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ABSTRACT
Engineering automated negotiation across the supply chain is a cen-
tral research challenge for the important problem of supply chain
formation. The difficult problem of designing negotiation strategies
is greatly simplified if the negotiation mechanism is incentive com-
patible, in which case the agents’ dominant strategy is to simply
report their private information truthfully. Unfortunately, with two-
sided negotiation it is impossible to simultaneously achieve perfect
efficiency, budget balance, and individual rationality with incentive
compatibility. This bears directly on the mechanism design prob-
lem for supply chain formation—the problem of designing auctions
to coordinate the buying and selling of goods in multiple markets
across a supply chain. We introduce incentive compatible, budget
balanced, and individually rational auctions for supply chain for-
mation inspired by previous work of Babaioff and Nisan, but ex-
tended to a broader class of supply chain topologies. The auctions
explicitly discard profitable trades, thus giving up perfect efficiency
to maintain budget balance and individual rationality. We use a
novel payment rule analogous to Vickrey-Clarke-Groves payments,
but adapted to our allocation rule. The first auction we present is
incentive compatible when each agent desires only a single bun-
dle of goods, the auction correctly knows all agents’ bundles of
interest, but the monetary valuations are private to the agents. We
introduce extensions to maintain incentive compatibility when the
auction does not know the agents’ bundles of interest. We establish
a good worst case bound on efficiency when the bundles of interest
are known, which also applies in some cases when the bundles are
not known. Our auctions produce higher efficiency for a broader
class of supply chains than any other incentive compatible, individ-
ually rational , and budget-balanced auction we are aware of.

Categories and Subject Descriptors
K.4.4 [Computers and Society]: Electronic Commerce—Payment
schemes

; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent Systems, Coherence and Coordination
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1. INTRODUCTION
Supply chain formation is the problem of determining the pro-

duction and exchange relationships across a supply chain. Whereas
typical research in supply chain management focuses on optimiz-
ing production and delivery in a fixed supply chain structure, we
are concerned with ad hoc establishment of supply chain relation-
ships in response to varying needs, costs, and resource availability.
These individual relationships cannot be established in isolation be-
cause a functioning supply chain requires a complete sequence of
production through the supply chain. As business relationships be-
come ever more flexible and dynamic, there is an increasing need to
automate this supply chain formation process. Automated supply
chain formation is being recognized as an important research chal-
lenge [11, 13], and has been chosen as the subject of the upcoming
2003 Trading Agent Competition.

Because procurement and supply contracts in a supply chain can
involve significant production commitments and large monetary ex-
changes, it is important for an agent to negotiate effectively on be-
half of a business. However, strategic analysis can be very com-
plex when agents must negotiate contracts for outputs and multi-
ple inputs simultaneously across a supply chain. Fortunately, care-
ful design of the negotiation mechanism can simplify the agents’
strategic problem enormously. We can effectively engineer away
the agents’ strategic problem by designing an auction to be incen-
tive compatible (IC), in which case an agent’s dominant strategy is
to simply report its private information truthfully. Other properties
are also important in a business setting. An auction should be in-
dividually rational (IR), that is no agent would pay more than its
valuation for the goods it receives. The auction should be budget
balanced (BB) (the auction does not lose money), else there would
typically be little incentive to run the auction. Additionally, it is
desirable that the auction be efficient (maximize total agent value)
to ensure that all gains from trade are realized.

To date, there has been relatively little mechanism design work
that meets the needs of automated supply chain formation. To ad-
dress the problem of IR, much recent effort has focused on combi-
natorial auctions [3] which, by allowing agents to place indivisible
bids for bundles of goods, ensure that agents do not buy partial
bundles of no value. Much of this work has been on one-sided
auctions. To address the two-sided negotiation necessary in a sup-
ply chain, Walsh et al. [14] analyzed an IR and BB auction that



avoids negotiation miscoordination by allowing combinatorial bids
across the supply chain. They found the strategic analysis chal-
lenging, and were able to derive Bayes-Nash equilibria for only
restricted network topologies [13]. In contrast, the well-known
Vickrey-Clarke-Groves (VCG) auction [2, 4, 12] (also called the
Generalized Vickrey Auction [6]) is IC and efficient, but not BB
with the two-sided bidding needed in a supply chain. Myerson and
Satterthwaite showed that, in two-sided negotiation, it is, unfortu-
nately, impossible to simultaneously achieve perfect efficiency, BB,
and IR from an IC mechanism [8]. In response to this impossibil-
ity, Parkes et al. [10] explored double auction rules that minimize
agents’ incentives to misreport their values, but maintains BB and
high (but not perfect) efficiency.

In this work, we exploit the fact that, despite the impossibility
theorem, it is possible to attain IC with any two of the three desir-
able properties (efficiency, IR, BB) in an auction for supply chain
formation. To ensure IC, IR and BB, we develop auctions that pro-
duce inefficient allocations by design. If this approach seems mis-
guided, we note that the Myerson-Satterthwaite theorem actually
states more strongly that the three properties cannot be obtained
even in Bayes-Nash equilibrium. Thus, since efficiency loss is in-
evitable in supply chain formation (assuming BB and IR), we focus
on simplifying the agents’ strategic problem by ensuring IC. Still, it
is important that we do not ignore efficiency altogether, for a highly
inefficient auction would likely be unacceptable for business nego-
tiations. Indeed, a trivial way to get IC, IR, and BB is to perform no
allocation, which is clearly unacceptable. Babaioff and Nisan [1]
presented a novel approach to obtaining IC, BB, and IR and high
efficiency in linear supply chains by structuring auctions in terms of
production markets, rather than directly as goods exchanges. This
allowed them to use a variant of McAfee’s double auction [7] to
obtain the properties.

In this paper, we use ideas from Babaioff and Nisan’s approach
to introduce auctions that are IC, BB, and IR for a broader class
of supply chain formation problems. We provide good worst case
bounds on efficiency when the auction knows the agents’ bundles of
interest, and in some cases when it does not. Our auctions produces
higher efficiency for a broader class of supply chains than any other
IR, IC, and BB auction we are aware of.

In Section 1 we describe our model of the supply chain forma-
tion problem. In Section 3 we present an auction that is IC, IR,
and BB when each agent desires only a single bundle of goods,
there is only one way to produce each good, the auction correctly
knows all agents’ bundles of interest, but the monetary valuations
are private to the agents. We establish a good competitive ratio for
allocative efficiency. We also outline an algorithm for computing
the auction in polynomial time, given fixed consumer preference
structures. In Section 4 we introduce extensions to maintain in-
centive compatibility when the auction does not know the agents’
bundles of interest. We conclude and suggest avenues for future
work in Section 5.

2. SUPPLY CHAIN FORMATION PROB-
LEM

2.1 Supply Chain Model
Before describing the formal details, we illustrate a supply chain

with a stylized example in a small lemonade industry, as shown in
Figure 1. The figure shows in a supply chain graph how the lemon
juice and lemonade can be manufactured from lemons and sugar by
agents in the supply chain. In the figure, an oval indicates a good in
the supply chain. A box indicates a market, which is a set of agents

who desire exactly the same set of input and output goods. The
arrows indicate the input/output relationships between the agents
and the goods. The goods are traded in discrete quantities, and un-
der each good we indicate the discretization of the goods. For each
market, the quantity of inputs needed by one agent and outputs that
can be produced by one agent are indicated next to the respective
arrows. We assume that an agent can provide one unit of its output
good but may require multiple units of an input good. Borrowing a
term from Lehmann et al. [5], we say the agents are single minded
to identify the property that each agent has a single bundle of input
and output goods that is of interest to the agent. This can often be a
reasonable assumption, for companies typically have an established
way to produce a product.

���������	�
 ��
������

������� �� � 
������

� � 
 �������� �����������

��������� ��� �� ����� � �������

� � 
 ���� ����� � � �����
! "�# $ "�#

%�& ' "�# ! "�#

%�& '(#�) * * +�,
%�& '(#�) * * +�,

!�#�) * * +�,
��������� ��� �� � � ��- � ��. � � �����

!�#�) * * +�,
%�& '(#�) * * +�,

/ %�& $ %/ %�& $ '/ %�& 0�%/ %�& 0�'

/ %�& ! %/ %�& $ %/ %�& $ '/ %�& 0�%

/ 1 & '�%/ 1 & 0�'/ 1 & %�%
/ %�& 2 %/ %�& 3�%/ ! & %�%/ ! & ! %

/ %�& 0�%/ %�& 0�'/ %�& 1 %/ %�& 1 %/ %�& 1 '/ %�& 1 '/ %�& '�%/ %�& '�'

/ 0�& $ %/ $ & 3�%/ $ & %�%

���������4 !�"�#�5

� � 
 �6� 4 %�& '(#�) * * +�,�5

������� �4 %�& '�"�#�5
����� ��� �6� �4 !�#�) * * +�,�5

Figure 1: An example supply chain graph in the lemonade in-
dustry.

An agent with an output is a producer, and an agent with only
inputs is a consumer. For instance, a lemonade manufacturer (a
producer) requires 1kg of sugar and 0.5 gallons of juice to produce
one gallon of lemonade, and a lemonade consumer wishes to buy
1 gallon of lemonade. A consumer obtains a monetary value from
acquiring its bundle of interest, and a producer incurs a monetary
cost from producing a good. The values and costs of the individual
agents are indicated in a list adjacent to each market (observe that
values are sorted from highest to lowest and costs are sorted from
lowest to highest).

The formal model we describe subsumes the linear supply chain
model described by Babaioff and Nisan [1] but is subsumed by the
model described by Walsh [13].

Formally, we have a set A of agents and a set G of goods, with
agents indicated by integers in

7
1 8:9�9�9�8<;A ; = and goods indicated by

integers in
7
1 8:9�9�9�8>;G ; = . A bundle q ?A@ q1 8B9�9�9�8 q CG C D indicates the

quantity qg of each good g exchanged by an agent. Positive quan-
tity indicates acquisition of a good (input), and negative quantity
indicates provision of a good (output). We restrict our attention to
quantities qg EGFIH 1 8 0 JLK Z M . In other words, we consider agents
that can require multiple units of an input, but produce at most one
unit of an output. We further restrict our attention to single out-
put agents that supply at most a single unit of a single good. That
is qg ? H 1 for at most one good g. When comparing quantities
in bundles of goods, we assert q̃i N q when q̃g

i N qg for all g, and
assert q̃i O q when q̃i N q and q̃k

i O qk for some good k.
Agent i has a valuation function Vi that assigns a value to any

bundle q, and Vi @ q D EPFQH ∞ 8 Z J . Agent i obtains utility Ui @ q 8 M DR?
Vi @ q D H M, for exchanging bundle q and paying M monetary units.
We assume that the agents are rational and try to maximize their
utility over all possible outcomes. We refer to Vi @ q D as agent i’s
value for the bundle of goods q, and we denote the vector of all
agents’ valuation functions by V ?S@ V1 8�9�9�9�8 V CA C D . We interpret neg-



ative values as costs (e.g., cost of production, or opportunity cost
of providing a good). We assume the valuation functions are nor-
malized at Vi @ 0 D<? 0 and the value is weakly monotonic1 in the
quantity of goods, that is Vi @ q̃i D N Vi @ q D for all q̃i such that q̃i O q.
When Vi @ q D ? H ∞, we say that the bundle q is infeasible for agent
i, and when Vi @ q D E Z we say the bundle is feasible for the agent.

Agents are single minded in that each agent i has a unique bun-
dle of interest q̂i that it tries to obtain. The composition of a bundle
of interest and an agent’s valuation thereof, depend on the class
of the agent, as we detail below. We assume for all agents i that
Vi @ q̂i D E Z. For convenience, we subsequently denote Vi @ q̂i D as vi.
The market K @ i D of agent i is the set of agents with exactly the same
bundle of interest, formally defined as K @ i D ? F j ; q̂ j ? q̂i J .

There are two classes of agents, defined by further constraints
on agents’ bundles of interest and values. A consumer i obtains
positive value (vi N 0) for acquiring all goods in its bundle of inter-
est (q̂i O 0), but cannot produce any goods . The consumer’s value
Vi @ q D for bundle q is such that:

� If q N q̂i, then Vi @ q D ? vi (single minded and weakly mono-
tonic).

� Else, if qk � 0 for some good k, then Vi @ q D ? H ∞ (a consumer
cannot feasibly produce any good).

� Otherwise Vi @ q D ? 0 (a consumer has zero value for any fea-
sible bundle not containing its bundle of interest).

A producer i can produce a single unit of a single output from
a specific (possibly empty) set of inputs, while incurring a cost:
vi
�

0 and q̂g
i ? H 1 for exactly one good g. A producer cannot

feasibly produce its output without all inputs, nor can it feasibly
produce any other output. The producer’s value Vi @ q D for bundle q
is such that:

� If qg ? q̂g
i ? H 1 and q N q̂i, then Vi @ q D ? vi (single minded

and weakly monotonic).

� Else, if qg ? q̂g
i ? H 1 and qk � q̂k

i where q̂k
i O 0 for some

good k, then Vi @ q D ? H ∞ (a producer needs all inputs to fea-
sibly produce its output).

� Else, if qk � 0 where q̂k
i N 0 for some good k, then Vi @ q DL?H ∞ (a producer can feasibly produce only one good).

� Otherwise Vi @ q D ? 0 (q N 0 and a producer has zero cost if it
does not produce any good).

Finally, we consider only supply chains with Unique Manufac-
turing Technologies (UMT), in which there is only one market that
produces any good. Note that, although a good can be made in only
one way, there can be multiple producers in any market, and mul-
tiple markets that require the good as an input. As we will show,
UMT is necessary to ensure BB and our efficiency competitive ra-
tio in our auction. However, the auction is IC and IR without the
UMT restriction.

The relationship between markets and goods can be represented
as a supply chain graph, as illustrated in Figure 1 and described
above. We assume that any graph is directed acyclic, but can have
undirected cycles. The market structure defines the supply chain
topology.

DEFINITION 1 (SUPPLY CHAIN TOPOLOGY). A supply chain
topology is a set of markets.

1Weak monotonicity is equivalent to free disposal for agents.

2.2 Allocations
Given a set of agents, we want to determine the production and

exchange of goods that constructs a supply chain. An allocation q
specifies how much of each good is bought and sold by each agent.
Let the allocation of good g to agent i be qg

i , with qg
i O 0 meaning

that i buys ; qg
i ; units of g, and qg

i
� 0 meaning that i sells ; qg

i ; units
of g in the allocation. Allocation q is feasible iff each agent is
feasible and each good is in material balance, that is ∑i � A qg

i ? 0
for each good g.2

Throughout this paper, we will consider only allocations that
give an agent either all or none of its bundle of interest. Since
each agent has one bundle of interest, it will be convenient to iden-
tify an allocation q by the set of agents A � that receive their bun-
dle in the allocation: A � ?�� i � A C qi �	 /0 i. The value V @ A � D of an al-
location A � is the sum the agent values in A � : V @ A � D�
 ∑ j � A � v j .
The value of an allocation A � excluding the value of agent i is
V 
 i @ A ��D�
 ∑ j � A � � j �	 i v j . In the auction below, the true values are
not known, so the allocation values are computed with respect to
the values reported in the agents’ bids. When it is necessary to
specify the values explicitly, we denote the value of allocation A �
with respect to specific values v as Vv @ A � D . An allocation A � is
efficient if it is feasible and maximizes the value over all feasible

allocations. The efficiency of allocation A � is V � A � �
V � A � � .

The efficient allocation A � for the supply chain graph shown in
Figure 1 has value $7 9 90, and contains the agents whose costs and
values are specified above the solid line in each market. The reader
can verify that all goods are in material balance and that each agent
in A � receives its bundle of interest. For instance, each of the two
lemonade manufacturers in A � require 1kg of sugar to produce its
output, and there are four sugar makers in A � to provide the 2kg
required in total. Similarly, there are two lemonade consumers to
buy each of the 1 gallons of lemonade produced by the lemonade
manufacturers.

The following definition is useful in proving our theorems.

DEFINITION 2 (PROCUREMENT SET). A procurement set
S F A ��J in allocation A � is a set of agents constituting a non-empty
feasible allocation that contains no other non-empty feasible allo-
cations.

Clearly, any non-empty feasible allocation can be partitioned into
procurement sets.

3. AUCTION FOR THE KNOWN SINGLE-
MINDED MODEL

Here we present an auction for a known single-minded model of
agent utility. We say “known” because we assume that it is com-
mon knowledge that the auction correctly knows the bundle of in-
terest of all agents, but an agents’ monetary valuation for its bun-
dle of interest is private and independent of other agents’ values.
The “known” assumption can be plausible in established industries
where production technologies are well known.

For obvious reasons, we call the auction KSM-TR (Known
Single-Minded Trade Reduction). Under the KSM model, an auc-
tion is IC iff each agent has the incentive to report its true valuation
for its desired bundle. We show that KSM-TR is IC, IR, and BB,
and has a good competitive ratio for efficiency.

2Since the agents can produce at most a single unit of a single good,
the set of allocations would be the same if we required only that
supply weakly exceed demand.



3.1 KSM-TR Auction Mechanism
Each agent reports a value v̆i, which may or may not be vi, to the

auction. The auction then computes an allocation, which assigns,
for each agent, either its bundle of interest or the zero bundle. It
also computes payments to be made by each agent. The auction is
a centralized mechanism that uses trade reduction (TR) rules in a
manner based on an auction introduced by Babaioff and Nisan [1],
but for a more general supply chain model. The auction first com-
putes an optimal allocation, based on the reported values, and uses
this to compute a TR allocation and the agents payments. To ensure
IC and BB, the auction then removes some beneficial trades from
the optimal allocation.

We specify KSM-TR as mixed-integer-linear programs (MIPs),
which can be represented in standard MIP format (including the
binary max and min functions, with a simple transformation). We
can apply advanced integer programming techniques from opera-
tions research to solve the MIPs, but computing the solutions are
intractable for sufficiently large problems. Our problem is a gener-
alization of winner determination in a combinatorial auction with
single-minded preferences, which has been shown to be NP-hard [5].
However, as we show in Section 3.4, we can compute the auction
in polynomial time for a fixed number of consumer markets.

Descriptions of major variables:

� ei
E F 0 8 1 J indicates whether agent i receives its bundle of

interest in the chosen bid-optimal allocation.

� xi
E F 0 8 1 J indicates whether agent i receives its bundle of

interest in the TR allocation.

� x̄i E F 0 8 1 J indicates whether agent i is not in the TR alloca-
tion.

� ri
E F 0 8 1 J indicates whether agent i is the price bounding

agent (explained below) in its market.

First, we compute a bid-optimal allocation with respect to the
reported values v̆ ? @ v̆1 8�9�9�9�8 v̆ CA C D :

maximize ∑i � A v̆iei

such that ∑i � A qg
i ei ? 0 8 for each good g 9 (1)

Given the bid-optimal allocation Ã @ v̆ D ? F i ; ei ? 1 J with respect
to the reported values v̆ , we compute the TR allocation ATR @ v̆ D ?F i ; xi ? 1 J according to the TR rules, given by a solution to the
equations below. Given a solution, if xi ? 0, then agent i loses the
auction, but if xi ? 1, then i wins the auction. A winner pays at
least the value bid by the price bounding agent in the same market
(Lemma 28).

The MIP equations are:

maximize ∑
i � Ã � v̆ �

v̆ixi 9 (2)

Subject to the following Trade Reduction constraints ((3)–(9)) .
Each allocated and price-bounding agent is in Ã @ v̆ D :

xi
�

ei; ri
�

ei (3)

Each agent i E Ã @ v̆ D is either in the allocation or not in the allo-
cation:

xi � x̄i ? 1 (4)

All goods g are in material balance:

∑
i � A

qg
i xi ? 0 (5)

For all agents i E Ã @ v̆ D , an agent can’t be simultaneously in the
allocation and bound the price:

ri � xi
�

1 (6)

For every market k, if there is at least one agent in this market
that is in the allocation, then exactly one agent bounds the price in
the market, otherwise no agent bounds the price:

∑
i � k � Ã � v̆ �

ri ? max
�

i � k � Ã � v̆ �
xi (7)

For every market k, the price-bounding agent must have a lower
value than all allocated agents in the market. Thus, for all pairs
i 8 j E k � Ã @ v̆ D , i �? j:

mi � j ? min @ ri 8 x j D ; v̆imi � j
�

v̆ jmi � j (8)

For every market k, the price-bounding agent must have a higher
value than all non-allocated agents in the market. Thus, for all pairs
i 8 j E k � Ã @ v̆ D , i �? j:

ti � j ? min @ ri 8 x̄j D ; v̆iti � j N v̆ jti � j (9)

In the above, we have implicitly assumed that there is exactly
one bid-optimal allocation and exactly one TR allocation that sat-
isfy the equations. In general, we need a rule to break ties between
multiple bid-optimal and TR allocations. It can be shown that the
auction is not IC if we break ties between alternate bid-optimal al-
locations in favor of the one that gives the maximum bid-value TR
allocation. However, we maintain IC if we break ties randomly, in-
dependent of reported valuations. A computationally efficient way
to perform the random, value-independent tie breaking is as fol-
lows. First, we require that all valuations be reported to the auction
as integers. The auction randomly maps the integers

7
1 8 9�9�9�8 ;A ; =

to agents, one-to-one. The value 2 
 i is added to the reported value
of an agent assigned to the number i. To see that this modifica-
tion to the bids makes (1) compute a unique, optimal allocation,

observe that ∑ CA Ci 	 1 2 
 i � 1, hence any allocation computed is opti-
mal with respect to the bids as they are submitted. Observe also
that for any two disjoint sets of positive, integers N and M, we
have ∑i � N 2 
 i �? ∑ j � M 2 
 j , hence exactly one allocation satisfies
(1) with respect to the modified bids. Similarly, there is a unique
TR allocation that satisfies (2). We do not include the 2 
 i compo-
nents in the agent payments (described below).

If the true values shown in Figure 1 are reported to the auction,
then V @ Ã @ v̆ D�D:? V @ A � D:? $7 9 90 and Ã @ v̆ D contains all agents with
values and costs above the solid lines. All agents above the dashed
lines are in the trade reduction allocation ATR @ v̆ D and V @ ATR @ v̆ D�D ?
$4 9 70, giving an efficiency of 0 9 59. The TR rules require that we
remove at least one agent from Ã @ v̆ D for each market, hence we
reduce one agent from each of the following markets: juice con-
sumers, lemonade manufacturers, and lemonade consumers. Since
one agent is removed from the juice consumers and lemonade man-
ufacturers markets, we have to remove two agents from the juice
squeezer market to maintain material balance of the juice good.
Because each juice squeezer require 2kg of lemons, but each lemon
picker provides only 1kg of lemons, we must remove four agents
from the lemon pickers market to maintain material balance of the
lemon good. Similarly, we must remove two agents from the sugar
markers market to maintain material balance of the sugar good.

The price bounding agent PBAi @ v̆ D for i and bids v̆ is agent j
such that ri � j ? 1, which is the highest bidding agent reduced from
Ã @ v̆ D in i’s market. By Lemma 6 and Lemma 8, PBAi @ v̆ D is inde-
pendent of i’s bid when it wins, so we denote PBAi ? PBAi @ v̆ D . The



price bounding value PBV i for i is v̆PBAi . We use the term “price
bounding agent” because i pays at least PBV i (Lemma 28) in our
auction. As we show in Lemma 29, PBV payments are BB, which
means our auction is BB since i pays at least PBV i. So, in effect,
the PBAs serve as “cutoff points” to ensure that the payments from
all agents above these points constitute BB.
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Figure 2: A supply chain for which PBV payments are not in-
centive compatible.

Babaioff and Nisan’s auction [1] computes the TR allocation (in
a computationally efficient, distributed fashion for linear supply
chains) and requires agent i to pay PBV i. In Figure 1, the val-
ues reported by price-bounding agents are just below the dashed
lines and circumscribed by ovals. Although PBV i payments give
IC for linear supply chains, they do not give IC in our more general
model, as demonstrated in Figure 2. If agent *,+ bids $13.00, as
indicated, it does not win because it is not in the bid-optimal allo-
cation. *-+ has an incentive to bid any value above $20.00 because
then it would win but pay only PBV .0/>? $8 9 00.

Here we describe a new payment scheme to obtain IC in our
model. Each agent pays the Vickrey Trade Reduction (VTR) value
VTRi @ v̆ D , which we construct in the following. We denote as v̆ 

@ v̆i 8 v̆ 
 i D the vector of values reported by all agents, where v̆ 
 i is the
vector of values reported by all agents except i. Let Ã @ v̆ D be the bid-
optimal allocation with respect to v̆, and Ã @ v̆ 
 i D be the bid-optimal
allocation with respect to v̆ 
 i.

The VCG value of i with respect to the bids v̆ is defined as

VCGi @ v̆ D 
 V @ Ã @ v̆ 
 i D�D H V 
 i @ Ã @ v̆ D�D (10)

Intuitively, VCGi @ v̆ D is the “harm” done by agent i to the other
agents by bidding v̆i. Observe that VCGi @ v̆ D � v̆i and that VCGi @ v̆ D ?
0 if i is not in a bid-optimal allocation. Consider *,+ in Figure 2.
If it bids as shown in the figure, it is not in the bid-optimal allo-
cation and VCGi @ v̆ DR? 0. If instead it bids $100, then *-+ is in the
bid-optimal allocation and VCG .0/ ? 29 H 9 ? 20. Observe that i
would be in the bid-optimal allocation if it bids any value above
$20.

As mentioned above, VCG payments are not BB, but we can
extend the VCG idea to obtain BB payments in the TR auction.
The Vickrey Trade Reduction (VTR) value for agent i with respect
to the bids v̆ is defined as:

VTRi @ v̆ D 
 V @ ATR @ VCGi @ v̆ D 8 v̆ 
 i D�D H V 
 i @ ATR @ v̆ D�D (11)

where ATR @ VCGi @ v̆ D 8 v̆ 
 i D is the TR allocation obtained when
the bid of i is replaced by VCGi @ v̆ D . The values are com-
puted with respect to the bids used to compute the TR alloca-
tions. If i E ATR @ v̆ D and tie breaking is necessary, we use the
ATR @ VCGi @ v̆ D 8 v̆ 
 i D and ATR @ v̆ D allocations containing i in the VTR
computation. Observe that if i 1E ATR @ v̆ D , then since VCGi @ v̆ D � v̆i,
V @ ATR @ VCGi @ v̆ D 8 v̆ 
 i D�DR? V 
 i @ ATR @ v̆ D�D and VTRi @ v̆ DR? 0. Consider
*-+ in Figure 2. If it bids as shown in the figure, it is does not
win and VTRi @ v̆ DB? 0. If instead it bids $100, then *,+ wins and

VTRi @ v̆ DB? 25 H 5 ? 20. In fact, if i bids any value above $20 it
would win and pay $20.

We note that VTRi @ v̆ D�? PBV i for linear supply chains, hence our
auction is equivalent to Babaioff and Nisan’s auction when applied
to linear supply chains.

3.2 Incentive Compatibility, Individual Ratio-
nality, and Budget Balance

The main theorem we prove for the KSM-TR mechanism is:

THEOREM 3. The KSM-TR auction produces a feasible alloca-
tion, and is incentive compatible in dominant strategies, individu-
ally rational, and budget balanced.

PROOF. The auction produces a feasible allocation because it
treats the bids as all-or-nothing and ensures that allocated supply
equals allocated demand (Equation (5)). Incentive compatibility is
proven in Lemma 11, individual rationality is proven in Lemma 10,
and budget balance is proven in Lemma 29.
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Figure 3: A supply chain without the UTM property and for
which KSM-TR is not BB.

We note that the proofs of IC and IR do not depend on the UMT
property. However, KSM-TR is not BB if the UMT property does
not hold, as shown in Figure 3. There, VTR ? PBV for all agents,
and it is easy to see that the total payments are 34 H 3 N 13 � 0.

OBSERVATION 4. The KSM-TR auction is IC and IR, but not
necessarily BB, if the UMT property does not hold.

It is possible to regain BB by adding an explicit BB constraint to
the TR auction, but this at the expense of IC.

LEMMA 5. To prove incentive compatibility of the KSM-TR auc-
tion, we can assume, without loss of generality, that there is one
bid-optimal and one possible TR allocation for any set of bids.

PROOF. To prove the lemma, we use the concept of a random-
ized mechanism, that is a probability distribution over a family of
deterministic mechanisms, as introduced by Nisan and Ronen [9].
First, we show that KSM-TR is a randomized mechanism. Recall
that KSM-TR assigns unique integers to all the agents, which in
turn uniquely specifies which bid-optimal and TR allocation will
be chosen from the alternates with the same bid value. Then ev-
ery possible assignment of integers specifies a deterministic mech-
anism, and the probability distribution over integer assignments is
a randomized mechanism.

Nisan and Ronen showed that if each deterministic mechanism is
incentive compatible, then the randomized mechanism is incentive
compatible. Therefore, we need only show that every deterministic
instance of KSM-TR is incentive compatible. But showing this
is equivalent proving incentive compatibility under the assumption
that there is a single bid-optimal and single TR allocation for any
given set of bids.



With Lemma 5, we assume in the sequel that there is a single
bid-optimal allocation and single TR allocation with respect to any
set of reported values.

In the following, we denote by v̆1 the set of reported values when
i bids v̆1

i , that is v̆1 ? @ v̆1
i 8 v̆ 
 i D . Similarly v̆2 ? @ v̆2

i 8 v̆ 
 i D .
LEMMA 6. If i E Ã @ v̆1 D and i E Ã @ v̆2 D for some agent i, then

VCGi @ v̆1 D ? VCGi @ v̆2 D and Ã @ v̆2 D ? Ã @ v̆1 D .

PROOF. That VCGi @ v̆1 DB? VCGi @ v̆2 D follows directly from the
well-known fact that VCG payments are IC when agents receive the
bid-optimal allocation. It follows then that Ã @ v̆2 D ? Ã @ v̆1 D because
there is only one optimal allocation.

Denote as Ãi the optimal allocation containing i. When such an
allocation exists, we define VCGi ? V @ Ã @ v̆ 
 i D�D H V 
 i @ Ãi D . (Ãi is
uniquely defined by Lemma 6.)

LEMMA 7. If there exists a feasible allocation containing i, agent
i is in Ã @ v̆ D if v̆i O VCGi and i is not in Ã @ v̆ D if v̆i

� VCGi.

PROOF. If v̆i O VCGi then v̆i O VCGi ? V @ Ã @ v̆ 
 i D�D H V 
 i @ Ãi D ,
giving us V @ Ã @ v̆ D�D ? v̆i � V 
 i @ Ãi D O V @ Ã @ v̆ 
 i D�D . Thus Ãi must be
optimal, hence i E Ã @ v̆ D when v̆i O VCGi. If v̆i

� VCGi then v̆i
�

V @ Ã @ v̆ 
 i D�D H V 
 i @ Ãi D . Thus Ãi is not optimal, hence i 1E Ã @ v̆ D when
v̆i
� VCGi.

LEMMA 8. If i E ATR @ v̆1 D and i E ATR @ v̆2 D for some agent i, then
VTRi @ v̆1 D ? VTRi @ v̆2 D and ATR @ v̆1 DR? ATR @ v̆2 D .

PROOF. Assume, wlog, that v̆2
i O v̆1

i . By Lemma 6,
VCGi ? VCGi @ v̆1 DB? VCGi @ v̆2 D , hence V @ ATR @ VCGi @ v̆1 D 8 v̆ 
 i D�DB?
V @ ATR @ VCGi @ v̆2 D(8 v̆ 
 i D�D 9 It remains to show that V 
 i @ ATR @ v̆2 D�DB?
V 
 i @ ATR @ v̆1 D�D , to prove VTRi @ v̆1 DR? VTRi @ v̆2 D .

Since i is in the TR allocation, it is also in the bid optimal alloca-
tion. So by Lemma 7, Ã @ v̆2 D ? Ã @ v̆1 D , hence both TR allocations are
chosen from the same bid optimal allocation. Then, since ATR @ v̆1 D
clearly satisfies all the auction constraints when i bids v̆2

i , and since
ATR @ v̆2 D is the optimal TR allocation when i bids v̆2

i

V @ ATR @ v̆2 D�D N V v̆2 @ ATR @ v̆1 D�D ? V @ ATR @ v̆1 D�D H v̆1
i � v̆2

i 9
Subtracting v̆2

i from both sides, we have V 
 i @ ATR @ v̆2 D�D N
V 
 i @ ATR @ v̆1 D�D . Now we need to show that V 
 i @ ATR @ v̆2 D�D �
V 
 i @ ATR @ v̆1 D�D .

Assume, contrary to which we wish to prove, that
V 
 i @ ATR @ v̆2 D�D O V 
 i @ ATR @ v̆1 D�D . If ATR @ v̆2 D satisfies all the
auction constraints when i bids v̆1

i then since ATR @ v̆1 D is optimal
with respect to v̆1

V @ ATR @ v̆1 D�D N V v̆1 @ ATR @ v̆2 D�D ? V @ ATR @ v̆2 D�D H v̆2
i � v̆1

i 9
Subtracting v̆1

i from both sides gives us V 
 i @ ATR @ v̆1 D�D N
V 
 i @ ATR @ v̆2 D�D which is a contradiction. If, on the other hand,
ATR @ v̆2 D does not satisfy all the auction constraints, then the only
constraint that could be violated is that v̆ j O v̆1

i , where j is the
price bounding agent in K @ i D K ATR @ v̆2 D . Consider allocation A � ?
@ ATR @ v̆2 D�� F i J DIK F j J . A � satisfies all the auction constraints when i
bids v̆1

i . So

V @ ATR @ v̆1 D�D N V v̆1 @ A � D ? V @ ATR @ v̆2 D�D H v̆2
i � v̆ j

O V @ ATR @ v̆2 D�D H v̆2
i � v̆1

i 9

Subtracting v̆1
i from both sides gives us V 
 i @ ATR @ v̆1 D�D N

V 
 i @ ATR @ v̆2 D�D , contradicting our assumption. Thus
V 
 i @ ATR @ v̆2 D�D ? V 
 i @ ATR @ v̆1 D�D , giving us VTRi @ v̆1 D>? VTRi @ v̆2 D .
Also, since there is only one TR allocation, we have
ATR @ v̆1 D ? ATR @ v̆2 D .

Denote as ATR
i the optimal TR allocation containing agent

i. When such an allocation exists, we define VTRi ?
V @ ATR @ v̆VCGi D�D H V 
 i @ ATR

i D . (VTRi is uniquely defined by
Lemma 8.)

LEMMA 9. If there exists a feasible TR allocation containing i,
agent i wins the TR auction if v̆i O VTRi, and loses the TR auction
if v̆i

� VTRi.

PROOF. First, we establish that VTRi N VCGi. Assume,
to the contrary, that VTRi

� VCGi, then V @ ATR @ v̆VCGi D�D H
V 
 i @ ATR @ v̆ D�D � VCGi. So V @ ATR @ v̆VCGi D�D � V 
 i @ ATR @ v̆ D�D � VCGi.
Because ATR @ v̆VCGi D is optimal when i bids VCGi, we have
V @ ATR @ v̆VCGi D�D N V 
 i @ ATR @ v̆ D�D � VCGi, which is a contradiction.

Now, we prove that if v̆i O VTRi then i E ATR @ v̆ D . By the above,
v̆i O VTRi N VCGi, so i E Ã @ v̆ D , and since the value of ATR

i must
be weakly monotonic with the bid of i, V @ ATR

i D N V @ ATR @ v̆VCGi D�D .
Assume, contrary to which we wish to prove, that i loses the auc-
tion. So V @ ATR

i D � V @ ATR @ v̆ D�D . Since v̆i O VCGi, i must also lose
with bid VCGi, hence V @ ATR @ v̆ D�D ? V @ ATR @ v̆VCGi D�D . It follows that
V @ ATR

i D � V @ ATR @ v̆VCGi D�D , which is a contradiction.
Finally, we prove that if v̆i

� VTRi then i 1E ATR @ v̆ D . By Lemma 7,
if v̆i

� VCGi then i 1E Ã @ v̆ D and therefore i 1E ATR @ v̆ D . Now, consider
the case where VCGi

�
v̆i
� VTRi. Assume, contrary to which we

wish to prove, that i E ATR @ v̆ D . Then ATR @ v̆ DB? ATR
i , hence v̆i

�
VTRi ? V @ ATR @ v̆VCGi D�D H V 
 i @ ATR

i D , giving us v̆i � V 
 i @ ATR
i D �

V @ ATR @ v̆VCGi D�D . Also, since VCGi
�

v̆i, we have V @ ATR @ v̆VCGi D�D �
V @ ATR @ v̆ D�D . Therefore

V @ ATR @ v̆ D�DR? v̆i � V 
 i @ ATR
i D � V @ ATR @ v̆VCGi D�D � V @ ATR @ v̆ D�D

which is a contradiction.

LEMMA 10. The KSM-TR auction is individually rational.

PROOF. We must prove that an agent receives non-negative util-
ity from bidding truthfully. If i loses, it pays zero and has zero util-
ity. If i wins the auction by bidding truthfully, then by Lemma 9,
vi N VTRi, hence its utility is vi

H Pi ? vi
H VTRi N 0

LEMMA 11. The KSM-TR auction is incentive compatible in
dominant strategies.

PROOF. Consider the case in which agent i wins the auction by
bidding its true value. If i bids untruthfully and loses, then it gets
zero utility, which by Lemma 10 cannot be better than its utility
with a truthful bid. If i bids untruthfully and wins the auction, then
by Lemma 8 its payment, and hence it’s utility remains the same.

Now consider the case in which i loses the auction by bidding
truthfully. Its utility is zero and vi

�
VTRi by Lemma 9. If i bids

untruthfully and loses, its utility remains zero. If i bids untruthfully
and wins, its utility is vi

H Pi ? vi
H VTRi

�
0.

In both cases, we have shown that an agent cannot improve its
utility by bidding truthfully, thus proving the lemma.



3.3 Efficiency Analysis
We have established that KSM-TR is IC, IR, and BB, but we

also want acceptable efficiency. In this section, we establish a good
worst-case bound on the efficiency of the auction. This bound is
such that, as the minimum number of trades in any consumer mar-
ket grows in a fixed topology with the property, the TR allocation
converges to perfect efficiency.

DEFINITION 12 (EFFICIENCY OF AN AUCTION). The effi-
ciency EffAUC @ v D of auction AUC producing allocation AAUC for
agents with valuations v and efficient allocation A � is

EffAUC @ v D ? V @ AAUC D
V @ A � D 9

.
If the auction can produce alternate allocations due to random-

ization, then the efficiency is the minimum over all possible alloca-
tions.

DEFINITION 13 (EFFICIENCY COMPETITIVE RATIO). An
efficiency competitive ratio function of auction AUC is a function
RatioAUC @ v D such that EffAUC @ v D N RatioAUC @ v D for any vector of
valuations v.

Because KSM-TR generates only positive-value allocations, the
efficiency is always in the range

7
0 8 1 = , hence we establish a com-

petitive ratio in this range also. The closer the competitive ratio is
to one, the more efficient the auction.

For market m, we denote as Tm @ A � D the number of winning agents
(trade size) in market m in the allocation A � . We denote by CM �
the set of consumer markets with non zero trade size in A � .

THEOREM 14. The following function is an efficiency competi-
tive ratio function for the KSM-TR auction:

RatioKSM 
 TR @ v D ? min
m � CM �

Tm @ A ��D H 1
Tm @ A � D

if A � �? /0 and

RatioKSM 
 TR @ v D ? 1

if A � ? /0.

PROOF. Refer to Appendix A.

Note that Theorem 14 gives a worse case bound which holds for
any valuations of the agents, therefore it holds for any distribution
of valuations. The bound is dependent only on the number of trades
in the optimal allocation.

Recall that the efficiency of ATR for Figure 1 is 0 9 59. In this
supply chain, there are two trades in each consumer market in A � ,
giving us RatioKSM-TR @ v DR? 1 1 2, which is indeed less than the ac-
tual efficiency.

Typically, our auction achieves higher efficiency than the com-
petitive ratio. The efficiency can be significantly higher when there
is a large difference between the value of the agents in the auc-
tion allocation and the value of the agents reduced (recall that the
low-valued agents are reduced). For instance, consider a supply
chain with two markets: a producer market M1 with no inputs and
an output desired by consumers in market M2. If TM2 @ A ��DB? 2,
then RatioKSM-TR @ v D:? 1 1 2. But if both producers in M1 have a
value of 0, c1 is the highest-value consumer, and c2 is the second-
highest-value consumer in M2, then EffKSM-TR @ v D ? vc1 1 @ vc1 �
vc2 D . Clearly then, EffKSM-TR @ v D�� 1 as vc1 1 vc2 � ∞.

Nevertheless, the competitive ratio is a tight worst-case bound,
in the following sense. Given an optimal allocation, there exists a
set of bids supporting the allocation that give efficiency arbitrarily
close to the competitive ratio. We first give a lemma to help prove
this claim.

LEMMA 15. The number of agents in each market in the TR al-
location is uniquely defined. For each consumer market m, exactly
one agent in m and its associated procurement set is removed from
A � to obtain the TR allocation.

PROOF. The lemma directly follows from Lemma 27.

THEOREM 16. Let A � be the efficient allocation for agents A
and some set of values. Then for any ε O 0, there exists a vector of
values v for agents A with the same optimal allocation that gives
the bound

EffKSM-TR @ v D � RatioKSM-TR @ v D � ε 9

PROOF. Let m̄ ? argminm � CM � @ Tm @ A � D H 1 D�1 Tm @ A � D . Intuitively
we can see the theorem is true when the value of the consumers in
m̄ is much higher than in all other consumer markets, making the

consumers in m̄ dominate the efficiency. More formally, we can
construct the desired v as follows.

� All consumers not in A � have zero value.

� All producers not in A � have a cost of 1 (any cost that is larger
then the value of the above consumers will do).

� All producers in A � have zero value.

� For all consumers c E CM � � m̄ we set vc � 1.

� For all consumers c E m̄ we set vc � w for some value w to
be defined (i.e., all such consumers have the same value).

Note that any agent that was not in A � , is not in the efficient alloca-
tion with the new vector of values v, and any agent in A � remains
in the efficient allocation. By Lemma 15 exactly one consumer
need be reduced from each market in CM � in order to satisfy all the
conditions of the KSM-TR mechanism. Therefore the efficiency is:

EffKSM-TR @ v D ? @ T m̄@ A � D H 1 D w � ∑m � CM ��� m̄@ Tm @ A � D H 1 D
T m̄@ A � D w � ∑m � CM � � m̄Tm @ A � D

Hence,

lim
w � ∞

EffKSM-TR @ v D ? T m̄@ A ��D H 1
T m̄@ A � D ? RatioKSM-TR @ v D

The theorem follows immediately.

The Myseron-Satterthwaite impossibility theorem [8] (discussed
in Section 1) holds, in particular, for the case of a single producer
with no inputs wishing to sell one good to a single consumer. In
this case, the impossibility theorem implies that no trade can occur
if we want BB, IR, and IC. With this in mind, and using reasoning
similar to that in the proof of Theorem 16, we can conclude that,
when any consumer market has only one consumer in the efficient
allocation, no auction can have better than a zero efficiency com-
petitive ratio. Thus, KSM-TR gives the best possible competitive
ratio in this case.

The competitive ratio for Theorem 14 does not hold when the
UMT property does not hold. Consider a topology with two mar-
kets that supply the same good g. Market 1 has one agent that



can produce g with a low cost L from some zero cost good k,
and Market 2 has two agents that can each produce g with a high
cost H. There are three agents, each with value H � 1 in a con-
sumer market that desire g. In the efficient allocation, all three
items will be traded and the value of the efficient allocation is
3 �<@ H � 1 D H @ L � 2 � H DB?A@ H H L � 3 D . In the TR allocation one
agent in each market will be reduced and the allocation value is
H � 1 H H ? 1. The efficiency is then 1 1 @ H H L � 3 D , which can
be arbitrarily close to zero as H grows. This violates the efficiency
ratio of 2 1 3 from the theorem for this non-UMT supply chain.

3.4 Computational Complexity and
Distributed Implementation

Although computing the optimal allocation (and hence the TR
allocation and VTR payments) is NP-hard, we can compute it in
polynomial time for a fixed number of consumer markets. Denote
as CM the set of consumer markets. A configuration specifies, for
each m E CM, the trade size in m.

THEOREM 17. For a fixed number ;CM ; of consumer markets,
the TR auction is polynomial time computable in ;A ; .

PROOF. For brevity, we present only the proof concept. By
an argument similar to the one presented in Lemma 15, we claim
that for a fixed configuration, the size of trade in every market is
uniquely decided and polynomial time computable in ;A ; . Given
the trade sizes, we simply pick the highest value agents in each
market, which can clearly be done in time polynomial in ;A ; . Thus,
for a fixed configuration, we can find the highest value feasible al-
location in time polynomial in ;A ; .

The number of configurations is at most ;A ; CCM C , which is poly-
nomial in ;A ; for fixed ;CM ; . Therefore, finding the optimal allo-
cation can be done by enumerating all configurations and picking
the highest value feasible allocation time polynomial in ;A ; . Given
the optimal allocation, by Lemma 15, the TR allocation ATR can
be calculated by removing one procurement set for any consumer
market with non empty trade in A � . This is clearly polynomial time
computable in ;A ; . Finally, because calculating payments requires
computing a polynomial number of optimal and TR allocations,
these calculations are also polynomial time computable in ;A ; .

The TR auction can also be implemented as a distributed proto-
col between markets, generalizing the protocol presented in Babaioff
and Nisan [1]. Again, for a fixed number of consumer markets, this
protocol will run in time polynomial in the number of agents. Each
agent sends its bid to a mediator representing its market. Each mar-
ket communicates with its input and output markets, and consumer
markets also communicate with a single coordinator.

To compute an optimal allocation, each consumer market first
sends the number bids in its market to the coordinator, which enu-
merates all configurations. For a given configuration, the trade size
is propagated from the coordinator, to the consumer markets, then
through the producer markets. In each market, if the trade size is
t, the t highest bidding agents are chosen. The total value of these
bids are propagated and summed along the paths from the producer
markets to the consumer markets, then to the coordinator. A market
propagates these values to at most one (arbitrarily chosen) market
that uses its output. When the total value reaches the coordinator,
it knows the optimal value that can be obtained for the configura-
tion. This procedure is performed for each configuration, allowing
the coordinator to choose the optimal allocation. The TR allocation
is computed similarly, but, by Lemma 15, with one fewer trade in
each consumer market for each configuration. The VCG and VTR

payments are computed by repeated applications of the above pro-
cedure.

OBSERVATION 18. For a fixed number ;CM ; of consumer mar-
kets, the auction can be implemented as a distributed protocol with
running time polynomial in ;A ; .
4. AUCTIONS FOR THE UNKNOWN

SINGLE-MINDED MODEL
In many situations it may not be reasonable to assume that an

auction knows the bundle of interest of the agents. Now we con-
sider the case where both an agent’s bundle of interest and mone-
tary valuation are private and independent of other agents. With this
model, which we call the Unknown Single-Minded (USM) model,
the auctions must elicit the bundle of interest information from the
agents. An auction is incentive compatible in dominant strategies
iff each agent has the incentive to report its bundle of interest, and
its valuation thereof, truthfully. For the USM model, we sometimes
need to use a weaker solution concept. An auction is Nash incen-
tive compatible iff each agent has the incentive to report its bundle
of interest, and its valuation thereof, truthfully, given that all other
agents do so also.

4.1 USM-TR Auction Mechanisms
In a USM-TR auction, each agent i reports a value v̆i and bun-

dle of interest q̆i, either of which may not be true, and uses the TR
rules, but possibly with additional rules. We call USM-TR-Base
the auction that simply executes KSM-TR after receiving the bids.
Unfortunately, USM-TR-Base is not generally incentive compat-
ible because, due to weak monotonicity of preferences, an agent
may be able to gain by (untruthfully) reporting a bundle that con-
tains its bundle of interest. For instance, consider the case in which
we have some consumer a with q̂g

a ? 1 for good g only, and we
have another consumer b with the same bundle of interest except
that q̂k

b ? 1 for some good k such that q̂k
a ? 0. Assume that a is the

only agent in its true market. If a bids truthfully, it gets reduced if
it is in the optimal allocation, hence gets zero utility. Assume fur-
ther that va O vb. Then if b is winning in its own market, a would
win by reporting the bundle q̆a ? q̂b with value Va @ q̂b D to the auc-
tion. Since Va @ q̂a DR? Va @ q̂b D , agent a would obtain a higher utility
by misreporting its bundle of interest than by reporting truthfully.
Nevertheless, we have established necessary and sufficient condi-
tions for a USM-TR auction to be incentive compatible in dominant
strategies, as specified in the next theorem.

THEOREM 19. A USM-TR auction is incentive compatible in
dominant strategies iff no agent i can improve its utility by reporting
any other q̆i such that q̆i O q̂i.

PROOF. Case if: The proof of Lemma 11 holds in the USM-TR
auction, hence we know that no agent has an incentive to misreport
its bundle valuation, assuming that it reports its true bundle of in-
terest. Thus we need only establish that no agent has an incentive
to misreport its bundle of interest.

If q̆k
i
� q̂k

i for agent i and any good k, then Vi @ q̆i D � 0. But by
individual rationality, Vi @ q̂i D N 0. Thus, no agent i can gain by re-
porting a bundle with any component smaller than in q̂i. Therefore,
it is sufficient to establish that i cannot increase its utility by report-
ing q̆i O q̂i to establish incentive compatibility.

Case only if: True by definition of incentive compatibility.

OBSERVATION 20. In a USM-TR auction, no producer can im-
prove its utility by misrepresenting itself as a consumer and no



consumer can improve its utility by misrepresenting itself as a pro-
ducer.

With this observation, in the sequel we treat consumers and pro-
ducers separately.

By the UTM assumption, if a producer i misrepresents its bundle
of interest unilaterally, i will be the only agent in its market and
will lose. Thus, we can get Nash IC by limiting Theorem 19 to
consumers only.

OBSERVATION 21. A USM-TR auction is Nash incentive com-
patible, iff no consumer can improve its utility by unilaterally re-
porting any other q̆i such that q̆i O q̂i.

4.2 Nash Incentive Compatibility by Remov-
ing Bids

Consider an auction USM-TR-RB (for USM-TR Remove Big-
ger) which removes from consideration every bid qa such that qa O
qb for some other bid qb, where qa and qb are both consumer bids.
At first glance it seems that, since qa is removed, the auction satis-
fies Observation 21. However, if b reports qa instead of its true bun-
dle of interest q̂b, and if there is no other bid qc such that qa O qc,
then no qa bids get removed. We can guarantee that all qa bids get
removed if there exists a bid qc other than q̂b such that qa O qc. If
this holds, then the auction satisfies Observation 21.

OBSERVATION 22. USM-TR-RB is Nash incentive compatible,
if for any consumer b, if there exists a bid qa such that qa O q̂b then
there exists a bid qc such that qa O qc.

4.3 Dominant Strategies Incentive Compati-
bility by Merging Markets

We can ensure incentive compatibility in dominant strategies by
merging markets, rather than removing bids. The USM-TR-Merge
is a USM-TR auction that first accepts bids, and then, before per-
forming trade reduction, merges the consumer bids as follows: for
each consumer i and good g, replace its reported bundle q̆i with q̃
such that q̃k ? max j q̆k

j , where j is a consumer. We call q̃ the con-
sumers’ joint bundle of interest. The auction similarly merges the
reported bundles of all producers with the same output.

THEOREM 23. USM-TR-Merge is incentive compatible in dom-
inant strategies.

PROOF. By Theorem 19, we need only show that an agent can-
not increase its utility by bidding for a bundle greater than its bun-
dle of interest. The bundle union rules and single-mindedness en-
sure that an agent does not gain a higher value by bidding for a
greater bundle. It remains to prove that an agent’s payment does
not decrease by reporting a greater bundle.

First we consider consumers. Let ˆ̃q the consumers’ joint bundle
of interest when i bids q̂i and assume that i reports q̆i O q̂i. If q̃ ? ˆ̃q,
then the payment by i does not change. Now consider the case
where q̃ O ˆ̃q. Since all consumers share the same joint bundle of
interest, the winning consumers are simply those with the highest
reported values. By Lemma 9, if i wins, its payment is the minimal
bid value necessary to be in the TR allocation. Since q̃ O ˆ̃q, more
inputs are needed than if i would report q̂i. Since the additional in-
puts incur additional cost, the minimal value for i to win is at least
as high with report q̆i as with q̂i. We conclude that the payment of a
consumer does not decrease by bidding a larger bundle. Using sim-
ilar reasoning, we also conclude that a producer does not decrease
its payment by reporting a larger bundle.

Recall that, by the UTM assumption, one market produces any
good. Thus, since producers bid truthfully in USM-TR-Merge, no
producers will actually be merged. Still, although no producer mar-
kets are actually merged, the merging rule is still necessary to en-
sure IC in dominant strategies.

In general, it is ambiguous whether USM-TR-Merge would give
higher or lower efficiency than USM-TR-Base with agents report-
ing truthfully. If all true consumer markets contain only one con-
sumer, then there would be no trade without merging, hence merg-
ing could not make the allocation worse and might improve it.
But if consumer markets contain multiple consumers, then merg-
ing markets could increase the costs of an allocation, giving it a
lower value than without merging.

If each consumer desires exactly k units total of any goods, we
can gain IC without merging any consumer markets. In USM-TR-
Merge-kIC (USM-TR-Merge k Input Consumers) we merge pro-
ducer markets but not consumer markets and reject all consumer
bids for other than k units. With the k-unit restriction, no consumer
can feasibly misrepresent itself as any other consumer.

OBSERVATION 24. USM-TR-Merge-kIC is incentive compati-
ble in dominant strategies.

Since no merging is actually performed, our competitive ratio
holds for USM-TR-Merge-kIC.

OBSERVATION 25. The efficiency competitive ratio from Theo-
rem 14 holds for USM-TR-Merge-kIC.

5. DISCUSSION AND FUTURE WORK
We have presented auctions for supply chain formation that are

incentive compatible, individually rational, and budget balanced.
We are not aware of any other auctions with these properties and
with comparably high efficiency for as broad a class of supply chain
topologies we consider. Nevertheless, we believe there may be fur-
ther opportunities for improving efficiency of the KSM-TR auction
while maintaining the properties. Our current approach relies on
the existence of multiple agents with the same bundles of interest
to obtain high efficiency. We hope to find methods for lessening
the dependence. It is also our hope that further study will provide
insights into obtaining incentive compatibility and budget balance
with higher efficiency in the unknown single minded model.

We are also interested in developing auctions for a broader class
of agent utility functions, namely without the single minded restric-
tion. Consider the following obvious variant of our auction to allow
OR or XOR bids. We change the auction to allow agents to place
OR or XOR bids, and include the OR and XOR constraints in the
auction. We also change the VTRi payments so that i’s payment
does not depend on its own bids. With these changes, an agent can
manipulate the allocation in its favor by changing one of its bids,
thus violating IC. Consider the case in Figure 2 where consumer
*-+ true preferences contain XOR components $13 in market

��� +
and $35 in market

�����
. If *-+ bids truthfully, it will win non of

its bids. If instead, *,+ bids less than $28 in the
�����

market, it
will win one unit of the good in market

��� + and pay less than
$13, giving it a positive utility. We get the same phenomenon if
the bid is OR instead or XOR. In either case, the auction is not
incentive compatible. It seems that obtaining incentive compatibil-
ity for these and other more general utility functions will present
interesting mechanism design challenges.
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APPENDIX

A. PROOFS
We prove Theorem 14 in this appendix. Before doing so, we

present a number of definitions and lemmas necessary for the proof.
We denote by S F A ��JI@ m D the number of agents in market m in

the procurement set S F A � J and denote by Markets @ S F A � J D the set
of markets M such that S F A ��JI@ m D �? 0 for all m E M.

DEFINITION 26 (PROCUREMENT SET TOPOLOGY). Two pro-
curement sets S F A ��J 1, S F A �6J 2 of the allocation A � are of the same
procurement set topology S, if for every market m, S F A � J 1 @ m D:?
S F A � J 1 @ m D . In this case we write S F A � J 1 8 S F A � J 2

E S. We say that
procurement set topology S is in the allocation A � if there exist a
procurement set S F A � J of the topology S in A � . We denote as Ŝ @ A � D
the set of all procurement set topologies S that are in A � .

We denote as ŜT the set of all procurement set topologies that
are possible with supply chain topology T .

We note that procurement sets topologies are independent of the
actual allocation, given the topology of the supply chain. For a
fixed supply chain topology, the set of procurement set topologies
that are possible in that supply chain topology is fixed.

For any procurement set topology S E ŜT, we denote as S @ m D the
number of winners in market m in any procurement set of topology
S. S @ m D is well defined. Since a procurement set topology is mini-
mal, there is exactly one consumer market m for which S @ m D O 0.
For that market S @ m D ? 1, and we call m the market of the procure-
ment set.

For any procurement set topology S E ŜT, let N � @ S D be the max-
imal number of disjoint procurement sets with the same topology
S in the optimal allocation A � . For any procurement set topol-
ogy S E Ŝ @ A � D , we have N � @ S D O 0, and for any other topology
N � @ S DR? 0. Similarly, let NT R @ S D be the maximal number of dis-
joint procurement sets with the same topology S in the reduction
allocation.

For any market m we define Tm @ A � D to be the number of win-
ning agents (trade size) in market m in the efficient allocation A � ,
and Rm @ ATR D to be the number of winning agents in A � that are
losers in the KSM-TR reduction allocation in market m. The size of
trade in market m in the KSM-TR allocation is therefore Tm @ ATR D�?
Tm @ A ��D H Rm @ ATR D .

We denote as CM � the set of consumer markets with non zero
trade size in the efficient allocation.

LEMMA 27. Let v be any vector of agents values. Let S E
Ŝ @ A ��D be any procurement set topology in the efficient allocation
A � for v. Then:
� There is a one-to-one mapping of all S E Ŝ @ A � D to all con-

sumer markets in CM � . So we can mark those procurement
set topologies by Si for i ? 1 8�9�9�9�8 ;CM � ; , and we assume that
it is mapped to market mi.

� For each procurement set topology Si, N � @ Si D ? NT R @ Si D � 1.
� For each procurement set topology Si and its mapped con-

sumer market mi, N � @ Si D ? Tmi @ A � D and NT R @ Si D ? Tmi @ A ��D H
1.

�

A � ? CCM � C�
i 	 1

N � � Si ��
j 	 1

Si
j and ATR ? CCM � C�

i 	 1

N � � Si � 
 1�
j 	 1

Si
j

where Si
j is the j procurement set of topology Si, and Si

N � � Si � is

the lowest valuation agents of all agents in procurement sets
of topology Si.

PROOF. First we show that there is a one-to-one mapping of all
S E Ŝ @ A ��D to all consumer markets in CM � . Let m be the consumer
market of the procurement set topology S E Ŝ @ A � D . We map S to
its consumer market m, and we need to show that there is only one
procurement set topology S E Ŝ @ A � D that is mapped to m.

The Unique Manufacturing Technologies property of the supply
chain causes that there is only one procurement set topology that
has an agent in market m as we show below. The proof is by induc-
tion on the markets in reverse topological order. If a procurement
set topology has one agent in consumer market m, it uniquely pro-
duces the number of goods that are needed to satisfy this agent, and
since a single market produces each good, it uniquely sets the num-
ber of winners in each of those markets. This can be continued till
the number of agents in each market is uniquely specified, hence
there is only one procurement set topology with agents in market
m. The proof is by induction on the markets in reverse topolog-
ical order. Clearly the claim is true for By our construction, the
desired mapping exists. We conclude that, in order to reduce one
agent in market m, a procurement set of topology S must be re-
duced in the reduction allocation, therefore for any S E Ŝ @ A � D , we
have N � @ S D N NT R @ S D � 1.



To prove that for any S E Ŝ @ A ��D , N � @ S D � NT R @ S D � 1 we use
the following observation. We claim that, for any procurement set
S of topology S in A � , we have V @ S D O 0 from the point of view
of the KSM-TR auction. To see this, assume to the contrary that
V @ S D � 0. Then, by removing this procurement set we increase
the efficient allocation value, which is a contradiction. The auction
never observes V @ S D ? 0 because it adds the 2 
 i values to the bids,
hence no subset of agents can have value exactly zero.

Now we prove that for any S E Ŝ @ A � D , N � @ S D � NT R @ S D � 1.
Assume that this is not true, then for some S E Ŝ @ A ��D , N � @ S D O
NT R @ S D � 1, or equivalently N � @ S D N NT R @ S D � 2. Then it must be
that at least two procurement sets of the same topology are reduced
by the auction. Since V @ S D O 0 for any procurement set S in A � , we
can add one of the reduced procurement sets of the same topology
and increase the value of the allocation from the point of view of the
auction. We can add one of the reduced procurement sets while en-
suring that every market has a price bounding agent, since we still
have one procurement set reduced and both procurement sets share
the same set of markets. Also, by Lemma 29, we can maintain the
budget balance constraint. Thus, we can add one of the reduced
procurement sets while maintaining the constraints on a TR alloca-
tion, thus contradicting the requirement that KSM-TR maximizes
the allocation value, subject to the constraints. Therefore the as-
sumption is not true, and we have proven that N � @ S D � NT R @ S D � 1
and therefore N � @ S D ? NT R @ S D � 1.

Any procurement set topology S contains a single agent in its
consumer market m, hence N � @ S D ? Tm @ A � D . Since we have shown
that N � @ S D ? NT R @ S D � 1, then NT R @ S D ? N � @ S D H 1 ? Tm @ A � D H 1.

From all the above we conclude that

A � ? CCM � C�
i 	 1

N � � Si ��
j 	 1

Si
j and ATR ? CCM � C�

i 	 1

N � � Si � 
 1�
j 	 1

Si
j

where Si
j is the j procurement set of topology Si, and Si

N � � Si � is the
lowest valuation agents of all agents in procurement sets of topol-
ogy Si.

LEMMA 28. For any winning agent i, VTRi N PBVi.

PROOF. Assume, to the contrary, that VTRi
� PBV i. If i bids

any value v̆i such that VTRi
� v̆i, then i wins the auction by Lemma 9.

In particular, i wins if it bids VTRi
� v̆i

� PBV i. But by the auction
rule v̆i N PBV i, which is a contradiction.

LEMMA 29. Let v be any vector of agents values. The KSM-TR
allocation for v

ATR ? CCM � C�
i 	 1

N � � Si � 
 1�
j 	 1

Si
j

with KSM-TR payments is budget balanced.

PROOF. We denote by V @ Si
j D the sum of valuations of all agents

in procurement set Si
j , and by P @ Si

j D the sum of payments from all

those agents. We denote by Pay @ ATR D the sum of payments of all
agents in the reduction allocation.

Since Pay @ ATR D ? ∑ CCM � C
i 	 1 ∑N � � Si � 
 1

j 	 1 P @ Si
j D , we must show that

Pay @ ATR D N 0 to prove that ATR with KSM-TR payments is budget-
balanced. To do this, it is sufficient to show that P @ Si

j D N 0 for

i ? 1 8�9�9�9�8 ;CM � ; and j ? 1 8�9�9�9�8 N � @ Si D H 1.

We can build a one-to-one mapping of agents from procurement
set Si

j to agents from procurement set Si
N � � Si � , since both procure-

ment sets are of the same topology and have the same number of
agents in each market.

Since Si
N � � Si � is in the efficient allocation, it must be that

V @ Si
N � � Si � D N 0, else it could be removed from the efficient allo-

cation to get a better allocation, which is a contradiction.
By Lemma 28 the payment Pk from each agent k in Si

j is at least
as high as the PBVk. This agent has the highest value of all reduced
agents in k’s market. In particular PBVk is higher then the valua-
tion of the agent that agent k is mapped to in Si

N � � Si � . Hence, we

conclude that P @ Si
j D N ∑k � Si

j
PBVk N V @ Si

N � � Si � D N 0, which is what

we wanted to prove.

We need some additional definitions to carry on with our proofs.

DEFINITION 30 (ALLOCATION PARTITION). An allocation
partition PA � of a feasible allocation A � is a partition
PA �

1 8 PA �
2 8�9�9�9�8 PA �

k of the agents in A � . The size of the partition is

k. For any set PA �
i , the value, V @ PA �

i D , of the set is ∑i � PA �
i

vi

We call an allocation AFTR a feasible reduction allocation if it
satisfies all constraints for a TR allocation, except that it possibly
does not maximize value (Equation (2)).

DEFINITION 31 (GOOD PARTITION PAIR). Given vector of
agents values v, with efficient allocation A � , we say that the allo-
cation have a good partition pair P � 8 Ptr if there exists a partition
P � for the efficient allocation A � of size k, and a partition Ptr for
a feasible reduction allocation AFTR of size k, such that for any
i ? 1 8�9�9�9�8 k,
� Ptr

i
�

P �i .
� V @ P �i D N V @ Ptr

i D N 0.

� V � Ptr
i �

V � P �i � N minS � Ŝ � A � �
NTR � S �
N � � S � .

For valuations with a good partition pair we can bound the effi-
ciency of KSM-TR in the following way:

LEMMA 32. Given vector of agents values v, with non-empty
efficient allocation A � which has a good partition pair P � 8 Ptr, we
have:

Eff KSM 
 TR @ v D ? V @ ATR D
V @ A � D N min

S � Ŝ � A � �
NT R @ S D
N � @ S D

PROOF. Let the good partition pair P � 8 Ptr have size k. Since P �
is a partition of the efficient allocation, V @ A � D:? ∑k

i 	 1 V @ P �i D , and
since Ptr is a partition of a feasible reduction allocation, V @ ATR D N
V @ AFTR D ? ∑k

i 	 1 V @ Ptr
i D . Therefore

Eff KSM 
 TR @ v D ? V @ ATR D
V @ A � D N ∑k

i 	 1 V @ Ptr
i D

∑k
i 	 1V @ P �i D

9

Since P � 8 Ptr is a good partition pair, for every i ? 1 8�9�9�9�8 k it is
true that V @ P �i D N V @ Ptr

i D N 0. Therefore, we can apply Lemma 33
to get

Eff KSM 
 TR @ v D N ∑k
i 	 1 V @ Ptr

i D
∑k

i 	 1 V @ P �i D N
k

min
i 	 1

V @ Ptr
i D

V @ P �i D



Since P � 8 Ptr is a good partition pair, for every i ? 1 8�9�9�9�8 k it is

true that V � Ptr
i �

V � P �i � N minS � Ŝ � A � �
NTR � S �
N � � S � , therefore

Eff KSM 
 TR @ v D N
k

min
i 	 1

V @ Ptr
i D

V @ P �i D N
k

min
i 	 1

�
min

S � Ŝ � A � �
NT R @ S D
N � @ S D��

? min
S � Ŝ � A � �

NT R @ S D
N � @ S D

LEMMA 33. For any set of indexes m and pairs Rm and Om
such that 0

�
Rm
�

Om it is true that

∑m Rm

∑m Om
N min

m � Rm

Om �
PROOF. Let k be the index of elements that minimize the ratio

Rm
Om

. For every m Rm
Om

N Rk
Ok

, therefore for every m, Ok � Rm N Rk �

Om.
Summing over m we get Ok �B@ ∑m Rm D N Rk �<@ ∑m Om D . Hence,

∑m Rm
∑m Om N Rk

Ok
? minm

Rm
Om

, which is what we wanted to prove.

From Lemma 32 we conclude that, if the efficient allocation has
a good partition pair and there is no procurement set topology with
a single procurement set of this topology in the efficient allocation,
then we get a competitive ratio of at least 1 1 2.

LEMMA 34. Let v be any vector of agents values with efficient
allocation A � . A � has a good partition pair.

PROOF. By Lemma 27 the efficient allocation is constructed
from procurement set topologies Si for i ? 1 8�9�9�9�8 ;CM �Q; such that

A � ? CCM � C�
i 	 1

N � � Si ��
j 	 1

Si
j and ATR ? CCM � C�

i 	 1

N � � Si � 
 1�
j 	 1

Si
j

where Si
j is the j procurement set of topology Si, and Si

N � � Si � is the
lowest valuation agents of all agents in procurement sets of topol-
ogy Si. Observe that there are NT R @ Si D ? N � @ Si D H 1 procurement
sets of the i topology in the reduction allocation ATR.

Let P �i ? � N � � Si �
j 	 1 Si

j , and let Ptr
i ? � N � � Si � 
 1

j 	 1 Si
j . We need to show

that all three requirements for a good partition pair holds.

� Ptr
i

�
P �i : This is true by construction.

� V @ P �i D N V @ Ptr
i D N 0: Since Si

N � � Si � is a procurement set, it has

a non-negative value. Hence, V @ P �i D H V @ Ptr
i D ? V @ Si

N � � Si � D N
0. Since every procurement set has non-negative value, we
also have V @ Ptr

i D N 0.

� V � Ptr
i �

V � P �i � N minS � Ŝ � A � �
NTR � S �
N � � S � : First observe that V � Ptr

i �
V � P �i � ?

∑N ��� Si � � 1
j 	 1 V � Si

j �
∑N � � Si �

j 	 1 V � Si
j �

. Hence, by applying Lemma 35 we get

V @ Ptr
i D

V @ P �i D N
N � @ Si D H 1

N � @ Si D ? NT R @ Si D
N � @ Si D N min

S � Ŝ � A � �
NT R @ S D
N � @ S D 9

LEMMA 35. Let n E Z M , m E F 1 8�9�9�9�8 n J , and Xi
E R M for all

i EPF 1 8�9�9�9�8 n J . If Xi N Xm for all i � m and Xi
�

Xm for all i O m,
then

∑m
i 	 1 Xi

∑n
i 	 1 Xi

N m
n

PROOF. The proof is by induction on n for any fixed m. For any
n such that n N m we prove the claim by induction on n.

If n ? m the claim is true since we have 1 on both sides of the
inequality. Now assume that we have proven the claim for some n0
such that n0 N m, to prove the claim for n0 � 1. By the induction
hypothesis,

∑m
i 	 1 Xi

∑n0
i 	 1 Xi

N m
n0
8

hence n0 ∑m
i 	 1 Xi N m∑n0

i 	 1 Xi.
Since Xi N Xm N Xn0 M 1 for all i

�
m, we have ∑m

i 	 1 Xi N mXn0 M 1.
Using the induction hypothesis we get by summation

n0

m

∑
i 	 1

Xi �
m

∑
i 	 1

Xi N m
n0

∑
i 	 1

Xi � mXn0 M 1

therefore

∑m
i 	 1 Xi

∑n0 M 1
i 	 1 Xi

? ∑m
i 	 1 Xi

∑n0
i 	 1 Xi � Xn0 M 1

N m
n0 � 1

which is what we wanted to prove.

Finally, we are ready to prove the theorem.

Theorem 14 Let v be any vector of agents values. The following is
an efficiency competitive ratio function for the KSM-TR auction:

RatioKSM 
 TR @ v DR? min
m � CM �

Tm @ A � D H 1
Tm @ A � D

if A � �? /0 and

RatioKSM 
 TR @ v DR? 1

if A � ? /0.

PROOF. The second component of the competitive ratio is true
by definition, hence we prove the first component. By Lemma 34 v
has a good partition pair. By applying Lemma 32, the efficiency of
KSM-TR satisfies the following:

Eff KSM 
 TR @ v D ? V @ ATR D
V @ A � D N min

S � Ŝ � A � �
NT R @ S D
N � @ S D

From Lemma 27 we know that there is a one-to-one mapping
of procurement set topologies in the efficient allocation to con-
sumer markets with non-zero trade. If procurement set topology
S is mapped to market m, then NT R @ S DL? Tm @ ATR DL? Tm @ A � D H 1
and N � @ S D ? Tm @ A ��D .

So we conclude that

Eff KSM 
 TR @ v D ? V @ ATR D
V @ A � D N min

S � Ŝ � A � �
NT R @ S D
N � @ S D ? min

m � CM �
Tm @ A � D H 1

Tm @ A � D 9
Therefore

RatioKSM 
 TR @ v D ? min
m � CM �

Tm @ A ��D H 1
Tm @ A � D

�
Eff KSM 
 TR @ v D 8

which is what we wanted to prove.


