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Incentive Compatibility of Large Centralized

Matching Markets

SangMok Lee ∗

Abstract

This paper discusses the strategic manipulation of stable matching mecha-

nisms. We provide a model of a two-sided matching market, in which a firm

hires a worker, and each of them receives non-transferable utility. Assum-

ing that the utilities are randomly drawn from underlying distributions, we

measure the likelihood of differences in utilities from different stable match-

ings. Our key finding is that in large markets, most agents are close to being

indifferent among partners in different stable matchings. Specifically, as the

number of firms and workers becomes large, the expected proportion of firms

and workers whose utilities from all stable matchings are within an arbitrarily

small difference of one another converges to one. It is known that the utility

gain by manipulating a stable matching mechanism is limited by the differ-

ence between utilities from the most and the least preferred stable matchings.

Thus, the finding also implies that the expected proportion of agents who may

obtain a significant utility gain from manipulation vanishes in large markets.

This result reconciles successful stable mechanisms in practice with the the-

oretical concerns about strategic manipulation.
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1 Introduction

1.1 Overview

Two-sided matching markets are a class of markets where one kind of agent is matched

with another such as firms and workers in professional labor markets, schools and stu-

dents in school choice problems, men and women who use online dating services, and

birth mothers and potential adoptive parents in child adoption. Some markets, such as

public school choice programs and entry-level labor markets for doctors and lawyers, are

centralized. In a labor market, for instance, firms submit their preferences for workers

and workers submit their preferences for firms. A centralized mechanism then produces

a matching between firms and workers. Market designers seeking to achieve desirable

outcomes to these matching markets have introduced centralized clearinghouses. The

best-known example is the National Resident Matching Program (NRMP). Each year,

approximately 16, 000 U.S. medical school students and 4, 000 residency programs par-

ticipate in the NRMP. In addition, another 20, 000 independent applicants compete for

the approximately 25, 000 available residency positions (Roth and Peranson, 1999).1

In market design, the concept of “stability” is of central importance. A matching

is regarded as stable if no agent is matched with an unacceptable partner, and there is

no pair of agents on opposite sides of the market who prefer each other to their current

partners. In practice, successful mechanisms often implement a stable matching with

respect to the submitted preferences (Roth and Xing, 1994; Roth, 2002). The NRMP also

uses a particular stable matching mechanism, called the doctor-proposing Gale-Shapley

algorithm (Roth and Peranson, 1999). Table 1 below lists whether each clearinghouse

produces a stable matching with respect to submitted preferences, and whether these

clearinghouses are still in use or no longer operating. With few exceptions, the table

suggests that stable matching mechanisms have been successful for the most part whereas

unstable mechanisms have mostly failed.2

From a theoretical perspective, however, stable matching mechanisms have a signif-

icant shortcoming. While the mechanisms produce stable matchings by assuming that

1Independent applicants include former graduates of U.S. medical schools, U.S. osteopathic students
and graduates, Canadian students and graduates, and students and graduates of international medical
schools. For a recent report on the NRMP, see http://www.nrmp.org/data/resultsanddata2011.pdf.

2Table 1 is reorganized from tables in Roth (2002) and McKinney, Niederle, and Roth (2003). The
clearinghouse for the gastroenterology fellowship market is a rare case in which a stable matching mech-
anism started to fail in 1996, was abandoned in 2000, and then was reinstated in 2006 (Niederle and
Roth, 2005; Roth, 2008).
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Still in use No longer in use

Stable

The NRMP: over 40 specialty markets and
submarkets for first year postgraduate posi-
tions, and 15 for second year positions
Specialty matching services: over 30 sub-
specialty markets for advanced medical resi-
dencies and fellowships
British regional medical markets:
Edinburgh (≥‘69), Cardiff
Dental residencies: 3 specialties
Other healthcare markets:
Osteopaths (≥‘94), Pharmacists, Clinical
psychologists (≥‘99)
Canadian lawyers: multiple regions

Dental residencies:
Periodontists(<‘97), Prosthodontists (<‘00)
Canadian lawyers:

British Columbia(<‘96)

Unstable
British regional medical markets:
Cambridge, London Hospital

British regional medical markets:
Birmingham, Edinburgh (<‘67), Newcastle,
Sheffield
Other healthcare markets:
Osteopaths (<‘94)

Table 1: Stable and unstable (centralized) mechanisms.

all participants reveal their true preferences, in fact no stable matching mechanism is

strategy-proof (Roth, 1982). Participants may achieve a more preferred matching by

misrepresenting their preferences, either by changing the order of the preference lists or

by announcing that some acceptable agents are unacceptable. Even the current NRMP,

while widely acknowledged as a model of a successful matching program, cannot rule out

such incentives of strategic misrepresentation. Unfortunately, the possibility of such ma-

nipulation is mostly unavoidable. Whenever there is more than one stable matching, at

least one agent can profitably misrepresent her preferences (Roth and Sotomayor, 1990),

and the conditions under which preference profiles contain a unique stable matching seem

to be quite restrictive (Eeckhout, 2000; Clark, 2006).3 Thus, markets are most likely to

have agents with an incentive to manipulate a stable matching mechanism. In addition,

Pittel (1989) shows that the number of stable matchings tends to increase as the market

becomes large. Accordingly, concerns regarding strategic manipulation are heightened

when market designers deal with markets containing a large number of participants.

This paper analyzes this discrepancy between the success of matching programs in

practice and their inherent manipulability in theory. We consider a theoretical matching

market in which each firm hires one worker, a model which is known as a one-to-one

matching or marriage market. We measure incentives to manipulate a stable matching

mechanism by assuming that each firm-worker pair receives utilities, one for the firm and

the other for the worker, which in turn determine ordinal preferences. In order to study

3The necessary and sufficient conditions of a preference profile containing a unique stable matching
is an open question.
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the likelihood of an agent having a significant incentive to manipulate, we assume that

utilities are randomly drawn from some underlying distributions. Moreover, in light of

the large number of participants in applications, we evaluate the measure of utility gain

when the number of participants becomes large. The key finding of this paper is that the

proportion of participants who can potentially achieve a significant utility gain vanishes as

the market becomes large. This result holds both when each agent knows the preferences

of all other agents (complete information), and when an agent may not know about

preferences of other agents (incomplete information). Given the tangible and intangible

costs of strategic behavior in real life, we believe that this result reconciles successful

stable matching mechanisms with the theoretical concerns about manipulability.

1.2 A Motivating Example

To understand the logic behind strategic manipulation, consider a simple labor market

with three firms and three workers. We illustrate that in such a situation an agent can

achieve a better partner by misrepresenting preferences, and that the best achievable

partner must be a partner in a stable matching under true preferences. The following

example is a simplest example illustrating both of these features of strategic manipula-

tions.

f1 : w3 ≻ 〈w1〉 ≻ [w2]

f2 : 〈w2〉 ≻ [w1] ≻ w3

f3 : 〈[w3]〉 ≻ w1 ≻ w2

,

w1 : [f2] ≻ f3 ≻ 〈f1〉

w2 : [f1] ≻ 〈f2〉 ≻ f3

w3 : f2 ≻ 〈[f3]〉 ≻ f1

Table 2: An example of a two-sided matching market with 3 firms and 3 workers.

Table 2 lists preferences of firms for workers, and of workers for firms which are known

to all participants: For instance, firm 1 prefers worker 3 most, followed by worker 1 and

worker 2. Similarly, worker 1 prefers firm 2 most, followed by firm 3 and firm 1. Under

these preferences, there are two stable matchings. In one stable matching (marked by 〈·〉),

f1, f2, and f3 are matched with w1, w2, and w3, respectively; whereas in the second stable

matching (marked by [·]), f1, f2, and f3 are matched with w2, w1, and w3, respectively.

Suppose that all agents submit their true preferences, and a stable matching mecha-

nism produces the second stable matching marked by [·]. In that case, if firm 1 submits

4



preferences such that worker 3 and 1 are acceptable, but not worker 2, then only the first

stable matching remains stable for those announced preferences. The stable matching

mechanism, which produces a stable matching for any submitted preference profile, will

produce the matching marked by 〈·〉. Ultimately, firm 1 is matched with worker 1 rather

than worker 2, and is therefore better off.

However, whichever preference list firm 1 submits, the firm will not be matched with

worker 3. The pair (f3, w3) would otherwise block the matching. For instance, if f1

declares that only w3 is acceptable, then the only stable matching matches f2 with w2,

and f3 with w3, and firm 1 will remain unmatched.4 In fact, more broadly, whenever a

stable matching mechanism is applied, participants cannot be matched with a partner

who is strictly preferred to all stable matching partners with respect to true prefer-

ences (Demange, Gale, and Sotomayor, 1987). Since participants are guaranteed to be

matched with one of their stable matching partners, the gain from strategic manipula-

tion is bounded above by the difference between the most and the least preferred stable

matching partners.

Based on the above observation, we mainly focus on the difference in utilities from

the firm-optimal stable matching and the worker-optimal stable matching. As we show

that this difference vanishes when the market becomes large, we can derive the vanishing

incentive to manipulate a stable matching mechanism.

1.3 Description of Main Results

We consider a sequence of one-to-one matching markets, each of which has n firms and an

equal number of workers. Preferences of each firm for workers or of each worker for firms

are generated by utilities, which are randomly drawn from given distributions on R+.
5

We formulate utilities as a convex combination of a common value component and an

independent private value component. That is, when a firm f is matched with a worker

4We call such a strategy a truncation strategy. An agent does not change the relative ranks, but
only misrepresents the number of acceptable partners. In one-to-one matching, truncation strategies are
known to be exhaustive (Roth and Vande Vate, 1991): For any submitted preferences of other agents,
each agent always has a truncation strategy as a best response. In the example, we prove that no
truncation strategy allows f1 to be matched with w3, implying that f1 cannot be matched with w3 by
misrepresenting her preferences. In a many-to-one matching, Kojima and Pathak (2009) show that a
broader class of strategies, referred to as dropping strategies, is exhaustive.

5The only restrictions on distributions are bounded supports and some conditions for continuity.
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w, the firm receives

Uf,w = λU o
w + (1− λ) ζf,w (0 ≤ λ ≤ 1),

where U o
w is the intrinsic value of w, which is common to all firms, and ζf,w is w’s value

as independently evaluated by firm f . In other words, U o
w is received by any firm that

is matched with worker w, and ζf,w is received only by firm f . We similarly define the

utilities of the workers. The common value component introduces a commonality of

preferences, which is prevalent in real applications. In the entry-level labor market for

doctors, for instance, US News and World Report’s annual rankings are often referred

to as a guideline to the best hospitals. We also consider the pure private value model

(λ = 0) for theoretical interest. In matching theory, commonality has been considered a

driving force of a preference profile having a unique stable matching, where no agent has

an incentive to manipulate a stable matching mechanism (Eeckhout, 2000; Clark, 2006;

Samet, 2011). The pure private value model would be the worst case.6

The main finding of the paper is that the expected proportion of agents whose utilities

vary only slightly from one another for all stable matchings converges to one as the market

becomes large. That is, while agents typically have multiple stable partners, most of the

agents are close to being indifferent among the stable partners. We observed in the

previous example that when a stable matching mechanism is applied, the best a firm (by

misrepresenting its preferences) can achieves is matching with the firm-optimal stable

matching partner with regard to the true preferences; similarly, the best a worker can

achieves is matching with the worker-optimal stable matching partner with regard to

the true preferences (Demange, Gale, and Sotomayor, 1987). As such, my main finding

implies that when a stable matching mechanism is applied, the expected proportion

of agents who have an incentive to manipulate the mechanism vanishes as the market

becomes large.

The proof is based on a random bipartite graph model, which, to the best of our

knowledge, has not been used before in the matching literature. In a random bipartite

graph model, we are given a set of nodes, which is partitioned into two disjoint sets.

Each pair of nodes, one from each partition, is joined by an edge independently with a

6Worst-case scenarios vary depending on the concern of the failure of stable matching mechanisms.
Halaburda (2010) considers a model where firms and workers may unravel a centralized mechanism by
contracting on their own, and not participating in the clearinghouse. In terms of unravelling instead of
strategic preference misrepresentation, a stable matching mechanism may have a higher chance to fail
when preferences have a strong commonality.
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fixed probability. For each realized graph, we consider subsets of nodes, which are also

partitioned into two disjoint sets, and every pairs of nodes, one from each partition, is

joined by an edge. It is known that, as the set of nodes becomes large, the possibility

of having a large such subset of nodes ultimately becomes infinitesimal (Dawande, Ke-

skinocak, Swaminathan, and Tayur, 2001). In our matching model, we consider a subset

of firms and workers whose common values are above certain levels. We show that the

firms and the workers are most likely to achieve relatively high levels of utility in every

stable matching. Taking the subset of firms and workers as a set of partitioned nodes,

we join each firm-worker pair by an edge if one of their independent private values is

significantly lower than the upper bound of the support. It turns out that every firm-

worker pair where both the firm and worker fail to achieve high levels of utility in a stable

matching must be joined by an edge. Their private values would otherwise both be so

high that they would prefer each other to their current partners, thereby blocking the

stable matching. Referring to the result of the random bipartite graph model, we can

conclude that the set of firms and workers who fail to achieve high levels of utility will

remain relatively small as the market becomes large.

This paper mainly focuses on the case of complete information, in which all partici-

pants are aware of the preferences of all other agents. However, we will exploit its findings

to a market with incomplete information, in which each agent is partially informed about

a preference profile. Various setups are conceivable: An agent may know (i) only her own

utilities from agents on the other side; (ii) her own utilities and common values of agents

on the other side; (iii) her own utilities, common values of agents on the other side, and

her own common value to agents on the other side; or (iv) her own utilities and all agents’

common values. Regardless of the information structure, most agents are ex-ante close

to being indifferent among the different stable matchings as the market becomes large.7

This is because there is a high probability that agents are close to being indifferent among

the realized partners from all stable matchings, which is this study’s key finding in the

context of complete information.

7We study the incentive of misrepresenting preferences given that other agents reveal their true
preferences. The expected differences in utility from stable matchings are conditioned on an agent’s
private information about the preference profile, but not on the other agents’ strategies.
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1.4 Related Literature

As strategic manipulability has been a major concern of market design applications, a

number of studies have addressed the incentives for misrepresenting preferences in a stable

matching mechanism (Roth and Peranson, 1999; Immorlica and Mahdian, 2005; Kojima

and Pathak, 2009). These studies consider a particular stable matching mechanism,

which is called the worker-proposing Gale-Shapley algorithm, which implements a stable

matching favorable to workers. As truthfully revealing preferences is a dominant strategy

for workers in this mechanism (Roth, 1982; Dubins and Freedman, 1981), the papers focus

on firms’ incentives to manipulate the mechanism. Unlike the current paper, these studies

assume that firms will manipulate a mechanism regardless of how much benefit the firms

can obtain. Accordingly, the primary goal is to find conditions of a preference profile in

which most firms have a unique stable matching partner, since a firm has no incentive to

misrepresent its preferences if and only if it has a unique stable matching partner (Roth

and Sotomayor, 1990). A crucial assumption is that agents on one side (either firms

or workers) consider only up to a fixed number of agents on the other side acceptable,

even when the market size has become large. Operating from this assumption, Roth

and Peranson, based on a computational experiment, show that the proportion of firms

who have more than one stable matching partner converges to zero. Convergence is

theoretically proved by Immorlica and Mahdian and extended to many-to-one matchings

by Kojima and Pathak.

As Roth and Peranson (1999) also point out, the key feature driving the non-manipulability

of a stable matching mechanism is the assumption that each worker considers only up

to a fixed number of firms acceptable. However, this approach does not seem to well

represent real markets. First, the assumption itself is questionable, especially in the case

of large markets where workers may consider a great number of firms acceptable. Fur-

thermore, even with a weak commonality of preferences, the proportion of firms who are

accepted at least by some workers becomes small as the market becomes large. In this

case, most firms do have a unique stable matching partner, but quite often the unique

stable matching partner is only the firm itself: i.e. most agents remain unmatched.

Figure 1 provides an example of this phenomenon by illustrating the result of simu-

lations where each worker considers only up to 30 most preferred firms acceptable. Each

graph represents the proportion of firms (or workers) unmatched in stable matchings av-

eraged over 10 repetitions.8 The utility of a firm is defined as Uf,w = λU o
w + (1− λ) ζf,w,

8The set of unmatched agents is the same for all stable matchings (McVitie and Wilson, 1970).
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the utility of a worker is similarly defined, and all values are drawn from a uniform distri-

bution over [0, 1]. Even with modest levels of commonality of preferences, the proportion

of agents who remain unmatched increases when the market becomes large.
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Figure 1: Proportion of agents unmatched in stable matchings.

Another strand of literature on large matching markets considers a market where a

finite number of firms are matched with a continuum of workers (Azevedo and Leshno,

2011). It is shown that generically each market has a unique stable matching, to which

the set of stable matchings in markets with large discrete workers converges. Based

on this model, Azevedo (2010) studies firms’ incentives to manipulate capacities to hire

workers. The paper also compares welfare effects between situations where each firm pays

its employees equally (uniform wage) and those where each firm may pay different wages

to different workers (personalized wage). While previous studies with fixed capacities

suggest that a uniform wage may induce inefficient matching and compress workers’

wages (Bulow and Levin, 2006; Crawford, 2008), if firms can manipulate their capacities,

the uniform wage may produce higher welfare as they cause less capacity reduction.

The large market approach is not limited to the standard matching model. In partic-

ular, Ashlagi, Braverman, and Hassidim (2011) and Kojima, Pathak, and Roth (2010)

develop models of large matching markets with couples. When couples are present,

notwithstanding the concerns about strategic manipulation, a market does not necessar-

ily have a stable matching (Roth, 1984). These studies show that the probability that a

market with couples contains a stable matching converges to one as the market becomes

large. Moreover, when a mechanism produces a stable matching with high probability,

it is an approximate equilibrium for all participants to submit their true preferences.
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The results are based on the condition that the number of couples grows slower than

the market size, with some additional regularity conditions. (The details are different

between the two models.)

In the assignment problem, allocating a set of indivisible objects to agents, Kojima

and Manea (2010) study incentives in the probabilistic serial mechanism (Bogomolnaia

and Moulin, 2001). The probabilistic serial mechanism is proposed as a mechanism

improving ex-ante efficiency on the random priority mechanism: all agents have higher

chances of obtaining more preferred objects by using the probabilistic serial mechanism.

However, while the random priority mechanism is strategy-proof, the probabilistic serial

mechanism is not. Kojima and Manea show that for a fixed set of object types and an

agent with a given utility function, if there is a sufficiently large number of copies of each

object type, then reporting truthful preferences is a weakly dominant strategy for the

agent.9

The rest of this paper is organized as follows: In Section 2, we introduce our model

– a sequence of matching markets with random utilities. In Sections 3 and 4, we state

the main theorem informally and then formally, and illustrate the intuition of the proof

using a random bipartite graph model. In Section 5, we study a market with incomplete

information, and show that the main results hold when an agent does not fully observe

preferences of all other agents. The conclusion of the paper is provided in Section 6. All

detailed proofs are relegated to the Appendix, which also includes definitions and related

theorems of asymptotic statistics.

2 Model

2.1 Two-sided Matching with Random Utilities

The model is based on the standard one-to-one matching model (see, e.g., Roth and So-

tomayor (1990)). We add a utility structure, which in turn generates ordinal preferences.

There are n firms and an equal number of workers. We denote the set of firms by

F and the set of workers by W . U = [Uf,w] and V = [Vf,w] are n × n random matrices

with distributions commonly known to all agents. When a firm f and a worker w match

9Che and Kojima (2010) show that the random assignments in the two distinct mechanisms converge
to each other as the number of copies of each object type goes to infinity. This can be also observed in
Azevedo and Leshno (2011) by assuming that all firms have an identical preference list for workers.
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with one another, f receives utility Uf,w and w receives utility Vf,w. We use u and v

to denote the realized matrices of U and V . A (random) market is defined as a tuple

〈F,W,U, V 〉. We use 〈F,W, u, v〉 to denote a market instance. Given 〈F,W, u, v〉, if each

firm f receives distinct utilities from different workers, we can define a strict preference

list ≻f as

≻f= w1, w2, f, w3 . . . , w4

if and only if

uf,w1
> uf,w2

> 0 > uf,w3
· · · > uf,w4

.

This preference list indicates that w1 is firm f ’s first choice, w2 is the second choice,

and that w3 is the least preferred worker that the firm still wants to hire. We also

write w ≻f w′ to mean that f prefers w to w′. We call a worker w acceptable to

f if w ≻f f , otherwise we call the worker unacceptable. We define ≻w similarly for

each w ∈ W , and call ≻:= ((≻f )f∈F , (≻w)w∈W ) a preference profile induced by (u, v).

We shall assume that utilities are randomly drawn from some underlying distributions,

ensuring that realized utility values are all distinct with probability 1, so (u, v) has a

strict preference profile with probability 1.

A matching µ is a function from the set F ∪W onto itself such that (i) µ2(x) = x,

(ii) if µ(f) 6= f then µ(f) ∈ W , and (iii) if µ(w) 6= w then µ(w) ∈ F . We say a matching

µ is individually rational if each firm or worker is matched to an acceptable partner, or

otherwise remains unmatched. For a given matching µ, a pair (f, w) is called a blocking

pair if w ≻f µ(f) and f ≻w µ(w). We say a matching is µ stable if it is individually

rational and has no blocking pair.

For two stable matchings µ and µ′, we write µ �i µ
′ if an agent i weakly prefers µ

to µ′: i.e. µ(i) ≻i µ′(i) or µ(i) = µ′(i). We also write µ �F µ′ if every firm weakly

prefers µ to µ′: i.e µ(f) �f µ′(f) for every f ∈ F . Similarly, we write µ �W µ′ if every

worker weakly prefers µ to µ′: i.e. µ(w) �w µ′(w) for every w ∈ W . A stable matching

µF is firm-optimal if every firm weakly prefers it to any other stable matching µ: i.e.

µF �F µ. Similarly, a stable matching µW is worker-optimal if every worker weakly

prefers it to any other stable matching µ: i.e. µW �W µ. It is known that every market

instance has a firm-optimal stable matching µF and a worker-optimal stable matching

µW (Gale and Shapley, 1962): i.e. for any stable matching µ, we have µF �F µ and

µW �W µ. Moreover if µ and µ′ are both stable matchings, then µ �F µ′ if and only

if µ′ �W µ (Knuth, 1976). Thus for any stable matching µ, it must be the case that
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µ �F µW and µ �W µF .

We abuse notation and use µ to denote a function ≻7−→ µ(≻) so that its domain is

the set of all preference profiles and its image is the set of all matchings. We call the

function µ a matching mechanism, and say that a mechanism µ is stable if µ(≻) is

a stable matching with respect to the preference profile ≻.10 We also use µF and µW

to denote firm-optimal and worker-optimal stable matching mechanisms. A matching

mechanism induces a game in which each agent i ∈ F ∪W states her preference list ≻i.

If for all ≻i and ≻−i,

µ(≻∗
i ,≻−i) �i µ(≻i,≻−i),

then we call≻∗
i a dominant strategy for the agent i. A mechanism µ is called strategy-

proof if it is a dominant strategy for every agent to state her true preference list.

We study the asymptotic properties of stable matchings in a sequence of random

markets 〈Fn,Wn, Un, Vn〉
∞
n=1. The index n will be omitted whenever it does not lead to

confusion.

2.2 Utility Specification

For each pair (f, w),

Uf,w = λ U o
w + (1− λ) ζf,w and

Vf,w = λ V o
f + (1− λ) ηf,w (0 ≤ λ ≤ 1).

We call U o
w and V o

f common value components, and ζf,w and ηf,w private value components.

Common values are defined as random vectors

U o
n := 〈U o

w〉w∈Wn
and V o

n := 〈V o
f 〉f∈Fn

.

Each U o
w and V o

f are drawn from continuous distributions with strictly positive density

functions and with bounded supports in R+. Private values are defined as n×n random

10We can define stable matching mechanisms more generally so that the mechanisms may use utilities
as well as preference profiles. We may consider even random mechanisms, randomly selecting a stable
matching with respect to submitted utilities. However, firm-optimal and worker-optimal stable matchings
are uniquely determined by ordinal preferences, and thus the firm-optimal and the worker-optimal stable
matching mechanisms are intact in such a general definition. Since these two mechanisms are the
main focus of this paper, we, without loss of generality, continue with the standard stable matching
mechanisms.
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matrices

ζ = [ζf,w] and η = [ηf,w].

Each ζf,w and ηf,w are randomly drawn from continuous distributions with bounded

supports in R+.

The model includes both cases of commonality of preferences (λ > 0) and pure private

values (λ = 0). The common value component introduces commonality of preferences

among firms over workers, or among workers over firms. When λ > 0, firms with high

level of common values tend to be ranked higher by workers, and vice versa. If λ = 0, all

utilities are i.i.d, so firms’ orderings of workers are equally likely to be any permutation

from the set of all permutations of n workers. Similarly, workers’ orderings of firms are

equally likely to be any permutation from the set of all permutations of n firms.

In practice, commonality of preferences is prevalent. In the NRMP, some hospitals are

considered prestigious and some doctors are considered very well-qualified. For example,

US News and World Report’s annual rankings are frequently referred to as a guideline to

the best hospitals. The common value component provides a way of taking into account

such commonality of preferences, while retaining the tractability of the model. In the

pure private value model (λ = 0), agents have no commonality of preferences. Although

the case hardly represents any real application, it is theoretically valuable to include it

in the model. In matching theory, commonality has been considered a driving force of

unique stable matching (Eeckhout, 2000; Clark, 2006). In fact, if preferences have an

extreme commonality (λ = 1), there is a unique stable matching.11 When there exists

a unique stable matching, no agent has an incentive to misrepresent her preferences in

a stable matching mechanism (Roth and Sotomayor, 1990). Additionally, Samet (2011)

proposes commonality as a source establishing a small core: the small differences in

utilities between stable matchings favorable to firms, and to workers. Thus, commonality

of preferences may contribute to non-manipulability of stable matching mechanisms. In

this regard, we consider the pure private value model the worst-case scenario in terms of

incentives to manipulate a stable matching mechanism.

11 When λ = 1, a stable matching mechanism sorts firms and workers, so a firm and a worker in the
same rank will be matched with one another: i.e. an assortative matching. To see the intuition, fix
a market instance and consider the firm-worker pair with the highest common values. The pair must
be matched in a stable matching. If it were otherwise, the firm would prefer the worker to his partner
and the worker would prefer the firm to her partner, and thus they would form a blocking pair. By
sequentially applying the same argument to pairs with the next highest common values, we find that
assortative matching is the unique stable matching.
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3 Main Results

We first state the main theorem informally, and then later restate it with formal expres-

sions.

3.1 Informal Statement

Theorem 3.1. For every δ > 0, the expected proportion of firms (and workers) whose

utilities from all stable matchings are within δ of one another converges to one as the

market becomes large.

In other words, while agents typically have multiple stable partners, most of the agents

are close to being indifferent among the stable partners as the market becomes large. It

has been known that no stable matching mechanism is strategy-proof (Roth, 1982). For

instance, when the worker-optimal matching mechanism (e.g. worker-proposing Gale-

Shapley algorithm) is applied, thereby yielding a worker-optimal stable matching for

each submitted preference profile, there might be a firm which can become better off by

misrepresenting its preference list.12 Noting that a matching mechanism is defined over

all possible preference profiles, we may expect that a stable matching mechanism is not

manipulable in most cases of preference profiles. Unfortunately, though, it turns out that

whenever there is more than one stable matching, at least one agent can profitably mis-

represent her preferences (Roth and Sotomayor, 1990), and the condition of a preference

profile containing a unique stable matching seems to be quite restrictive (Eeckhout, 2000;

Clark, 2006).

However, the gain by misrepresenting preferences is limited even when agents form

a coalition and coordinate the members’ strategic behavior. Not all firms will prefer

the new matching outcome to the firm-optimal stable matching with respect to the true

preferences, and not all workers will prefer the new matching outcome to the worker-

optimal stable matching with respect to the true preferences. Formally, let ≻ be the true

preference profile, and let ≻′ differ from ≻ in that some coalition S of firms and workers

misstate their preferences. Then, there is no matching, stable for ≻′, which is preferred

to every stable matching under ≻ by all members of S (Demange, Gale, and Sotomayor,

1987). If a coalition consists of a single firm, then the best the firm (by misrepresenting

its preferences) can achieves is matching with the firm-optimal stable matching partner

12When the worker-optimal stable matching mechanism is applied, it is a dominant strategy for every
worker to state his true preference list (Roth, 1982; Dubins and Freedman, 1981).
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with the true preferences. Likewise, the best a worker can achieve is matching with

the worker-optimal stable matching partner. Since every firm and worker is guaranteed

to be matched with a stable matching partner without any strategic manipulation, the

gain by misrepresenting preferences is limited to the difference between utilities from the

firm-optimal stable matching partner and the worker-optimal stable matching partner.

As such, we can reinterpret Theorem 3.1 in that agents are mostly likely to have

only a slight utility gain by misrepresenting their preferences. Whenever there is any

cost of manipulating a mechanism, participants are most likely to find no incentive to

misrepresent their preferences. In addition, we show with the pure private value model

(λ = 0) that a commonality of preferences may establish, but is not necessary for, a small

core.

Corollary 3.2. For any given cost of misrepresenting preferences, if other agents truth-

fully reveal their preferences, then the expected proportion of agents who have no incentive

to manipulate a stable matching mechanism converges to one as the market becomes large.

3.2 Formal Statement

Given a market instance 〈F,W, u, v〉 and a matching µ, we use uµ(·) and vµ(·) to denote

utilities from the matching outcome: i.e. uµ(f) := uf,µ(f), and vµ(w) := vµ(w),w. For each

f ∈ F , we define ∆(f ; u, v) as the range of utilities from all stable matching outcomes:

i.e.

∆(f ; u, v) := uµF
(f)− uµW

(f).

Then, for every δ > 0, we have the set of firms whose utilities are not within δ of one

another for all stable matchings, which we denote by

AF (δ; u, v) := {f ∈ F | ∆(f ; u, v) > δ} .

The following theorem is a formal statement of Theorem 3.1, using the notation defined

thus far. We have similar notation and a theorem for workers, which are omitted here.

Theorem 3.1∗ For every δ > 0,

E

[

∣

∣F\AF (δ;U, V )
∣

∣

n

]

→ 1, as n → ∞.
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For the proof of Theorem 3.1∗, we take distinct approaches depending on the value

of λ. When λ = 0, Theorem 3.1∗ is relatively easily derived from Pittel (1989). Pittel

considers a model that is essentially the same as our pure private value model (λ = 0),

and analyzes the sum of each firm’s partner’s rank number in the worker-optimal stable

matching as the market becomes large.13 When each firm ranks workers in order of

preferences (i.e. the most preferred worker is ranked 1, the next worker is ranked 2,

and so on), Pittel shows that the sum of the rank numbers of firms’ partners in the

worker-optimal stable matching is asymptotically equal to n2 log−1 n. Then, the rank

number of each firm is roughly n log−1 n on average. In turn, as we normalize the rank

number by the market size n, the normalized average rank number is roughly equal to

log−1 n, converging to 0. As the utility values are randomly drawn from distributions with

bounded supports, even the worst stable matching (i.e worker-optimal stable matching)

gives utility values asymptotically close to the upper bound. That is, all stable matchings

yield only slightly different utility values.

Once we introduce common values (0 < λ < 1), however, the probability distribu-

tion over preference profiles becomes complicated and intractable. As such, we directly

analyze the asymptotic utility values rather than referring to the corresponding rank

numbers. In doing so, we use a random bipartite graph model. Since a random bipartite

graph model has not been used before in the two-sided matching literature, we describe

this technique in greater depth in the following section. We relegate detailed proofs of

λ = 0 and 0 < λ < 1 to Appendix B and Appendix C, respectively. We omit the proof

for the case of λ = 1.14

4 Intuition of the Proof

4.1 A Random Bipartite Graph Model

A graph G is a pair (V,E), where V is a set called nodes and E is a set of unordered

pairs (i, j) or (j, i) of i, j ∈ V called edges. The nodes i and j are called the endpoints

of (i, j). We say that a graph G = (V,E) is bipartite if its node set V can be partitioned

13Pittel does not consider utilities, but a model with random preference profiles. As all preference
profiles are equally likely to occur, though, the model is essentially the same as our pure private value
model (λ = 0).

14For intuition of the proof, see footnote 11.
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into two disjoint subsets V1 and V2 such that each of its edges has one endpoint in V1

and the other in V2. A biclique of a bipartite graph G = (V1 ∪ V2, E) is a set of nodes

U1 ∪ U2 such that U1 ⊆ V1, U2 ⊆ V2, and for all u1 ∈ U1 and u2 ∈ U2, (u1, u2) ∈ E. In

other words, a biclique is a complete bipartite subgraph of G. We say that a biclique is

balanced if |U1| = |U2|, and refer to a balanced biclique with the maximum number of

nodes as a maximum balanced biclique.

Given a partitioned set V1 ∪ V2, we consider a random bipartite graph model G(V1 ∪

V2, p). A bipartite graph G = (V1 ∪ V2, E) is constructed so that each pair of nodes, one

in V1 and the other in V2, is included in E independently with probability p. We use the

following theorem in the proof of the main theorem.

Theorem 4.1 (Dawande, Keskinocak, Swaminathan, and Tayur (2001)). Consider a

random bipartite graph G(V1 ∪V2, p), where 0 < p < 1 is a constant, |V1| = |V2| = n, and

α(n) = log n/ log 1
p
. If the maximum balanced biclique of this graph has size α× α, then

P (α(n) ≤ α ≤ 2α(n)) → 1, as n → ∞.

4.2 Intuition of the Proof (0 < λ < 1)

We use a random bipartite graph model to find an asymptotic lower bound on the utilities

from stable matchings. In order to illustrate the technique more easily, we first apply the

random bipartite graph model to a matching market with tiers, where firms and workers

are partitioned into three tiers.15 That is, F is partitioned into F1, F2, and F3; and W

is partitioned into W1, W2, and W3. For simplicity, we assume that all tiers are of equal

size: i.e.

|Ft| = |Wt| = n (t = 1, 2, 3).

If f ∈ Ft and w ∈ Ws are matched with one another, then they receive utilities

Uf,w = uo
s + ζf,w and Vf,w = vot + ηf,w.

Common values are uniquely defined by tiers such that

uo
1 > uo

2 > uo
3, and vo1 > vo2 > vo3,

15Although we call each group of firms and workers tiers, the tier structure is not a decisive factor in
the preferences. Depending on the relative magnitudes of tier-specific utilities and private values, the
tier structure may be diluted by the private value components.
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and private values ζf,w and ηf,w are randomly drawn from uniform distributions over [0, ū]

and [0, v̄], respectively. In other words, the firm receives a tier-specific value correspond-

ing to the worker’s tier added to private value, and the worker receives tier-specific value

corresponding to the firm’s tier added to private value. We, without loss of generality,

ignore λ and (1 − λ) by incorporating the weights into the tier-specific utilities and the

distributions of private values.

We first find an asymptotic lower bound on utilities that tier-1 firms receive in a

stable matching mechanism. The lower bound is defined as the level arbitrarily close to

the maximum utility that a firm achieves by matching with tier-2 workers: i.e. uo
2+ ū−ε.

That is, firms in tier-1 are achieving high levels of utility by leveraging on the existence

of tier-2 workers. Although not necessarily being matched with tier-2 workers, firms in

tier-1 would otherwise make blocking pairs with workers in tier-2. In order to show that

the level is an asymptotic lower bound, we define the set of firms that fail to achieve the

utility level in the worker-optimal stable matching as

F̄ := {f ∈ F1 | uµW
(f) ≤ uo

2 + ū− ε} ,

and show that

E
[

|F̄ |/n
]

→ 0, as n → ∞.

For each realized private value, we construct a bipartite graph with the set of firms

in tier-1, and workers in tiers up to 2 as a partitioned set of nodes (see the left figure in

Figure 2). Each pair of f ∈ F1 and w ∈ W1 ∪W2 is joined by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − (vo1 − vo2).

We define the set of workers in tiers up to 2 matched with non tier-1 firms as

W̄ := {w ∈ W1 ∪W2 | µW (w) /∈ F1} .

Then, F̄ ∪ W̄ is a biclique: i.e. every firm-worker pair from F̄ and W̄ is joined by an

edge (as illustrated by the right figure in Figure 2).

To see why F̄ ∪ W̄ is a biclique, suppose that f ∈ F̄ and w ∈ W̄ are not joined. Since

f ∈ F̄ ,

uµW
(f) ≤ uo

2 + ū− ε.
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Figure 2: For each realized utility, we draw a bipartite graph with firms in tier-1 and workers
in tiers up to 2 as the partitioned set of nodes (left). Firms in tier-1 receiving low utilities (F̄ )
and workers in tiers up to 2 matched with non tier-1 firms (W̄ ) form a biclique (right).

Since w ∈ W̄ , the worker is not matched with a tier-1 firm, and thus

vµW
(w) ≤ uo

2 + v̄.

That is, f and w mutually fail to achieve high levels of utility.

On the other hand, since they are not joined by an edge,

ζf,w > ū− ε and ηf,w > v̄ − (vo1 − vo2),

and therefore

uf,w > uo
2 + ū− ε and vf,w > vo1 + v̄ − (vo1 − vo2) = vo2 + v̄.

In other words, the pair could have achieved high utilities by making a blocking pair,

which contradicts that µW is a stable matching.

This construction of a bipartite graph fits into a random bipartite graph model. Given

that the tier-structure specifies the set of nodes, a bipartite graph is constructed from each

profile of realized private values. Since the private values are i.i.d, each firm-worker pair

is joined by an edge independently and with an identical probability. Theorem 4.1 shows

that, if the partitioned set of nodes has a size on the order of n, and each pair of nodes

is joined by an edge independently with a fixed probability, then the maximum balanced
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biclique has a size on the order of log(n) with a sequence of probabilities converging to 1

as n gets large. In addition, W̄ contains at least n workers, since there are 2n workers in

tiers up to 2, but only n firms in tier-1: i.e. W̄ has a size on the order of n. Therefore, F̄

must have a size that is, at most, on the order of log(n) with a sequence of probabilities

converging to 1. The biclique F̄ ∪ W̄ would otherwise contain a balanced biclique with a

size bigger than on the order of log(n), violating the Theorem 4.1. Lastly, E
[

|F̄ |/n
]

→ 0

is immediately from log(n)/n → 0.

For the main theorem (without tier structure), we begin the proof by partitioning the

supports of distributions for common values. Suppose the common values are drawn from

uniform distribution over [0, 1]. We partition the unit interval into T subintervals with

equal lengths. Workers and firms are, in turn, grouped into tiers where firms or workers

in the same tier have common values in the same subinterval. Basically, we continue the

proof as if we have a model with a finite number T of tiers. The tiers, though, need to

be carefully handled. This time, because common values are random, the tier structure

is random. Moreover, agents in adjacent tiers may have arbitrarily close common values.

As we increase the number of tiers T , the asymptotic lower bound on the utility

of firms in tier-t becomes close to the maximum utility achievable by matching with a

worker in tier-t. An asymptotic upper bound on the utility of firms in tier-t is identified

by referring to the asymptotic lower bounds on the utility of workers in tiers higher than

t. As workers in tiers higher than t achieve even higher utility values, the workers are not

matched with firms in tier-t, which naturally gives an asymptotic upper bound on utility

of firms in tier-t. As we finely partition the supports, the common values of workers in

tiers higher than t, but close to it, have a little higher common values than the common

values of workers in tier-t. That is, the asymptotic upper bound on the utility of firms in

tier-t also becomes close to the maximum utility achievable by matching with a worker

in tier-t.

5 Market with Incomplete Information

We have so far implicitly assumed complete information. Agents are assumed to be able

to assess the exact gain by misrepresenting preferences, or at least they can compute firm-

optimal and worker-optimal stable matchings. It is a strong assumption, especially when

we consider large markets. More realistically, we may want to consider a market with

incomplete information, where each agent is only partially informed about the preferences
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of other participants. Moreover, we assume that agents have no incentive to manipulate

a mechanism unless they see a significant gain by misrepresenting their preferences. In

this respect, a model with incomplete information may be more realistic, since agents

are required to investigate others’ preferences prior to making strategic manipulations,

which costs time and effort.

Nevertheless, we have mainly focused on the case of complete information, and exploit

its findings to show that the incentive to misrepresent preferences vanishes under incom-

plete information. The intuition is clear. The expected utility gain from manipulation

under incomplete information is simply a convex combination of the utility gains in all

realized market instances. Previously, we showed that the utility gain is most likely to

be insignificant, and thus the expected gain is most likely to be negligible as well.

There are two advantages of showing the result in the context of complete information

first, and then deriving the same result in the context of incomplete information. First,

the results are robust to the information structure. In relaxing the complete information

assumption, we may consider various information structures. Each agent may know

only the probability distributions in addition to either (i) her own utilities; (ii) her own

utilities and common values of the other side; (iii) her own utilities, common values of

the other side, and her own common value evaluated by the other side; or (iv) her own

utilities and all agents’ common values. The intuition of showing the main result by using

convex combinations remains valid regardless of the details of the information structure.

Secondly, we can stress that non-manipulability of stable matching mechanisms is a

property of the two-sided matching market itself, rather than stemming from insufficient

information to manipulate the mechanism. Even when an agent can obtain complete

knowledge of a preference profile at a small cost, it is not worth incurring that cost since

the gain from manipulation will be small.

The following theorem in the context of incomplete information corresponds to The-

orem 3.1 and Corollary 3.2 for the model with complete information.

Theorem 5.1. With any information structure from (i) to (iv), Corollary 3.2 still holds

when agents have incomplete information.

That is, for any given cost of misrepresenting preferences, if other agents truthfully

reveal their preferences, then the expected proportion of agents who have no incentive to

manipulate a stable matching mechanism converges to one as the market becomes large.

In order to restate Theorem 5.1 formally, we use Kf to denote what f knows about
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a preference profile. We use kf to denote its realization. Then the various incomplete

information structures are denoted by (i) Kf = 〈Uf,w〉w∈W ; (ii) Kf = 〈Uf,w, U
o
w〉w∈W ; (iii)

Kf = 〈Uf,w, U
o
w〉w∈W ∪ {V o

f }; and (iv) Kf = 〈Uf,w, U
o
w〉w∈W ∪ 〈V o

f ′〉f ′∈F . Given a market

instance 〈F,W, u, v〉, we define ∆E(f ; u, v) as the range of the expected utilities from all

stable matchings conditioned on kf . That is,

∆E(f ; u, v) := EU,V [uµF
(f)− uµW

(f) | kf ] ,

where the expectations are applied to firm-optimal and worker-optimal stable matchings.

For every δ > 0, we correspondingly have the set of firms, whose expected utilities are

not within δ of one another for all stable matchings, which we denote by

BF (δ; u, v) :=
{

f ∈ F | ∆E(f ; u, v) > δ
}

.

We obtaine Theorem 5.1 by interpreting the following result.

Theorem 5.1∗ Given any information structure from (i) to (iv) and for every δ > 0,

E

[

∣

∣F\BF (δ;U, V )
∣

∣

n

]

→ 1 as n → ∞.

The main intuition of the proof is that an expectation is a convex combination of

all realizations. The realized differences between utilities from the firm-optimal and the

worker-optimal stable matchings are mostly less than δ (Theorem 3.1). Therefore, their

convex combination is most likely to be less than δ as well. We relegate the detailed

proofs to Appendix D.

6 Conclusions

This paper demonstrates an asymptotic similarity of stable matchings as the number

of participants becomes large. Our measure of similarity is based on utilities, by which

ordinal preferences are determined. As the utilities are drawn from some underlying

probability distributions, one can analyze the likely differences in utilities from all stable

matchings. We take into account the commonality of preferences using a common value
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structure, and also consider an absence of commonality of preferences as a worst-case

scenario in terms of strategic manipulation of a stable matching mechanism.

We show that the expected proportion of firms and workers who are close to being

indifferent among all stable partners converges to one as the market becomes large. By

applying the fact that the gain from manipulation of a stable matching mechanism is

bounded above by the difference between utilities from the firm-optimal and the worker-

optimal stable matchings, the result also implies that the expected proportion of agents

who have a significant incentive to manipulate the mechanism vanishes in large markets.

We prove our results using a random bipartite graph model. As this approach is new in

the matching literature, we exemplify the technique by applying it to a simplified model,

a matching market with tiers.

This paper is one of many recent studies exploring how the popularly used match-

ing mechanisms really work in practice. It is essential to have a better understanding

of stable matching mechanisms as market design applications expand from the NRMP

to many other markets, including school choice programs, dental residencies, various

medical specialty matching programs, and labor markets for law clerks. Of particular

relevance here is the fact that market designers are encouraging economists to adopt a

centralized matching program in the market for new Economics PhDs (Coles, Cawley,

Levine, Niederle, Roth, and Siegfried, 2010). As such, understanding the stable matching

mechanisms in real applications is not only a market designers’ question in theory, but

also of concrete interest for economists in general.
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Appendix A Asymptotic Statistics (Serfling, 1980)

Let X1, X2, . . . and X be random variables on a probability space (Ω,A, P ). We say that

Xn converges in probability to X if

lim
n→∞

P (|Xn −X| < ε) = 1, every ε > 0.

This is written Xn
p

−→ X. For two sequences of random variables 〈Xn〉 and 〈Yn〉, the

notation Xn = op(Yn) denotes that
Xn

Yn

p
−→ 0.

For r > 0, we say that Xn converges in the rth mean (or in the Lr-norm) to X if

lim
n→∞

E (|Xn −X|r) = 0.

This is written Xn
Lr

−→ X.

Theorem A.1. If Xn
Lr

−→ X, then Xn
p

−→ X.

Theorem A.2. Suppose that Xn
p

−→ X, |Xn| ≤ |Y | with probability 1 (for all n), and

E (|Y |r) < ∞. Then, Xn
Lr

−→ X.

Remark. In this paper, most random variables represent proportions, which are bounded

above by 1 with probability 1. As such, convergence in probability and convergence in the

rth mean are equivalent.

Theorem A.3. Let X1,X2, . . . , and X be random k-vectors defined on a probability

space, and let g be a vector-valued Borel function defined on Rk. If g is continuous with

PX-probability 1, then

Xn

p
−→ X =⇒ g(Xn)

p
−→ g(X).

In particular, if Xn
p

−→ X and Yn
p

−→ Y , then Xn+Yn
p

−→ X+Y and XnYn
p

−→ XY .

Given a univariate distribution function F and 0 < q < 1, we define qth quantile ξq

as

ξq := inf{x : F (x) ≥ q}.

Consider an i.i.d sequence 〈Xi〉 with distribution function F . For each sample of size n,

{X1, X2, . . . , Xn}, a corresponding empirical distribution function Fn is constructed

as

Fn(x) :=
1

n

n
∑

i=1

1 {Xi ≤ x} , −∞ < x < ∞.
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The empirical qth quantile ξ̂q:n is defined as the qth quantile of the empirical distri-

bution function. That is

ξ̂q:n := inf{x : Fn(x) ≥ q}.

For each x, Fn(x) is a random variable, and therefore, ξ̂q:n is also a random variable.

Theorem A.4. Suppose that qth quantile ξq is the unique solution x of F (x−) ≤ q ≤

F (x). Then, for every 0 < q < 1 and ε > 0,

P
(∣

∣

∣
ξ̂q:n − ξq

∣

∣

∣
> ε
)

≤ 2e−2nλ2
ε

for all n, where λ1,ε = F (ξq + ε)− q, λ2,ε = q − F (ξq − ε), and λε = min{λ1,ε, λ2,ε}.

For each sample of size n, {X1, X2, . . . , Xn}, the ordered sample values

X1:n ≤ X2:n ≤ · · · ≤ Xn:n

are called the order statistics.

In view of

Xk:n = ξ̂k/n:n, 1 ≤ k ≤ n, (1)

we will carry out proofs in terms of empirical quantiles, even when variables are defined

as order statistics.

Appendix B Proof of Theorem 3.1 (λ = 0)

Let ζ = [ζf,w] be an i.i.d sample from a continuous distribution ΓW with support [0, ū],

and η = [ηf,w] be an i.i.d sample from a continuous distribution ΓF with support [0, v̄].16

For δ > 0, we define the set of firms whose utility from the worst stable matching is

significantly below the upper bound ū, which we shall write as

Ā(δ; u, v) := {f ∈ F |uµW
(f) < ū− δ} .

16We use ΓW instead of ΓM to represent the distribution of utilities of firms, and interpret it as the
distribution of private values of workers. This notation will be consistent with the additional notation
GW representing the distribution of workers’ common values. By the same reason, we use ΓM to denote
the distribution of private values of firms.
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Note from uµF
(f) ≤ ū that

uµF
(f)− uµW

(f) ≤ ū− uµW
(f),

and thus

AF (δ; u, v) ⊆ Ā(δ; u, v).

Therefore, Theorem 3.1∗ follows immediately from the following proposition.

Proposition B.1. For every δ > 0,

E

[

∣

∣Ā(δ;U, V )
∣

∣

n

]

→ 0 as n → ∞.

We divide the proof into two lemmas. For every market instance 〈F,W, u, v〉, we let

RµW
(f) be the rank number of firm f ’s worker-optimal stable matching partner: e.g.

RµW
(f) = 1 if f matches with its most preferred worker. We first observe that for most

firms, the rank numbers of worker-optimal matching partners normalized by n converge

to 0. The second lemma shows that the corresponding utility levels must be close to the

upper bound ū.

Lemma B.2. For γ > 0 let

Āq(γ; u, v) :=

{

f ∈ F |
RµW

(f)

n
> γ

}

=

{

f ∈ F | 1−
RµW

(f)

n
< 1− γ

}

.

Then, for every sequence 〈γn〉 such that γn → 0 and (log n) · γn → ∞,

E

[

∣

∣Āq(γn;U, V )
∣

∣

n

]

→ 0 as n → ∞.

Proof. For every instance 〈F,W, u, v〉 and for every sequence 〈γn〉 satisfying the condi-

tions,

1

n
γn
∣

∣Āq(γn; u, v)
∣

∣ <
1

n

∑

f∈Āq(γn;u,v)

RµW
(f)

n

≤
1

n

∑

f∈Fn

RµW
(f)

n
.

26



We use Theorem 2 in Pittel (1989) showing that

∑

f∈Fn
RµW

(f)

n2 log−1 n

p
−→ 1. (2)

Applying (2), we shall write

∣

∣Āq(γn;U, V )
∣

∣

n
≤

∑

f∈Fn
RµW

(f)

n2

1

γn

=

∑

f∈Fn
RµW

(f)

n2 log−1 n

1

log n · γn

p
−→ 0 as n → ∞.

We obtain Lemma B.2 since
|Āq(γn;U,V )|

n
is bounded above by 1 for all n so that

convergence in probability implies convergence in mean (Theorem A.2).

Lemma B.3. For every γ > 0 let

Ā′(δ, 1− γ; u, v) :=
{

f ∈ F | ξ̂f1−γ;n < ū− δ
}

,

where ξ̂f1−γ;n is the realized value of the empirical (1− γ)th quantile of Uf = 〈Uf,w〉w∈Wn
.

Then, for every δ > 0 and sequence 〈γn〉 such that γn → 0 and (log n) · γn → ∞,

E

[

∣

∣Ā′(δ, 1− γn;U, V )
∣

∣

n

]

→ 0 as n → ∞.

Proof. For each n, let fn ∈ Fn and consider the resulting sequence 〈fn〉
∞
n=1.

Note that

ξ1−γn;n −
∣

∣

∣
ξ1−γn;n − ξ̂fn1−γn;n

∣

∣

∣
≤ ξ̂fn1−γn;n,

where ξ1−γn;n is the (1− γn)
th quantile of ΓW . We shall write

P
(

ξ̂fn1−γn;n < ū− δ
)

≤ P
(

ξ1−γn;n −
∣

∣

∣
ξ1−γn;n − ξ̂fn1−γn;n

∣

∣

∣
< ū− δ

)

= P
(
∣

∣

∣
ξ1−γn;n − ξ̂fn1−γn;n

∣

∣

∣
> ū− ξ1−γn;n + δ

)

≤ P
(∣

∣

∣
ξ1−γn;n − ξ̂fn1−γn;n

∣

∣

∣
> δ
)

. (3)

27



Regarding to Theorem A.4,

λ1,δ = ΓW (ξ1−γn;n + δ)− (1− γn) = γn, and

λ2,δ = (1− γn)− ΓW (ξ1−γn;n − δ), with large n.

Since λ1,δ → 0 and λ2,δ → 1− ΓW (ū− δ) > 0, we have

λδ = min{λ1,δ, λ2,δ} = λ1,δ = γn, with large n.

Thus, the last term in (3) is bounded above by 2e−2nγ2
n which converges to 0, and

therefore

P
(

ξ̂fn1−γn;n < ū− δ
)

→ 0.

Note that

E

[

|Ā′(δ, 1− γn;U, V )|

n

]

=
1

n

∑

f∈Fn

E
[

1
{

ξ̂f1−γn;n < ū− δ
}]

= E
[

1
{

ξ̂fn1−γn;n < ū− δ
}]

= P
(

ξ̂fn1−γn;n < ū− δ
)

→ 0.

We complete the proof of Proposition B.1 using the following observation. For each

〈F,W, u, v〉 and for every sequence 〈γn〉 such that γn → 0 and (log n) · γn → ∞,

Ā(δ; u, v) =
(

Ā(δ; u, v) ∩ Āq(γn; u, v)
)

∪
(

Ā(δ; u, v) ∩ (F\Āq(γn; u, v))
)

⊆ Āq(γn; u, v) ∪
(

Ā(δ; u, v) ∩ (F\Āq(γn; u, v)
)

.

Each f in F\Āq(γn; u, v) matches in µW with a worker of a normalized rank less than

γn. Nevertheless if f obtains utility less than ū− δ in µW (i.e. f ∈ Ā(δ; u, v)), then the

(realized) empirical (1− γn)
th quantile of his utilities is below ū− δ.

That is,

Ā(δ; u, v) ∩ F\Āq(γn; u, v) ⊆ Ā′(δ, 1− γn; u, v),
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and therefore

Ā(δ; u, v) ⊆ Āq(γn; u, v) ∪ Ā′(δ, 1− γn; u, v).

We proved in Lemma B.2 and B.3 that both |Āq(γn;U,V )|

n
and |Ā′(δ,1−γn;U,V )|

n
converge to

0 in mean, which completes the proof.

Appendix C Proof of Theorem 3.1 (0 < λ < 1).

To simplify notations, we compress λ and 1− λ, and consider utilities defined as

Uf,w = U o
w + ζf,w and Vf,w = V o

f + ηf,w.

We do not lose generality, since we can regard common values and private values as the

ones already incorporated λ and 1− λ in their distributions.

Let U o
n and V o

n be i.i.d samples of size n from distributions GW and GF , respectively.

GW has a strictly positive density function on the support [0, ūo] in R+, and GF has a

strictly positive density function on the support [0, v̄o] in R+. ζ = [ζf,w] is an i.i.d sample

from a continuous distribution ΓW with support [0, ū], and η = [ηf,w] is an i.i.d sample

from a continuous distribution ΓF with support [0, v̄].

We prove that |AF (δ;U,V )|
n

converges to 0 in probability, which is equivalent to proving

convergence in mean (Theorem A.2). That is, we fix δ > 0 and T ∈ N and prove that

P

(

|AF (δ;U, V )|

n
>

9

T

)

→ 0, as n → ∞.

First, we partition the supports of the common value distributions into T intervals.

Then for each market instance, in particular for each realized profile of common values,

we group firms and workers into two versions of finite number of tiers, where agents in

the same tier have similar common values. In Proposition C.1, we find that tier-t firms

are most likely to achieve a utility level higher than an arbitrary ε less than the maximum

achievable utility from a worker in tier-(t+3).17 For the proof, we use a random bipartite

17In Section 4, we showed with a market with tiers that firms in tier-t are most likely to achieve
a utility level higher than an arbitrary ε less than the maximum achievable utility from a worker in
tier-(t + 1). In the model with tiers, each tier has a distinct tier-specific common value, so there is a
clear-cut distinction between tier-t and tier-(t+ 1) specific values. In the general model (without tiers),
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graph model explained in Section 4. Once we find an asymptotic lower bound on utilities

of firms in each tier, we find an asymptotic upper bound on utilities of firms in a tier, say

t, with referencing to the asymptotic lower bounds on utilities of workers in tiers higher

than t (Proposition C.2). As workers in high tiers achieve high utilities, they are most

likely to match with firms in high tiers, rather than firms in tier-t. Accordingly, utility

of tier-t firms is asymptotically bounded above by the maximum that they can achieve

by matching with workers in tiers of near-t.

As we finely partition the supports of the common value distributions, the differences

in common values between adjacent tiers become small. Then, the asymptotic lower

bound will get close to the sum of the lowest common value of tier-t workers and ū. In

addition, the asymptotic upper bound also becomes close to the same level, since the

common values of workers in tiers of near-t will be close to the lowest common value of

workers in tier-t.

We divide the proof into three subsections. First in subsection C.1, we construct

two tier-structures from realized common values. Then in subsection C.2, we define

three events related to the tier-structures, and show that the all three events occur with

probability converging to 1 as the market becomes large. We often write the probability

that the events do not occur as a remainder term converging to 0, and continue the proof

under the condition that the events all occur. The real proof begins in subsection C.3.

During the proof, we shall focus on the market instances where realized firms’ or workers’

common values are all distinct. GF and GW are continuous, ensuring that realized

common values are all distinct with probability 1.

C.1 Tier-Grouping

We use the following notations.

1. ξFq and ξWq : qth quantile of GF and GW .

2. ξ̂Fq;n and ξ̂Wq;n: empirical qth quantile of n-size samples from distributions GF and

GW , respectively. We also use ξ̂Fq;n and ξ̂Wq;n to denote their realizations.

however, there is no such distinction in common values between the adjacent tiers. The highest common
value of workers in tier-(t+ 1) can be arbitrarily close to the lowest common value of workers in tier-t.
This leads us to set the maximum achievable utility from a worker in tier-(t+3) rather than tier-(t+1)
as an asymptotic lower bound on utilities of tier-t firms.
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3. U o
i;n and V o

i;n : ith highest values of n order statistics from GW and GF . Note that

U o
i;n = ξ̂W(1−i/n);n by the relationship between order statistics and empirical quantiles

(see Equation (1)).

We partition the support of GW into

IW1 := (ξW1−1/T ,∞]

IW2 := (ξW1−2/T , ξ
W
1−1/T ]

...

IWt := (ξW1−t/T , ξ
W
1−(t−1)/T ]

...

IWT := [0, ξW1/T ].

We define

Wt(u) :=
{

w | uo
w ∈ IWt

}

for t = 1, 2, . . . , T,

and call this set the set of workers in tier-t (with respect to workers’ common values).

For an instance 〈Fn,Wn, u, v〉, if the corresponding realized common values uo
n =

〈uo
w〉w∈Wn

and von = 〈vof〉f∈Fn
are all distinct, we index firms and workers from i = 1 to n

in the order of their common values: i.e.

vofi > vofj and uo
wi

> uo
wj
, if i < j.18

Then, the set of firms in tier-t (with respect to workers’ common values) is defined

as

Ft(u) := {fi ∈ Fn | wi ∈ Wt(u)}.

We will use the following notations.

1. lt(u) := |Ft(u)| = |Wt(u)|: The size of tier-t (with respect to workers’ common

values).

2. uo
t := ξW

1− t
T

: The threshold level of tier-t and tier-t + 1 workers’ common values.

Note, w ∈ Wt(u) if and only if uo
t < uo

w ≤ uo
t−1.

18GF and GW have positive density functions, ensuring that realized common values are all distinct
with probability 1.
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Remark. The set of tier-t workers is defined with respect to workers’ common values,

which is a random sample. Therefore, Wt(U) is random, and so is Ft(U). In particular,

the size of tier-t, lt(U), is random; whereas, uo
t is a constant.

In parallel, we partition the support of the firms’ common value distribution function

into

IF1 := (ξF1−1/T ,∞]

IF2 := (ξF1−2/T , ξ
F
1−1/T ]

...

IFt := (ξF1−t/T , ξ
F
1−(t−1)/T ]

...

IFT := [0, ξF1/T ].

We define the set of firms in tier-t (with respect to firms’ common values) as

Ft(v) :=
{

f | vof ∈ IFt
}

for t = 1, 2, . . . , T,

and define the set of workers in tier-t (with respect to firms’ common values) as

Wt(v) := {wi ∈ Wn | fi ∈ Ft(v)}.

Accordingly, we use the following notations.

1. lt(v) := |Ft(v)| = |Wt(v)|: The size of tier-t (with respect to firms’ common values).

2. vot := ξF
1− t

T

: The threshold level of tier-t and tier-t+1 firms’ common values. Note,

f ∈ Ft(u) if and only if vot < vof ≤ vot−1.

Remark. Tiers with respect to workers’ common values are in general not the same as

tiers with respect to firms’ common values. In particular, we are most likely to have

lt(u) 6= lt(v).

Throughout the proof, we mainly use tiers defined with respect to workers’ common

values. However, we need both definitions of tier-structures in the last part of the proof.

We simply write “tier-t” to denote tier-t with respect to workers’ common values, and

use “(w.r.t firm) tier-t” to denote tier-t with respect to firms’ common values.
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C.2 High-Probability Events

We introduce three events and show that the events occur with probability converging

to 1 as the market becomes large. In the next section, we will leave the probability that

the following events do not occur as a remainder term converging to zero, and focus on

the probabilities conditioned that the following events all occur.

C.2.1 No vanishing tiers

Event (E1). Let T̄ > T . For all t = 1, 2, . . . , T ,

lt(U)

n
>

1

T̄
.

Proof. By definition,
lt(U)

n
:=

1

n

∑

w∈Wn

1{U o
w ∈ IWt },

which converges to 1
T
in probability by the (weak) law of large numbers.

C.2.2 Distinct common values of the firms in non-adjacent tiers.

Let δv > 0 such that for any v, v′ ∈ [0, ξF1−1/T ] and |v − v′| ≤ δv,

|GF (v)−GF (v′)| <
1

3T
.

GF is uniformly continuous on the interval, so there exists such a δv.

Event (E2). For every t = 1, 2, . . . , T − 2,

min
f∈Ft(U)

f ′∈Ft+2(U)

|V o
f − V o

f ′ | > δv.

Proof. Fix t ∈ 1, 2, . . . , T − 2 and realized u. For every wi ∈ Wt(u) and wj ∈ Wt+2(u),

uo
wi

> uo
t = ξW1−t/T , and uo

wj
≤ uo

t+1 = ξW1−(t+1)/T . (4)

For any q ∈ (0, 1), ξ̂Wq;n
p

−→ ξWq;n (Theorem A.4), from which the following inequalities
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hold with probability converging to 1 as n → ∞.

ξW1−t/T > ξ̂W
1− t

T
− 1

4T

and ξW1−(t+1)/T < ξ̂W
1− t+1

T
+ 1

4T

. (5)

Considering (4), if (5) holds, then we have

1−
t

T
−

1

4T
< min

wi∈Wt(u)

(

1−
i

n

)

= min
fi∈Ft(u)

(

1−
i

n

)

and

1−
t+ 1

T
+

1

4T
> max

wj∈Wt+2(u)

(

1−
j

n

)

= max
fj∈Ft+2(u)

(

1−
j

n

)

.

Then for every fi ∈ Ft(u) and fj ∈ Ft+2(u),

vofi > ξ̂F
1− t

T
− 1

4T

and vofj < ξ̂F
1− t+1

T
+ 1

4T

.

Therefore,

P
(

inf
fi∈Ft(U)

fj∈Ft+2(U)

∣

∣

∣
V o
fi
− V o

fj

∣

∣

∣
≤ δv

)

≤ P
(∣

∣

∣
ξ̂F
1− t

T
− 1

4T

− ξ̂F
1− t+1

T
+ 1

4T

∣

∣

∣
≤ δv

)

+Rn

≤ P

(

∣

∣

∣
GF (ξ̂F

1− t
T
− 1

4T

)−GF (ξ̂F
1− t+1

T
+ 1

4T

)
∣

∣

∣
<

1

3T

)

+Rn,(6)

where Rn corresponds to the probability that (5) is violated: i.e. Rn → 0. The last

inequality is from the definition of δv.

Note that

GF (ξ̂F
1− t

T
− 1

4T

)−GF (ξ̂F
1− t+1

T
+ 1

4T

)
p

−→
1

2T

by Theorem A.4 and continuity of GF (Theorem A.3). As a result, the right hand side of

(6) converges to 0.
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C.2.3 Similarity between tiers defined with workers’ common values and

tiers defined with firms’ common values

The following event is the case that firms in tier-t with respect to workers’ common values

are in a tier near t with respect to firms’ common values, and vice versa.

Event (E3). For every t = 2, 3, . . . , T − 2,

Ft(U) ⊆
t+1
⋃

t′=t−1

Ft′(V ) and Wt(V ) ⊆
t+1
⋃

t′=t−1

Wt′(U).

Proof. We prove the first part and omit the proof of the second part.

For each realized (u, v), we have

{uo
w|w ∈ Wt(u)} ⊆

(

uo
t , u

o
t−1

]

=
(

ξW1− t
T

, ξW
1− t−1

T

]

. (7)

Suppose
(

ξW1− t
T

, ξW
1− t−1

T

]

⊆
(

ξ̂W
1− t

T
− 1

2T

, ξ̂W
1− t−1

T
+ 1

2T

]

, (8)

and
(

ξ̂F
1− t

T
− 1

2T

, ξ̂F
1− t−1

T
+ 1

2T

]

⊆
(

ξF
1− t+1

T

, ξF
1− t−2

T

]

. (9)

If (8) hold, then (7) implies that for every tier-t worker wi, we have

uo
wi

∈
(

ξ̂W
1− t

T
− 1

2T

, ξ̂W
1− t−1

T
+ 1

2T

]

,

and thus,

1−
i

n
∈

(

1−
t

T
−

1

2T
, 1−

t− 1

T
+

1

2T

]

.

Then for any tier-t firm fi, we have

vofi ∈
(

ξ̂F
1− t

T
− 1

2T

, ξ̂F
1− t−1

T
+ 1

2T

]

,

which implies that

{

vof | f ∈ Ft(u)
}

⊆
(

ξ̂F
1− t

T
− 1

2T

, ξ̂F
1− t−1

T
+ 1

2T

]

.
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Consequently if both (8) and (9) hold, then

{

vof | f ∈ Ft(u)
}

⊆
(

ξ̂F
1− t

T
− 1

2T

, ξ̂F
1− t−1

T
+ 1

2T

]

⊆
(

ξF
1− t+1

T

, ξF
1− t−2

T

]

=
t+1
⋃

t′=t−1

IFt′ .

In other words,

Ft(u) ⊆
t+1
⋃

t′=t−1

Ft′(v).

Since (8) and (9) occur with probability converging to 1 (Theorem A.4), the event E3

also occurs with probability converging to 1.

C.3 Proof of the Theorem 3.1

We choose T large enough that

max
1≤t≤T−1

∣

∣uo
t − uo

t+1

∣

∣ ≡ max
1≤t≤T−1

∣

∣

∣
ξW1− t

T

− ξW
1− t+1

T

∣

∣

∣
<

δ

9
.19 (10)

We divide the proof into two propositions. The first proposition finds an asymptotic

lower bound on utilities of firms in each tier, using a random bipartite graph model. The

second proposition derives an asymptotic upper bound on utilities of firms in each tier,

by referencing the lower bounds on utilities of workers in higher tiers.

Proposition C.1. For each instance 〈Fn,Wn, u, v〉 and for each t̄ = 1, 2, . . . , T − 2,

define

ÂF
t̄ (ε; u, v) :=

{

f ∈ Ft̄(u) : uµW
(f) ≤ uo

t̄+2 + ū− ε
}

.20

Then for ε > 0,
|ÂF

t̄ (ε;U, V )|

n

p
−→ 0 as n → ∞.

Proof. For each instance 〈Fn,Wn, u, v〉 and for each t = 1, 2, . . . , T , let F≤t(u) :=
⋃

t′≤t Ft′(u)

and W<t(u) :=
⋃

t′<t Wt′(u).

19We can always satisfy the condition since GW has a strictly positive density function.
20Note that uo

t̄+2 + ū is the highest utility level a firm can achieve by matching with a worker in
tier-(t̄+ 3).
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Let t̄ = 1, 2, . . . , T − 2. We construct a bipartite graph with Ft̄(u) ∪ W≤t̄+2(u) as

a partitioned set of nodes. (see Section 4.1 for the related definitions.) Two vertices

f ∈ Ft̄(u) and w ∈ W≤t̄+2(u) are joined by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − δv,

where δv is the value taken before, while defining E2.

Let W̄ (u, v) be the set of workers in tiers up to t̄+2 who are not matched with firms

in tiers up to t̄+ 1. That is,

W̄≤t̄+2(u, v) := {w ∈ W≤t̄+2(u) |µW (w) /∈ F≤t̄+1(u)} .

We now prove that if E2 holds, then

ÂF
t̄ (ε; u, v) ∪ W̄≤t̄+2(u, v)

is a biclique.

Suppose, towards a contradiction, that a pair of f ∈ ÂF
t̄ (ε; u, v) and w ∈ W̄≤t̄+2(u, v)

is not joined by an edge: i.e.

ζf,w > ū− ε and ηf,w > v̄ − δv.

Then, we first have

uf,w = uo
w + ζf,w > uo

t̄+2 + ζf,w > uo
t̄+2 + ū− ε, (11)

and also have

vf,w = vof + ηf,w ≥ min
f ′∈Ft̄(u)

vof ′ + ηf,w > min
f ′∈Ft̄(u)

vof ′ + v̄ − δv.21

21We should not replace minf ′∈Ft̄(u) v
o
f ′ with vo

t̄
, since Ft̄(u) is defined with respect to workers’ common

values, rather than firms’ common values.
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Since E2 holds, we can proceed further and obtain

vf,w > min
f ′∈Ft̄(u)

vof ′ + v̄ −

(

min
f ′∈Ft̄(u)

vof ′ − max
f ′′∈Ft̄+2(u)

vof ′′

)

= max
f ′′∈Ft̄+2(u)

vof ′′ + v̄. (12)

On the other hand, f ∈ ÂF
t̄ (ε; u, v) implies that

uµW
(f) ≤ uo

t̄+2 + ū− ε,

and w ∈ W̄≤t̄+2(u, v) implies that

vµW
(w) ≤ max

f ′′∈Ft̄+2(u)
vof ′′ + v̄,

since a worker can obtain utility higher than maxf ′′∈Ft̄+2(u) v
o
f ′′ + v̄ only by matching with

a firm in F≤t̄+1(u).

Then, (11) and (12) implies that (f, w) must be a blocking pair of µW , contradicting

that µW is stable. Therefore,

ÂF
t̄ (ε; u, v) ∪ W̄≤t̄+2(u, v).

is a biclique (though not necessarily be a balanced biclique).

We now control the size of ÂF
t̄ (ε;U, V ) by referencing Theorem 4.1. Let uo and vo be

realized common values such that events E1 and E2 hold. Then, the remaining randomness

of U and V is from ζ and η. Consider a random bipartite graph with Ft̄(U) ∪W≤t̄+2(U)

as a partitioned set of nodes, where each pair of f ∈ Ft̄(U) and w ∈ W≤t̄+2(U) is joined

by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − δv.

In other words, every pair is joined by an edge independently with probability

p(ε) = 1−
(

1− ΓW (ū− ε)
)

·
(

1− ΓF (v̄ − δv)
)

.
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We write β(n) := 2 · log(l≤t̄+2(U))/ log 1
p(ε)

, and show that

P
(

|ÂF
t̄ (ε;U, V )| ≤ β(n)

)

→ 1 as n → ∞.22

First observe that W̄≤t̄+2(U, V ) is the size of at least lt̄+2(U), since amongst l≤t̄+2(U)

workers in tiers up to t̄+ 2 at most l≤t̄+1(U) are matched with firms in tiers up to t̄+ 1.

In addition, lt̄+2(U) > β(n) with large n, since E1 holds. Therefore, with large n, we shall

write

P
(

|ÂF
t̄ (ε;U, V )| ≤ β(n)

)

= P
(

min
{

|ÂF
t̄ (ε;U, V )|, |W̄≤t̄+2(U, V )|

}

≤ β(n)
)

. (13)

Let α(U, V )× α(U, V ) be the size of maximum balance biclique of the random graph

G (Ft̄(U) ∪W≤t̄+2(U) , p(ε)) .

Since every realized ÂF
t̄ (ε; u, v)∪ W̄ (u, v) is a biclique, it contains a balanced biclique

of the size equals to

min
{

|ÂF
t̄ (ε; u, v)| , |W̄ (u, v)|

}

.

Therefore,

P
(

min
{

|ÂF
t̄ (ε;U, V )|, |W̄ (U, V )|

}

≤ β(n)
)

≥ P (α(U, V ) ≤ β(n)) . (14)

Applying Theorem 4.1 to (14) and using (13),

P
(

|ÂF
t̄ (ε;U, V )| ≤ β(n)

)

≥ P (α(U, V ) ≤ β(n)) → 1. (15)

Lastly, we consider random utilities U and V , in which even common values are yet

22Note that we fixed common values as a realization uo and vo for each n such that the events E1
and E2 occur. Thus for now, the tier-structure is deterministic, and the sequence β(n) is, in turn, a
deterministic sequence.
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realized. For every ε′ > 0,

P

(

|ÂF
t̄ (ε;U, V )|

n
> ε′

)

= P
(

|ÂF
t̄ (ε;U, V )| > ε′ · n

)

≤ P
(

|ÂF
t̄ (ε;U, V )| > β(n) | E1, E2

)

+Rn, with large n,

where Rn is the probability that either E1 or E2 does not hold: i.e. Rn → 0. The

inequality is from ε′ · n > β(n) with large n. We complete the proof by applying (15).

We also obtain the counterpart proposition of Proposition C.1 in terms of tiers defined

with respect to firms’ common values.

Proposition C.1∗ For each t̄ = 1, 2, . . . , T − 2, define

ÂW
t̄ (ε; u, v) :=

{

w ∈ Wt̄(v)|vµF
(w) ≤ vot̄+2 + v̄ − ε

}

.

Then for ε > 0,
|ÂW

t̄ (ε;U, V )|

n

p
−→ 0 as n → ∞.

Proof. We omit the proof since it is analogous to the proof of Proposition C.1.

For each instance 〈Fn,Wn, u, v〉 and for each t̄ = 1, 2, . . . , T , we define

AF
t̄ (δ; u, v) := {f ∈ Ft̄(u)|∆(f ; u, v) > δ}.

Proposition C.2. If t̄ = 7, 8, . . . , T − 2, then

|AF
t̄ (δ;U, V )|

n

p
−→ 0 as n → ∞.

Proof. In Proposition C.1∗ with t = 1, 2, . . . , T − 3, we replace ε with

εt := vot+2 − vot+3,
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and write

ÂW
t (εt; u, v) =

{

w ∈ Wt(v)|vµF
(w) ≤ vot+3 + v̄

}

.23

Then,
|ÂW

t (εt;U, V )|

n

p
−→ 0 as n → ∞. (16)

Note that a worker receives utility higher than vot+3 + v̄ only by matching with a firm

in (w.r.t firm) tiers up to t+ 3.24 Thus for t = 5, 6, . . . , T ,

{w ∈ W≤t−4(V ) : µ(w) ∈ Ft(V )} ⊆

t−4
⋃

t′=1

ÂW
t′ (εt′ ;U, V ). (17)

If event E3 holds, we can translate (17) into tiers with respect to workers’ common

values. That is, for t = 7, 8, . . . , T ,

{w ∈ W≤t−6(U) : µF (w) ∈ Ft(U)} ⊆

t+1
⋃

t′=t−1

{w ∈ W≤t−6(U) : µF (w) ∈ Ft′(V )}

⊆
t+1
⋃

t′=t−1

{w ∈ W≤t−5(V ) : µF (w) ∈ Ft′(V )}

⊆
t+1
⋃

t′=t−1

{w ∈ W≤t′−4(V ) : µF (w) ∈ Ft′(V )}

where the first and second inequalities are from E3.

Applying (17), we obtain

{w ∈ W≤t−6(U) : µF (w) ∈ Ft(U)} ⊆
t−3
⋃

t′=1

ÂW
t′ (εt′ ;U, V ).

It follows that
|{f ∈ Ft(U) : µF (f) ∈ W≤t−6(U)}|

n

p
−→ 0, (18)

23Recall that vot is a constant, defined as vot := ξF
1− t

T

.
24Recall that f ∈ Ft(v) if and only if vot < vof ≤ vot−1. Thus, if f ∈ F>t+3(v) then vof ≤ vot+3.
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because for every ε > 0,

P

(

|{f ∈ Ft(U) : µF (f) ∈ W≤t−6(U)}|

n
> ε

)

≤ P

(

t−3
∑

t′=1

|ÂW
t′ (εt′ ;U, V )|

n
> ε

)

+Rn,

where Rn is the probability that E3 does not hold: i.e. Rn → 0. The right hand side

converges to 0 by (16).

We complete the proof of Proposition C.2 by proving the following claim. Proposi-

tion C.1 and (18) show that the normalized sizes of two sets on the right hand side of

(19) converge to 0 in probability.

Claim C.1. For t̄ = 7, 8, . . . , T − 2 and each instance 〈F,W, u, v〉,

AF
t̄ (δ; u, v) ⊆ ÂF

t̄ (δ/9; u, v) ∪ {f ∈ Ft̄(u)|µF (f) ∈ W≤t̄−6(u)} . (19)

Proof of Claim C.1. If a firm f ∈ Ft̄(u) is not in ÂF
t̄ (δ/9; u, v), then

uµW
(f) ≥ uo

t̄+2 + ū− δ/9,

and if the firm f is not in {f ∈ Ft̄(u)|µF (f) ∈ W≤t̄−6(u)}, then

uµF
(f) ≤ uo

t̄−6 + ū.

Therefore, using (10) we obtain

uµF
(f)− uµW

(f) ≤ uo
t̄−6 − uo

t̄+2 + δ/9 < δ,

and thus f is not in AF
t̄ (δ; u, v).
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Lastly, we complete the proof of Theorem 3.1 by the following inequalities.

P

(

|AF (δ;U, V )|

n
>

9

T

)

= P

(

∑

1≤t≤T

|AF
t (δ;U, V )|

n
>

9

T

)

< P

(

∑

7≤t≤T−2

|AF
t (δ;U, V )|

n
+

∑

t=1,...,6,T−1,T

lt(U)

n
>

9

T

)

.

The last probability converges to 0. For each t = 7, . . . , T − 2, the proportion
|AF

t (δ;U,V )|

n

converges to 0 in probability (Proposition C.2). For each t = 1, . . . , 6, T − 1, T , the

proportion lt(U)
n

converges to 1
T
in probability by the (weak) law of large numbers.

Appendix D Proof of Theorem 5.1

For each n, let fn ∈ Fn and consider the resulting sequence 〈fn〉
∞
n=1. For any δ > 0,

E

[

|BF (δ;U, V )|

n

]

= E
[

1{fn ∈ BF (δ;U, V )}
]

= P
(

∆E(fn;U, V ) > δ
)

.

Thus if ∆E(fn;U, V )
p

−→ 0, then for every δ, |BF (δ,U,V )|
n

converges to zero in mean,

thereby completing the proof.

Claim D.1.

∆E(fn;U, V )
p

−→ 0, as n → ∞.

Proof. For every δ > 0,

P (∆(fn;U, V ) > δ) = E [1{∆(fn;U, V ) > δ}]

= E

[

|AF (δ;U, V )|

n

]

.

The last term converges to 0 by Theorem 3.1∗, and thus ∆(fn;U, V )
p

−→ 0.

Since ∆(fn;U, V ) is bounded above by λ ūo + (1− λ)ū with probability 1, we obtain

by Theorem A.2 that

lim
n→∞

E[∆E(fn;U, V )] := lim
n→∞

E [∆(fn;U, V )|Kfn ] = lim
n→∞

E [∆(fn;U, V )] = 0.
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The Claim D.1 follows by Theorem A.1.
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