Incentive-Based Pricing for Network Games with Complete and Incomplete Information

Hongxia Shen and Tamer Başar
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
hshen1, tbasar@control.csl.uiuc.edu
11th ISDG Symposium, Tucson, Arizona
December 18-21, 2004

Outline

st Previous Work

- A Significant New Direction - Dynamic Pricing
- Complete Information
- Incomplete Information
- Multiple Users: Incentive-Design Problem Formulation
\Rightarrow Conclusions and Extensions

Previous Work

> Başar and Srikant (2002a) - Hierarchical Stackelberg Game
> Başar and Srikant (2002b) - Linear Network
> Shen and Başar (2004a) — Differentiated Pricing
> Shen and Başar (2004b) — Incomplete Information
T. Başar and R. Srikant (2002a), "Revenue-maximizing pricing and capacity expansion in a many-users regime," Proc. IEEE INFOCOM 2002, pp. 1556-1563.
T. Başar and R. Srikant (2002b), "A Stackelberg network game with a large number of followers," J. Optimization Theory and Applications, 115(3): 479-490.
H.-X. Shen and T. Başar (2004a), "Differentiated Internet pricing using a hierarchical network game model," Proc. IEEE ACC 2004, pp. 2322-2327.
H.-X. Shen and T. Başar (2004b), "Network game with a probabilistic Description of User Types," to appear in Proc. IEEE CDC 2004.

Two-Level Hierarchical Stackelberg Game

A Significant New Direction - Dynamic Pricing

Incentive-Design Problem

> Incentive Policy — usage-based policy
> Team Solution

- Pareto-optimal solution (action outcome desired by the leader)
$>$ Solution of the Incentive-Design Problem
- incentive policy to achieve the team solution
> Incentive Controllability
- existence of the solution of the incentive-design problem
> Complete Information - the ISP knows the user types Incomplete Information - the ISP knows only the probability distribution
T. Başar and G. J. Olsder (1999), Dynamic Noncooperative Game Theory, pp. 392-396.

Complete Information

- Incentive-Design Problem Formulation
- Team Solution
st Incentive-Design Problem Solution
- Incentive Controllability
- Team Solution vs Stackelberg Game Solution

Incentive-Design Problem Formulation

$>$ User's net utility: $F_{w}(x ; r):=w \log (1+x)-\frac{1}{1-x}-r, \quad 0<x<1$
$>$ Restriction: for $x=0, r \equiv 0$ and $F_{w}(0 ; r) \equiv-1$
$>$ Team solution:

$$
\begin{aligned}
\left(x^{t}, r^{t}\right)= & \arg \max _{0 \leq x<1, r \geq 0} r \\
\text { s.t. } & F_{w}(x ; r) \geq-1
\end{aligned}
$$

> Incentive-Design Problem Solution: $\gamma:[0,1) \rightarrow \mathcal{R}, \gamma(0) \equiv 0$,

$$
\begin{array}{r}
\arg \max _{0 \leq x<1} F_{w}(x ; \gamma(x))=x^{t} \\
\gamma\left(x^{t}\right)=r^{t}
\end{array}
$$

Team Solution

$>$ Define: $Q(x ; w):=w \log (1+x)-\frac{1}{1-x}+1$
$>$ Solve: $\quad\left(x^{t}, r^{t}\right)=\quad \arg \max _{0 \leq x<1, r \geq 0} r$,
s. t. $\quad F_{w}(x ; r)=Q(x ; w)-1-r \geq-1$

$>$ Team solution: $x^{t}=\alpha(w):=\frac{1+2 w-\sqrt{1+8 w}}{2 w}, w>1 ; r^{t}=Q(\alpha(w) ; w)$

Incentive-Design Problem Solution

$$
\gamma:[0,1) \rightarrow \mathcal{R}: \quad \gamma(0) \equiv 0 ; \quad \arg \max _{0 \leq x<1} F_{w}(x ; \gamma(x))=x^{t}, \quad \gamma\left(x^{t}\right)=r^{t}
$$

$>$ No linear incentive
$>$ Unique quadratic incentive: $\gamma(x)=a_{1} x+a_{2} x^{2}, \quad a_{1}=\frac{2 r^{t}}{x^{t}}, \quad a_{2}=-\frac{r^{t}}{\left(x^{t}\right)^{2}}$

$>$ General incentive
$>$ Incentive controllable?

ϵ-Incentive Controllability

$>$ Make a small "dip": $\left(x^{t}, r^{t}\right) \rightarrow\left(x^{t}, r^{t}-\epsilon\right)$
$>$ Unique maximizing point for the user: $F_{w}\left(x^{t} ; r^{t}-\epsilon\right)=-1+\epsilon$
$>$ ISP's profit: $r^{t}-\epsilon$

T. Başar and G. J. Olsder (1999), Dynamic Noncooperative Game Theory, pp. 392-396.

Team Solution vs Stackelberg Game Solution

Incomplete Information

- Incentive-Design Problem Formulation
- Team Solution
m Incentive-Design Problem Solution
- Incentive Controllability
\Rightarrow Numerical Examples

Incentive-Design Problem Formulation

$>$ User's type: $w=w^{i}$ w.p. $q_{i} \in(0,1), i=1, \cdots, m ; \quad \sum_{j=1}^{m} q_{j}=1$
$>$ Assumption: $w^{1}>\cdots>w^{m}>1$
> Team solution:

$$
\begin{aligned}
\left\{\left(x^{i t}, r^{i t}\right)\right\}_{i=1}^{m}= & \arg _{\left\{0 \leq x^{i}<1, r^{i} \geq 0\right\}_{i=1}^{m}}\left\{E[r]=\sum_{j=1}^{m} q_{j} r^{j}\right\} \\
\text { s.t. } & F_{w^{i}}\left(x^{i} ; r^{i}\right) \geq-1,1 \leq i \leq m \\
& F_{w^{i}}\left(x^{i} ; r^{i}\right) \geq F_{w^{i}}\left(x^{j} ; r^{j}\right), 1 \leq i \neq j \leq m
\end{aligned}
$$

> Incentive-Design Problem Solution: $\gamma:[0,1) \rightarrow \mathcal{R}, \gamma(0) \equiv 0$,

$$
\begin{array}{r}
\arg \max _{0 \leq x<1} F_{w^{i}}(x ; \gamma(x))=x^{i t}, 1 \leq i \leq m \\
\gamma\left(x^{i t}\right)=r^{i t}, \quad 1 \leq i \leq m
\end{array}
$$

Constraint Reduction

> Team solution constraints:

$$
F_{w^{i}}\left(x^{i} ; r^{i}\right) \geq-1 ; \quad F_{w^{i}}\left(x^{i} ; r^{i}\right) \geq F_{w^{i}}\left(x^{j} ; r^{j}\right), 1 \leq i \neq j \leq m
$$

$>$ Lemma: for $w^{i}>w^{j}>1$,

$$
F_{w^{i}}\left(x^{i} ; r^{i}\right) \geq F_{w^{i}}\left(x^{j} ; r^{j}\right) \geq F_{w^{j}}\left(x^{j} ; r^{j}\right) \geq F_{w^{j}}\left(x^{i} ; r^{i}\right) \text { and } x^{i} \geq x^{j}
$$

$>$ Constraint reduction:
(1) $F_{w^{m}}\left(x^{m} ; r^{m}\right)=-1$
(2) $F_{w^{m-1}}\left(x^{m-1} ; r^{m-1}\right)=F_{w^{m-1}}\left(x^{m} ; r^{m}\right) ; x^{m-1} \geq x^{m}$
(3) $F_{w^{k-1}}\left(x^{k-1} ; r^{k-1}\right)=F_{w^{k-1}}\left(x^{k} ; r^{k}\right) ; x^{k-1} \geq x^{k}$
> Reduced constraints: $\quad x^{1} \geq \cdots \geq x^{m} \geq 0$;

$$
F_{w^{m}}\left(x^{m} ; r^{m}\right)=-1 \text { and } F_{w^{i}}\left(x^{i} ; r^{i}\right)=F_{w^{i}}\left(x^{i+1} ; r^{i+1}\right), 1 \leq i \leq m-1
$$

$>$ Equivalently, $r^{m}=Q\left(x^{m} ; w^{m}\right) ; r^{i}=r^{i+1}+Q\left(x^{i} ; w^{i}\right)-Q\left(x^{i+1} ; w^{i}\right)$

Team Solution - Two Types

$>E[r]=q_{1} Q\left(x^{1} ; w^{1}\right)+q_{2} Q\left(x^{2} ; v^{2 / 2}:=\frac{w^{2}-q_{1} w^{1}}{q_{2}}\right)$
> Team solution: $x^{1 t}=\alpha\left(w^{1}\right)$ and $x^{2 t}=\alpha\left(v^{2 / 2}\right)$

Team Solution - Multiple Types

$>E[r]=q_{1} Q\left(x^{1} ; w^{1}\right)+\sum_{k=2}^{m} q_{k} Q\left(x^{k} ; v^{k / m}\right)$
$>$ If $w^{1}>v^{2 / m}>\cdots>v^{m / m}>1$:

$$
x^{1 t}=\alpha\left(w^{1}\right) ; \quad x^{i t}=\alpha\left(v^{i / m}\right) \text { for } 2 \leq i<m
$$

$>$ Otherwise?

Team Solution - Induction

$>$ Reduce m types to $m-1$ or $m-2$ types:
(1) if $v^{m-1 / m} \leq v^{m / m}, x^{(m-1) t}=x^{m t}$ and $E[r]=$ $q_{1} Q\left(x^{1} ; w^{1}\right)+\sum_{k=2}^{m-2} q_{k} Q\left(x^{k} ; v^{k / m}\right)+\left(q_{m-1}+q_{m}\right) Q\left(x^{m-1} ; v^{m-1, m / m}\right)$
(2) if $1 \geq v^{m-1 / m}>v^{m / m}$, $x^{(m-1) t}=x^{m t}=0$ and $E[r]=q_{1} Q\left(x^{1} ; w^{1}\right)+\sum_{k=2}^{m-2} q_{k} Q\left(x^{k} ; v^{k / m}\right)$
(3) if $v^{m-1 / m}>1 \geq v^{m / m}$, $x^{m t}=0$ and $E[r]=q_{1} Q\left(x^{1} ; w^{1}\right)+\sum_{k=2}^{m-1} q_{k} Q\left(x^{k} ; v^{k / m}\right)$
4 if $v^{m-1 / m}>v^{m / m}>1$ and $v^{m-2 / m} \leq v^{m-1 / m}$, $x^{(m-2) t}=x^{(m-1) t}$
(5) if $v^{m-2 / m}>v^{m-1 / m} \geq v^{m / m}>1$, at some point $v^{i-1 / m} \leq v^{i / m}$ and $x^{(i-1) t}=x^{i t}$

Induction - Example

$>v^{1 / 5}=70, v^{2 / 5}=10, v^{3 / 5}=19, v^{4 / 5}=1, v^{5 / 5}=0$
(1) $1 \geq v^{4 / 5}>v^{5 / 5}: x^{4 t}=x^{5 t}=0$
(2) $v^{2 / 5} \leq v^{3 / 5}: x^{2 t}=x^{3 t}$ and $v^{2,3 / 5}=14.5$
(3) $v^{1 / 5}>v^{2,3 / 5}>1: x^{1 t}=\alpha\left(v^{1 / 5}\right)$ and $x^{2 t}=x^{3 t}=\alpha\left(v^{2,3 / 5}\right)$

Incentive-Design Problem Solution

$>\gamma:[0,1) \rightarrow \mathcal{R}: \quad \gamma(0) \equiv 0 ;$

$$
\arg \max _{0 \leq x<1} F_{w^{i}}(x ; \gamma(x))=x^{i t}, \quad \gamma\left(x^{i t}\right)=r^{i t}, \quad 1 \leq i \leq m
$$

ϵ-Incentive Controllability

$>$ Make a small "dip": $\left(x^{i t}, r^{i t}\right) \rightarrow\left(x^{i t}, r^{i t}-\epsilon^{i}\right)$
(1) $\epsilon^{1}>\epsilon^{2}>\epsilon^{3}>\epsilon^{4}>\epsilon^{5}>0$
(2) ϵ^{i} 's are small enough
$>$ Unique maximizing point for type i : $F_{w}\left(x^{i t} ; r^{i t}-\epsilon^{i}\right)=F_{w}\left(x^{i t} ; r^{i t}\right)+\epsilon^{i}$
$>$ ISP's expected profit: $E\left[r^{t}\right]-\sum_{j=1}^{m} \epsilon^{j}$

Another Example

$>\gamma:[0,1) \rightarrow \mathcal{R}: \gamma(0) \equiv 0$;

$$
\arg \max _{0 \leq x<1} F_{w^{i}}(x ; \gamma(x))=x^{i t}, \quad \gamma\left(x^{i t}\right)=r^{i t}, \quad 1 \leq i \leq m
$$

ϵ-Incentive Controllability

$>$ Make a small "dip": $\left(x^{i t}, r^{i t}\right) \rightarrow\left(x^{i t}, r^{i t}-\epsilon^{i}\right)$
(1) $\epsilon^{1}>\epsilon^{2}=\epsilon^{3}>\epsilon^{4}=\epsilon^{5}=0$
(2) ϵ^{i} 's are small enough
$>$ Unique maximizing point for type i : $F_{w}\left(x^{i t} ; r^{i t}-\epsilon^{i}\right)=F_{w}\left(x^{i t} ; r^{i t}\right)+\epsilon^{i}$
$>$ ISP's expected profit: $E\left[r^{t}\right]-\sum_{j=1}^{m} \epsilon^{j}$

Multiple Users - Complete Information

$>$ User i 's net utility: $F_{w_{i}}\left(x_{i}, x_{-i} ; r_{i}\right):=w_{i} \log \left(1+x_{i}\right)-\frac{1}{n-x_{i}-x_{-i}}-r_{i}$
$>$ Team solution:

$$
\begin{aligned}
\left\{\left(x_{i}^{t}, r_{i}^{t}\right)\right\}_{i=1}^{n}= & \left.\arg \max _{\left\{x_{i} \geq 0, \sum_{j=1}^{n}\right.} x_{x^{j}<n, r_{i} \geq 0}\right\}_{i=1}^{n} r_{j=1}^{n} \\
\text { s. t. } & F_{w_{i}}\left(x_{i}, x_{-i} ; r_{i}\right) \geq-\frac{1}{n-x_{-i}}, \quad 1 \leq i \leq n
\end{aligned}
$$

$>$ Incentive-Design Problem Solution: $\left\{\gamma_{i}\right\}_{i=1}^{n}, \quad \gamma_{i}(0) \equiv 0$,

$$
\begin{array}{r}
\arg \max _{0 \leq x_{i}<n-x_{-i}^{t}} F_{w_{i}}\left(x_{i}, x_{-i}^{t} ; \gamma_{i}\left(x_{i}\right)\right)=x_{i}^{t} \\
\gamma_{i}\left(x_{i}^{t}\right)=r_{i}^{t}
\end{array}
$$

Multiple Users — Incomplete Information

$>$ Independent Users: $w_{i}=w_{i}^{j_{i}}$ w.p. $q_{i}^{j_{i}} ; \vec{J}:=\left(j_{1}, \cdots, j_{n}\right)^{T}$
> Team solution:

$$
\begin{aligned}
& \left\{\left\{\left(x_{i}^{\vec{J} t}, r_{i}^{\vec{J} t}\right)\right\}_{i=1}^{n}\right\}_{\vec{J}=\vec{J}_{f}}^{\vec{J}_{l}}=\arg \max \sum_{\vec{J}=\vec{J}_{f}}^{\vec{J}_{l}} q_{1}^{j_{1}} \times \cdots \times q_{n}^{j_{n}} \sum_{j=1}^{n} r_{j}^{\vec{J}}, \\
& \text { s. t. } F_{w_{i}^{j_{i}}}\left(x_{i}^{\vec{J}}, x_{-i}^{\vec{J}} ; r_{i}^{\vec{J}}\right) \geq-\frac{1}{n-x_{-i}^{\vec{J}}}, 1 \leq i \leq n, \\
& \qquad F_{w_{i}^{j_{i}}}\left(x_{i}^{\vec{J}}, x_{-i}^{\vec{J}} ; r_{i}^{\vec{J}}\right) \geq F_{w_{i}^{j_{i}}}\left(x_{i}^{\vec{J}^{\prime}}, x_{-i}^{\vec{J}} ; r_{i}^{\vec{J}^{\prime}}\right), \quad 1 \leq i \leq n, \vec{J} \neq \vec{J}^{\prime}
\end{aligned}
$$

$>$ Incentive-Design Problem Solution: $\left\{\gamma_{i}\right\}_{i=1}^{n}, \gamma_{i}(0) \equiv 0$,

$$
\begin{array}{r}
\arg \max _{0 \leq x_{i}<n-x_{-i}^{\vec{J} t}} F_{w_{i}^{j_{i}}}\left(x_{i}, x_{-i}^{\vec{J} t} ; \gamma_{i}\left(x_{i}\right)\right)=x_{i}^{\overrightarrow{J t}} \\
\gamma_{i}\left(x_{i}^{\overrightarrow{J t}}\right)=r_{i}^{\overrightarrow{J t}}
\end{array}
$$

Conclusions

> Dynamic pricing
> Incentive-design problem formulation
> Single ISP, single user
ϵ-incentive controllability
ϵ-optimal incentive policy

Extensions

> Multiple users, multiple ISPs, continuously distributed user types, ...

End of the Talk

