triggering

an incentive price to influence customer behaviors to

change their demand consumptions. The optimal reduction

of customers is obtained by their own profit optimization

model with a certain incentive price. Then, the sensitivity

of incentive price on retailers’ benefits is analyzed and the

optimal incentive price is obtained according to the DR

model. The case study verifies the effectiveness of the

proposed model.
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1 Introduction

With the progression of the smart grid, demand response

(DR) is an effective measure to influence the behaviors of

demand side by price policies or incentive compensation

when there is a price spike or abnormal incidents, which

can ensure the stability and economy of grid operation [1].

For example, DR programs were introduced to induce

demand reduction or control prices and incentives in order

to improve the efficiency of distributed energy generation

[2, 3]. A novel model was proposed to integrate the

uncertainties of wind power into the supply side and roof-

top solar photovoltaic (PV) on the demand side [4]. In

addition, various electrical devices in a smart home, such

as electric vehicles and energy storages, can be the flexible

loads devoted to DR programs [5–7]. Particularly, when

considering the process optimization of industrial manu-

facturing, DR programs are economical to apply [8].

Whereas the non-critical load at the residential and com-

mercial levels allows for demand reduction was relatively

easy, reducing the demand of industrial processes requires

more sophisticated solutions [9].

In current studies, DR can be divided into two types:

price-based DR (PBDR) and incentive-based DR (IBDR)

[10]. PBDR programs influence customer behaviors

through different price policies, where time-of-use (TOU)

price is widely applied. Customer response strategies

modelled by price elasticity and TOU price can alleviate
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the risks of supply side and reduce the market energy costs

[11]. IBDR programs are popular as they can regulate load

by providing incentives to customers [12]. IBDR schemes

based on game theory and coupon rewards were proposed

to provide a state-dependent compensation [13, 14] in order

to ensure the profits of both suppliers and customers.

However, new peak load might be created during other

periods due to the transferred load with only PBDR pro-

grams, which may cause additional cost for retailers to

meet the requirement of customers. Besides, the profits of

customers from power consumption are not considered.

Therefore, only PBDR programs could not guarantee the

benefits of suppliers and customers [14].

Meanwhile, the profits of retailers, who gain the benefits

from selling electricity and providing related services,

should also be considered. Retail choice means that elec-

trical customers can directly choose their suppliers of

electricity services, which facilitates the competition to

lower energy costs and produce prices that are closer to the

‘‘price of free competition’’ [15]. In [16], an efficient

pricing method based on Vickrey–Clarke–Groves (VCG)

mechanism, aiming to maximize the social welfare, was

proposed to ensure the benefits of customers and retailers.

A reward-based DR strategy for a cyber-physical distri-

bution system was designed to maximize retailer benefits

[17]. The benefits of both suppliers and customers are

equally important in DR programs. Moreover, a genetic

algorithm-based distributed pricing optimization algorithm

for DR management with the aim to maximize the retai-

ler’s profits was designed in [18]. However, most current

studies on DR considering the benefits of customers and

retailers mainly focused on the benefit change caused by

the fluctuation of price, or made the dispatch plan of

retailers from the view of power market dispatch institute

in order to minimize the total cost of power system, which

is not from the view of retailers and cannot effectively

influence customer behaviors or adequately guarantee the

profits. And the retailers in the market didn’t take fully

advantage of the positivity and flexibility. The incurred

consequence is that either retailers or customers might lose

benefits in the programs.

In order to influence the behaviors of customers in DR

more effectively and maximize the benefits of retailers, this

paper innovatively proposes an IBDR model involving

customers’ utility and elasticity to maximize retailer ben-

efits. During peak periods, customers determine the opti-

mal demand reduction by solving their own profit

optimization model to maximize their benefits based on the

utility with a certain incentive price. During valley periods,

the optimal demand change is decided by the demand

elasticity. Based on the optimization results of customer

reduction at various incentive prices, the optimal incentive

prices can be obtained by analyzing the sensitivity of

incentive prices to retailer benefits according to the DR

model that maximizes retailer benefits. Compared with

ordinary PBDR model and the IBDR model with constant

incentive price, the new DR model considers the benefits of

customers without creating new peaks caused by existing

DR programs because of the proactive adjustability of

incentives, and increases the benefits of retailers.

2 DR model

Considering the benefits of retailers, a common DR

model based on incentive price involving the load variation

of customers is proposed, including the profit optimization

of customers and IBDR model.

2.1 Customer profit optimization model

In normal conditions, customers buy electricity from the

electrical retailers with the quantity Q at the retail price PR.

It is assumed that a calendar day has 24 settlement periods

and k represents the type of customers. Then, the profits of

customers can be described as:

Fcus;k ¼
X

24

t¼1

ðUkðQk;tÞ � Qk;tPR;k;tÞ ð1Þ

where Fcus,k represents the profit of customer k; Qk,t, PR,k,t

and Uk(Qk,t) are the demand, retail price and utility of

customer k at time t.

The behaviors of customers can be effectively modelled

by certain utility functions as shown in (2)–(4). From the

view of customers, profits and electricity consumption

have an increasing utility function within certain con-

straints. In this paper, the utility of customers is built as a

quadratic and logarithmic model using fuzzy mathematical

theory [19, 20]. At the beginning, customers buy a quantity

and then they obtain certain utility. k = 1,2,3 represents

residential, commercial and industrial customers,

respectively.

U1ðQ1;tÞ ¼
c xQ1;t �

a

2
Q2

1;t

� �

0�Q1;t �
x

a

c
x2

2a
Q1;t[

x

a

8

>

<

>

:

ð2Þ

U2ðQ2;tÞ ¼
b logðxQ2;t þ 1Þ Q2;t[ 0

0 Q2;t � 0

�

ð3Þ

U3ðQ3;tÞ ¼
b log2ðxQ3;t þ 1Þ Q3;t[ 0

0 Q3;t � 0

�

ð4Þ

where a, c, b and l are constants; x represents the cus-

tomer willingness to reduce their demand. All the param-

eters can be obtained based on the statistic assessment of

local customer behaviors.
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The elasticity and utility of customers are introduced to

examine the impact of load variations in valley and peak

periods in the letter respectively.

In peak periods, customers receive an incentive to

reduce the quantities and their optimization profit model

M1 can be modelled as follows.

max
X

24

t¼1

UkðQk;t � DQk;tÞ � ðQk;t � DQk;tÞPR;k;t

þ DQk;tPC;k ð5Þ

s:t:
PC;k � 0

0�DQk;t �DQk;t;max

0�UkðQk;t � DQk;tÞ�UkðQk;tÞ

8

<

:

ð6Þ

where DQk,t is the load reduction of customer k at time t;

PC,k is the incentive price customer k received.

When the load is in the valley, the electricity con-

sumption and utility of customers is low, thus the elasticity

of customers, ek, is introduced to decide their consumption.

Therefore, the load variation in the trough is:

DQk;t ¼ ekPC;kQk;t=PR;k;t ð7Þ

By solving M1 and (7), the optimal customers’ reduction

with a certain incentive price in peak periods can be

calculated.

2.2 IBDR model

In normal conditions, retailers buy electricity from the

spot market with the quantity Q at the spot price PS,t lower

than the retail price PR,k,t, and then sell it to customers. In

this case, retailer benefits are equivalent to their financial

loss. Then, the loss of retailers can be described as negative

profits Fret:

Fret ¼
X

n

k¼1

X

24

t¼1

Qk;tðPR;k;t � PS;tÞ ð8Þ

In particular, based on the fitting analysis of the

operation data from the spot market, it can be obtained

from [21] that the fluctuation of spot price is closely related

to load. Spot price obeys logarithmic normal distribution

with related to load when the demand is high. While spot

price obeys normal distribution when the demand is low,

whose mean li;t and standard deviation ri;t are described in

(9). It is worth noting that the fluctuation of spot price is

not severe, and thus the scenario analysis in stochastic

problem is not considered.

li;t ¼ ai þ biQt

ri;t ¼ ci þ diQt

(

ð9Þ

where ai, bi, ci and di are the coefficients; i represents the

type of distribution of spot price.

PS,i,t is the spot price followed distribution i at time t.

When i = 1, the load is low. PS,i,t follows the distribution:

pS;1;tðQtÞ ¼
1
ffiffiffiffiffiffi

2p
p

r1;t
exp �

ðQt � l1;tÞ2

2r21;t

 !

ð10Þ

When i = 2, the load is high. PS,i,ft follows the

distribution:

pS;2;tðQtÞ ¼
1

ffiffiffiffiffiffi

2p
p

r2;tQt

exp �
ðlnQt � l2;tÞ2

2r22;t

 !

ð11Þ

The actual value of spot electricity PS,i,t can be obtained

by integrating the above two spot electricity price

probability density as shown in (10) and (11).

However, if the market has a peak, the spot price will

suddenly climb and exceed the retail price. Thus, retailers

introduce an incentive scheme to influence customer

behaviors. Responsively, customers reduce their demand to

Qt - DQt and gain a compensation. In the same way,

customers can receive an incentive to increase consump-

tion during valley periods, where DQt is negative. For

maximizing retailer benefits, the IBDR model M2 is for-

mulated as:

maxBef ¼
X

2

i¼1

X

n

k¼1

X

24

t¼1

ðQk;t � DQk;tÞ½PR;k;t � PS;i;tðQk;t

� DQk;tÞ� � DQk;tPC;k

ð12Þ

s:t:
PC;k � 0

0�DQk;t �DQk;t;max

0�PS;i;tðQk;t � DQk;tÞ�PS;i;tQk;t

8

<

:

ð13Þ

According to (5)–(7), the optimal customer reduction in

the peak period and variation in valley periods can be

obtained with different incentive prices. Then according to

the optimization model M2 and the optimal demand

variation of customers obtained by M1 and (7), the

optimal incentive that retailers pay can be gained by

analyzing the sensitivity of incentive price to retailers’

benefits prices.

2.3 Flowchart of proposed IBDR model

The flowchart of the proposed IBDR model is shown in

Fig. 1. In Fig. 1, steps 1–2 are designed to establish the

customers’ profit optimization model M1, which is applied

to obtain the optimal reduction with a certain incentive

price in peak periods. While steps 3–8 are the modelling

process of the IBDR model M2 aiming to maximize retailer

benefits. Specifically, steps 3–7 put customer reduction that

optimized by M1 into the retailer benefit function and

calculate the maximum benefits of retailers in peak periods.

Step 8 considers the elasticity of customers in valley
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periods in M2. Retailers gain more benefits due to the

growth of customer consumption. The optimal incentive

price can be decided by analyzing the sensitivity of

inventive price and retailer benefits. The detailed mod-

elling process is shown in Fig. 1.

3 Case study

The typical residential, commercial, industrial cus-

tomers in a selected area are used to validate the proposed

model. The demand and retail price dataset of the cus-

tomers in 24 hours is acquired. The main inputs including

price and demand can be found in [22]. The optimization

model is programmed with MATLAB Yalmip toolbox. By

solving M1, the optimal customer reduction points can be

obtained at a certain PC. And then the optimal reduction at

various incentive prices can be inputs of M2 to realize the

maximization of retailer benefits.

3.1 Retailer benefits in peak periods based on DR

model

As built in (2)–(4), the utility of commercial and

industrial customers conforms to the logarithmic distribu-

tion, while the utility of residential customers is a piece-

wise function. With the parameter x increasing, the value

of customer utility becomes higher.

The profits of three types of customers are shown in

Figs. 2, 3 and 4, respectively. Take industrial customer for

an example in Fig. 2. When the incentive price is 100 $/

MWh, as shown in the blue line, the biggest profit of

industrial customers is $9294322. When the incentive price

grows to 150 and 200 $/MWh, the profits also increase by

much more incentive income, $9298344 and $9302563,

respectively. Commercial and residential customers are in

similar situations as shown in Figs. 3 and 4. Therefore, the

profits of customers increase first and then decrease with

the reduction grows, thus there exist the biggest profits at

certain reduction points. Besides, as the incentive price

increases, the value of the biggest customer profits are

augmenting, so is the optimal customer reduction. Based

on these results, the benefits of retailers can be calculated

as follows.

Retailer benefits include two components: trading ben-

efits and incentive payments. Due to the randomness of

spot prices, the curve of benefits shows certain variations

and the results of each program running have little vari-

ances. In Figs. 5, 6 and 7, retailer benefits gained by the

trading with residential, commercial and industrial cus-

tomers and the total retailer benefits with DR programs are

shown as the blue lines. While retailer benefits and actual

trading loss without DR programs are shown as red and

purple dot lines respectively. Point P1 is the optimal point

of retailer benefits while point P2 represents the biggest

trading loss of retailers.

It is obvious that retailer financial loss, the sum of

trading loss and incentive payment shown as the blue line,

decreases first and then increases when retailers trading

with all kinds of customers. Due to the various retail prices

and utility of customers, the optimal incentive prices that

customers obtained from 7 to 78 $/MWh, and the optimal

retailer benefits gained by the trading with different cus-

tomers are also various. As shown in Fig. 8, when the

incentive price is 55 $/MWh, the biggest retailer benefit is

$4715009. Compared with the benefits without DR, the

benefits with DR achieve great improvement.

Start

1. Build utility model of customers U(Q) in peak periods

2. Build customer profit maximization model in peak periods: M1 

3. Obtain the optimal customer reduction ∆Q(i) in peak 
periods with a certain incentive price PC(i)

4. Build electrical retailer benefit model: M2 

5. Calculate the retailer benefits 
Bef(i) with incentive price PC(i)

8. Consider the elasticity of customers in trough periods
in M2 and obtain the optimal retailer benefits

End

6. Bef(i)>Bef(i 1)? i=i+1

7. Obtain the optimal retailer benefits with DR in only peak periods

N

Y

Fig. 1 Flowchart of proposed IBDR model
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Besides, the retailer benefits applied the ordinary PBDR

programs and IBDR with a constant incentive price are

respectively $3698603 and $4127140, which is less than

the benefits with the proposed model. Comparing with

ordinary PBDR and IBDR model, the proposed DR model

in this letter has better effect on controlling load peak and

increasing retailer’s benefits.

3.2 Retailer benefits in peak and valley periods

based on DR model

In Fig. 9, the values of elasticity of residential, com-

mercial and industrial customers during valley periods are

set as 0.05, 0.15, 0.10. With the incentive in peak periods,

the retailer benefit with DR in the trough shown with the

blue line has a lower loss, which is $6958030, while the

incentive price is 66 $/MWh. Thus, introducing the

incentive in both peak and valley periods can better benefit

retailers.

Besides, elasticity plays an important role in retailer

benefits. As shown in Fig. 10, the total retailer benefits

with different customer elasticities are displayed. When

residential, commercial and industrial customer elasticities

are 0.05, 0.15 and 0.10, the retailer benefit is $6642635 and

0 10 20 30 40 50
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5.200

5.205

P1(10,5198831.2891)

P2(15,5199436.6556) P3(20,5200297.2759)

C
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m

er
 p
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t 
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$
)
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Fig. 3 Profits of commercial customers
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Fig. 4 Profits of residential customers

Fig. 5 Retailers financial loss with residential customers

Fig. 6 Retailers financial loss with commercial customers

Fig. 7 Retailers financial loss with industrial customers

Fig. 8 Retailers total financial loss
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the incentive price is 66 $/MWh. However, when elastic-

ities increase by three times, the optimal benefit is

$15292347. Therefore, if customers have higher elasticity,

retailers can make fewer incentive payments and receive

more benefits.

4 Conclusion

In this paper, an incentive-based demand response

model is proposed to maximize the benefits of electricity

retailers. The innovation is that the models involve the

utility and elasticity of various customers, considering their

different behaviors during both peak and valley periods. By

solving the customer profit optimization model in peak

periods, the optimal reduction of customers with a certain

incentive price can be obtained. During valley periods, the

variation of customers can be calculated according to the

elasticity with a certain incentive price. Then through

analyzing the sensitivity of incentive prices to retailer

benefits, the optimal incentive price can be found based on

the proposed DR model. Results show that retailers can

maximize the benefits with the proposed model.
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