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Abstract
When a decision maker (DM) contracts with an expert to provide information, the
nature of the contract can create incentives for the expert, and it is up to the DM
to ensure that the contract provides incentives that align the expert’s and DM’s
interests. In this paper, scoring rules (and related functions) are viewed as such
contracts and are reinterpreted in terms of agency theory and the theory of revela-
tion games from economics. Although scoring rules have typically been discussed
in the literature as devices for eliciting and evaluating subjective probabilities, this
study relies on the fact that strictly proper scoring rules reward greater expertise
as well as honest revelation. We describe conditions under which a DM can use a
strictly proper scoring rule as a contract to give an expert an incentive to gather an
amount of information that is optimal from the DM’s perspective. The conditions
we consider focus on the expert’s cost structure, and we find that the DM must have
substantial knowledge of that cost structure in order to design a specific contract
that provides the correct incentives. The model and analysis suggest arguments for
hiring and maintaining experts in-house rather than using outside consultants.

Key Words: Scoring Rules, agency theory, revelation games, incentives, expert
information

AMS subject classification: 62C99

1 Introduction

Probability forecasts have become relatively common as a way for experts
to express their uncertainty about uncertain future events or variables.
For example, meteorologists have routinely provided probabilistic forecasts
in the United States since the late 1960s (Murphy and Winkler (1984)).
Risk analyses of complex systems often require probabilistic assessments
of risks by experts, and guidelines for making and using such assessments
are available (e.g., Morgan and Henrion (1990), Cooke (1991), Meyer and
Booker (1991)).
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Scoring rules (de Finetti (1962), Winkler (1967), Savage (1971)) provide
a way to evaluate probabilistic forecasts by calculating a reward based
on the forecast and the actual outcome of the event or random variable.
The broad class of strictly proper scoring rules has been characterized by
Shuford et al. (1966), Savage (1971), and Schervish (1989). Strictly proper
scoring rules play special roles in both ex-post and ex-ante senses. Used
in an ex-post sense, strictly proper scoring rules can be used for forecast
evaluation. Properties of strictly proper scoring rules used this way have
been studied extensively. For a review, see Winkler (1996).

In an ex-ante sense, strictly proper scoring rules can be used as tools
for eliciting subjective probabilities from knowledgeable experts, and their
properties in this context have been studied by Stael Von Holstein (1970)
and Winkler (1977, 1986) among others. In this paper we also adopt an
ex-ante perspective, viewing a scoring rule as a contract between a decision
maker (DM), who is interested in an unknown event or random variable Θ,
and an expert, who has access to information about Θ. When considered
as such a contract, a strictly proper scoring rule has two useful properties.
First, it induces truthful revelation of the expert’s information. Second, a
strictly proper scoring rule has the property that a “more knowledgeable”
expert must have a higher expected score (DeGroot and Fienberg (1982,
1983); Winkler (1977, 1986)). By more knowledgeable, we mean someone
who is more sure of an event or who has a narrower distribution (in the
sense of Rothschild and Stiglitz (1970)) for some random variable. More
knowledge may be associated with greater expertise. It could also mean
that the expert has spent more effort to reduce her uncertainty in a vari-
ety of ways, such as learning about the situation, collecting information,
performing appropriate analyses, and so on. In general, the expert has an
incentive to achieve a particular level of precision in her probabilistic be-
liefs. One way to formalize this, which we will do for the purposes of this
article, is to model the expert’s efforts as equivalent to gathering sample
information from a process related to the variable of interest to the DM.

The observation that strictly proper scoring rules reward greater exper-
tise with a higher expected score implies that the expert would prefer to
collect more information if doing so were economically feasible. If the expert
knows the scoring rule that will be used, she will collect information until
her marginal cost equals the marginal increase in expected score. Thus,
the expert’s choice as to how much information to gather can be thought
of as a preposterior choice of an optimal sample size, with the scoring rule



Incentive contracts 169

playing the part of the expert’s payoff function. The DM who consults the
expert presumably has a decision to make that will be based in part on the
information from the expert. The DM seeks the best trade-off between his
own payoff and the expected cost of information; he wants the marginal
increase in expected score (his cost) to equal the marginal increase in ex-
pected payoff from the extra sample observation. Again, the DM’s decision
is a preposterior choice of an optimal sample size, complicated by the fact
that he has to design a scoring rule (the contract) that will make the expert
perform as desired. In this case, the DM wants the expert to take a sample
of a particular size and then report the results honestly.

Based on the above description, the DM is not using a scoring rule
only to say, “Tell me what you know.” A more complete paraphrase would
be, “Go learn about the situation, collect information if needed, perform
appropriate analyses, and then tell me what you learned.” Thus, the scoring
rule is like a contract and provides the expert with an incentive structure
on which she bases her data-gathering and revelation decisions. When the
expert’s actions cannot be monitored, then the contract must provide the
appropriate incentives so that the expert does as the DM desires.

This problem embodies two issues that are familiar in informational
economics. First is the principal-agent problem: The principal in general
cannot observe the agent’s level of effort, and hence the agent may be
tempted to cheat, or to provide less than the level of effort that the principal
prefers. This is known as the moral-hazard problem, and the principal’s
problem is to construct a contract that ensures that the agent will provide
the level of effort that the principal prefers. In our situation, the DM
is the principal, and the expert is the agent; as long as the DM cannot
monitor the expert’s activities, the expert may exert more or less effort in
data collection than the DM desires. If she chooses to spend less effort,
the DM has less information than he wants. If she expends extra effort,
then the DM may end up paying more for the additional information than
it is worth. For more details about agency theory, see Holmstrom (1979),
Jensen and Meckling (1976), and Ross (1973).

The second problem is called the incentive-compatibility problem. Con-
sider a situation in which some or all players must reveal privately held
information. Such a game is called a “revelation game,” and the incentive-
compatibility problem is that a player may prefer to reveal his or her infor-
mation dishonestly. In the context of this paper, once the expert collects
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her information, she may have an incentive to misrepresent that informa-
tion depending on the nature of the scoring rule. It is well known that
strictly proper scoring rules are incentive-compatible; that is, they pro-
vide a positive incentive for the expert to be honest (Savage (1971)). It is
not obvious, however, that the DM’s optimal choice is to choose a strictly
proper scoring rule. Fortunately, Myerson’s (Myerson (1977)) revelation
principle provides the proof that the DM can indeed limit his search to
proper scoring rules and still be able to make an optimal choice.

We will use the term “contract” synonomously with “scoring rule”, and
we use these terms somewhat more broadly than usual; the term “scoring
rule” as used in the Bayesian literature usually refers to a function S(p, θ),
where θ is the realization of a random variable Θ, and p is a probability
measure on Θ. In this paper, we may use the term occasionally to refer to
functions S(g[p], θ), where g is some function of p (e.g., expectation).

This paper’s contribution is to reinterpret scoring rules, drawing on
agency theory and the theory of revelation games. We will see that the
DM’s problem in designing a contract (scoring rule) for the expert in
general requires him to solve the moral-hazard problem. The incentive-
compatibility problem is solved by the revelation principle, allowing the
DM to consider only proper scoring rules. In analyzing the problem, we
find that under some conditions the DM can use strictly proper scoring
rules to resolve the agency issue. In particular, we consider conditions on
the DM’s knowledge about the expert’s cost structure for obtaining infor-
mation. Even in the relatively simple world of risk neutrality, the DM must
know a considerable amount about that cost structure in order to devise
an appropriate contract. If these conditions are met, finding an optimal
contract involves no more than calculating appropriate scaling constants
for the scoring rule. Cervera (1996) briefly discusses scoring rules from an
agency-theory perspective. He provides a general formulation that is con-
sistent with the model presented here, but he does not identify optimality
conditions.

We proceed as follows. The next section formulates the DM’s problem
in the agency-theory framework under the assumption that the expert’s cost
structure is known. The analysis leads to examples using specific scoring
rules in Section 3. In Section 4, we consider the DM’s problem when we
relax the assumption that the expert’s cost structure is known. Section
5 summarizes the results, considers possible extensions to the model, and
discusses implications for managers.
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2 The DM’s Problem

Consider the following formal description of the situation: A DM must take
action a ∈ A. The DM’s payoff depends on a and the realization (θ) of
uncertain random variable Θ, and we denote the DM’s payoff function by
V (a, θ). The DM has prior density and distribution functions f ′(θ) and
F ′(θ), respectively.

In order to learn about Θ, the DM contracts with an expert to collect
a sample of independent observations xi from a stochastic process and to
report what she learns (which we will make precise momentarily). For now,
we assume that the DM and the expert agree on the prior distribution for
θ and the likelihood function for the data. The DM and the expert must
agree on the sample size n ∈ {1, . . . , N} where N ∈ IN is fixed in advance.
The expert’s cost for collecting n observations is Cn, which is known to the
DM. Let the vector (y, n) be a minimal sufficient statistic for observations
(x1, ..., xn), where y ∈ Y. Let f(θ|y, n) denote the expert’s posterior density
for θ, given y and n. The expert reports f(θ|yr, n) to the DM. Knowing
n, and given the assumptions above, the DM can deduce yr. We assume
that the expert has the option to report her posterior density dishonestly.
Thus, yr ∈ Y, but yr is not necessarily equal to y.

We will consider contracts of the form S(yr, θ) ∈ S, depending on both
what the expert reports and on the realization θ. After hearing from the
expert (and thus knowing yr and n), the DM chooses action a∗(yr, n) ∈ A.
After θ becomes known, the DM receives V (a∗, θ) and pays the expert
according to the contract. For now, both DM and expert are assumed to
be risk-neutral within this framework. Thus, V and S are measured in
monetary units.

The assumptions above are all fairly strong, especially the assumptions
that the DM and expert agree on prior and likelhood functions and that
they are both risk neutral. These assumptions allow the development and
analysis of a model from which our main results are derived. In the sub-
sequent discussion, we examine the implications of relaxing these assump-
tions.

As described in the introduction, the DM’s task can be informally stated
at this point as choosing a contract that provides incentives for the expert
to collect a sample of the optimal size and to reveal honestly the resulting
information to the DM. “Optimal sample size” is in relation to the DM’s
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decision problem; Raiffa and Schlaifer (1961) show that the DM selects
an optimal sample size by balancing the incremental preposterior expected
payoff due to additional information against the incremental expected cost
of the sample (i.e., the expected cost to be paid via the contract).

Formally, the DM’s problem is to specify both the scoring rule or con-
tract S and the sample size n. This problem can be formulated as a con-
strained optimization problem:

max
n,S

∫

Y

∫

Θ
[V (a∗, θ)− S(yr, θ)] dF (θ|yr, n)dF (yr|n), (2.1)

subject to: ∫

Y

∫

Θ
S(yr, θ)dF (θ|y, n)dF (y|n)− Cn ≥ 0 (2.2)

n ∈ arg max
[∫

Y

∫

Θ
S(yr, θ)dF (θ|y, n)dF (y|n)− Cn

]
. (2.3)

The objective function (2.1) can be interpreted as the DM’s preposterior
(Raiffa and Schlaifer (1961)) expected payoff that results from learning yr

from the expert, taking action a∗, and finally experiencing a realization θ.
At this point, the DM receives V (a∗, θ), and the expert is paid S(yr, θ).
The expectation must be taken before knowing the expert’s report yr, and
hence the use of the predictive distribution F (yr|n). Because the prior
and likelihood are common knowledge, the DM can calculate F (yr|n) for
any contract. Note that F (yr|n) in the objective function and F (y|n) are
different distributions, although the former can in principle be derived from
the latter, given the relationship between the two for any specified contract.
The DM optimizes (2.1) over both n and S because both affect his payoff.

Constraint (2.2) represents a rationality constraint for the expert, who
will decline an assignment not expected to at least break even (in the sense
of making an economic, but not excess, return). This constraint need only
hold for the optimum n. Further, (2.2) must hold with equality for the
optimal contract S by the following simple argument: Any S that satisfies
(2.3) and satisfies (2.2) as a strict inequality can be modified by subtraction
of a constant so that (2.2) holds with equality; (2.3) is not affected by the
subtraction of a constant from S and hence would still hold. If (2.2) holds
with equality, the expert is just indifferent between taking the job and not.
Note that F (y|n) is the predictive distribution of y given n. Under our
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assumptions, the DM and expert agree on this predictive distribution, and
the DM can thus include it in his optimization problem.

Constraint (2.3) provides the incentive for the expert to choose sample
size n because it is a maximum for her own expected profit. Following
the discussion in the introduction, this is the constraint that resolves the
moral-hazard problem. In our model, incorporating this constraint means
that the expert’s expected payoff net of sampling costs attains a maximum
for the same n that maximizes the DM’s objective function. As in (2.2),
note that the DM and expert agree on F (y|n).

With the problem formulated as optimizing (2.1) subject to (2.2) and
(2.3), the incentive-compatibility question remains. That is, as it stands, an
optimal contract could be one that gives the expert an incentive to be dis-
honest in revealing her information, in which case yr would not be equal to
y. A question is whether the DM should consider only incentive-compatible
contracts (or proper scoring rules)? The answer to this question is yes, and
the justification derives from Myerson’s (Myerson (1977)) revelation prin-
ciple. The DM’s optimization problem can be viewed as a revelation game;
that is, the DM presents the expert with a scoring rule, and the expert then
reveals what she knows according to that rule. The optimal (n, S) pair is a
Nash solution to this game: Given that the DM chooses this pair, the ex-
pert’s best response is to collect n observations and report according to the
rule. Likewise, given that the expert will behave optimally given contract
S, the DM’s best choice is n, S. Myerson (1977) (see also Myerson (1991)
and Kreps (1990)) showed that all Nash equilibria in a revelation game can
be replicated by an incentive-compatible mechanism. This is known as the
revelation principle.

For our purposes, the revelation principle means that we can restrict
our search to incentive-compatible contracts without eliminating any equiv-
alent solutions to the DM’s problem. To implement the revelation principle
formally, we add the constraint:

∫

Θ
S(y, θ)dF (θ|y, n)dF (y|n) ≥

∫

Θ
S(yr, θ)dF (θ|y, n)dF (y|n),∀yr ∈ Y

(2.4)
which requires that the expert’s expected score for reporting honestly (yr =
y) be at least as great as the expected score for reporting dishonestly. Thus,
in what follows, we will consider the DM’s problem as optimizing (2.1)
subject to (2.2), (2.3), and (2.4). In the subsequent analysis and examples,
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we further limit our consideration to the class of strictly proper scoring
rules.

Without the incentive-compatibility constraint (2.4), the DM’s prob-
lem as formulated above has proven to be tractable as a standard agency
problem (Conroy and Hughes (1987)). The addition of the incentive-
compatibility constraint changes the problem somewhat. To proceed, we
reformulate the DM’s constrained optimization problem as suggested by
Grossman and Hart (1983) by decomposing the problem in two stages:

Stage I. In the first stage, the DM finds an incentive-compatible contract
(a strictly proper scoring rule) that induces the expert to choose a particular
sample size n ∈ {1, ..., N}, and he does this for every n. Thus, he solves
(2.5) below N times:

max
S(yr,θ|n)

∫

Y

∫

Θ
[V (a∗, θ)− S(yr, θ)]dF (θ|yr, n)dF (yr|n), (2.5)

subject to: ∫

Y

∫

Θ
S(yr, θ)dF (θ|y, n)dF (y|n)− Cn ≥ 0 (2.6)

n ∈ arg max
[∫

Y

∫

Θ
S(yr, θ)dF (θ|y, n)dF (y|n)− Cn

]
(2.7)

∫

θ
S(y, θ)dF (θ|y, n) ≥

∫

θ
S(yr, θ)dF (θ|y, n), ∀y, yr ∈ Y. (2.8)

The outcome of stage I is a set Σ = {S1, ..., SN} of strictly proper scor-
ing rules where Sn is an abbreviation for Sn(yr, θ).

Stage II. In the second stage, the DM uses Σ in the following simple
optimization problem:

max
SnεΣ

∫

Y

∫

θ
[V (a∗, θ)− Sn(yr, θ)]dF (θ|yr, n)dF (yr|n). (2.9)

Finding the optimum Sn in (2.9) amounts to choosing the sample size
n∗ that maximizes the DM’s expected payoff net of the expected score paid
to the expert. Grossman and Hart show that solving (2.5) and (2.9) is
equivalent to solving (2.1).
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The main concern of this section is whether the DM will be able to
devise a strictly proper scoring rule that is a solution to (2.9). To do this,
he must be able to find a strictly proper scoring rule that solves (2.5) for
every n.

In order to proceed further, we assume that sampling costs increase
with n at a weakly increasing rate:

0 < Cj − Cj−1 ≤ Cj+1 − Cj , ∀j ∈ {2, . . . , N − 1}. (2.10)

Under this assumption, the expert must expend additional effort for each
additional independent observation, and there can be no returns to scale.
A linear cost structure (constant marginal cost per observation) weakly sat-
isfies (2.10). Clemen and Winkler (1985) describe a scenario of dependent
information sources in which the cost of incremental equivalent independent
observations could increase at an increasing rate.

We call En(S) ≡ ∫
Y

∫
θ S(y, θ)dF (θ|y, n)dF (y|n) the preposterior ex-

pected score for S, given that n observations will be taken. Note that
En−1(S) ≤ En(S), which follows directly from the LaValle’s (LaValle (1968))
results regarding information value, especially that incremental information
cannot have negative incremental expected value. In our case, S is the ex-
pert’s payoff function, and the sample information is information about the
random state variable θ. Thus, En(S) must be nondecreasing in n.

For Proposition 2.1 below, we further require that En(S) is strictly
increasing at a strictly decreasing rate. Formally, suppose that a strictly
proper scoring rule S exists such that:

0 < En+1(S)−En(S) < En(S)−En−1(S),∀n ∈ {2, . . . , N − 1} (2.11)

With (2.10) and (2.11), we have:

Proposition 2.1. If (2.10) holds, and if a strictly proper scoring rule exists
that satisfies (2.11), then the DM can solve (2.5) for every n.

Proof. For ease of notation, let En(S) ≡ En. Choose bn so that:

bn(En − En−1) > Cn − Cn−1 (2.12)
bn(En+1 − En) < Cn+1 − Cn. (2.13)
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Note that such a bn always exists: Let

b− ≡ (Cn − Cn−1)/(En − En−1) > 0, and
b+ ≡ (Cn+1 − Cn)/(En+1 − En) > 0.

Then b−(En − En−1) = Cn − Cn−1 < Cn+1 − Cn = b+(En+1 − En),
which implies that b+ > b−. Any bn such that b− < bn < b+ will satisfy
conditions (2.12) and (2.13).

We have to show that bnEk−Ck < bnEn−Cn, ∀k 6= n. Suppose k < n.
Write

bn(En − Ek) = bn(En −En−1 + En−1 − En−2 + · · ·+ Ek+1 −Ek)

and
Cn − Ck = Cn − Cn−1 + Cn−1 − Cn−2 + · · ·+ Ck+1 − Ck.

Applying (2.12) and (2.13), we obtain directly that bnEk−Ck < bnEn−
Cn. For k > n a similar argument applies. Finally, choose an so that
an +bnEn = Cn. Then Sn = an +bnS(yr, θ) is a strictly proper scoring rule
that satisfies (2.6), (2.7), and (2.8). Thus there exists a solution to (2.5)
∀n ∈ {1, ..., N}.

This proposition says simply that if the DM can find one strictly proper
scoring rule that satisfies (2.11), and if the expert’s cost structure satisfies
(2.10), then the DM can scale that scoring rule in order to obtain a set
of strictly proper scoring rules, each one of which induces the expert to
choose a specific sample size n. Thus, the outcome in Stage II of the
problem is guaranteed to be an n for which the scoring rule is strictly proper.
Futhermore, the proof shows a technique for finding the appropriate scaling
constants.

3 Examples

In this section we study two examples in which we show how the DM can
devise strictly proper scoring rules in order to induce the expert to choose
a specific n. To simplify the discussion, we abstract away from the DM’s
action: If the DM can create a strictly-proper scoring rule for each n, thus
solving (2.5), he can in turn choose a member of that set that is optimum
in the context of his decision, thereby solving (2.9).
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Example 3.1 (Squared Error Penalty). Suppose the expert is required
to provide her posterior mean µr of a distribution for a continuous random
variable θ. In this case, then, we let yr = µr. The expert can be rewarded
with a contract that incorporates a penalty proportional to the squared
error:

S(µr, θ) = d1 − d2(θ − µr)2,

where d1 and d2 are positive and µr is the reported mean of the expert’s
distribution. As indicated in the introduction, this is an example of a
contract that is not a “scoring rule” in the sense that the term is typically
used. It does, however, have similar properties. For example, suppose the
expert has a prior density for θ with mean µ′ and variance V ar(θ). Then it
is straightforward to show that S(µr, θ) provides a positive incentive for the
expert to report the mean of this density honestly, i.e., µr = µ′, in which
case her expected score E(S) = d1 − d2V ar(θ). Hence we will call S(µr, θ)
“strictly proper.”

Suppose now that the expert samples from a normal process with mean
θ and known variance σ2 and that V ar(θ) = σ2/t. After observing n
observations, her posterior distribution for θ is normal with mean µ = (tµ′+∑n

i=1 xi)/(t+n) and variance σ2/(t+n). Thus, En(S) = d1−d2σ
2/(t+n),

and it is straightforward to show that (2.11) is satisfied. Suppose also that
the expert’s sampling cost is linear in n such that Cn = cn, satisfying (2.10)
weakly. Now, consider contracts Sj , j ∈ {1, ..., N}, with d1 = 2c(j + t/2)
and d2 = c(j + t)2/σ2 so that

Sj(µr, θ) = 2c(j + t/2)− c(j + t)2

σ2
(θ − µr)2. (3.1)

For each j, En(Sj) − Cn is maximized by setting j = n, for which
En(Sn) − cn = 0. Thus, using equation (3.1), the DM is able to find N
contracts to use in solving problem (2.5). These contracts make up the set
Σ, and they are of the form Sn(µr, θ) = 2c(n + t/2)− c(n + t)2(θ−µr)2/σ2

for n = 1, ..., N . The last step is for the DM to use Σ along with the
characteristics of his decision situation, as embodied by V (a∗, θ), to solve
(2.9) in which he chooses the optimal n∗ and hence the optimal contract to
offer the expert.

To take this example further, assume that the DM’s decision problem
is to choose an estimate a for θ and that V (a, θ) = u1−u2(θ− a)2 with u1,
u2 > 0. The DM’s expected payoff, assuming the expert optimally collects
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n observations, is

EUn = u1−u2E(θ−a)2−d1 +d2σ
2/(t+n) = u1−d1 +(d2−u2)σ2/(t+n).

The second equality follows by noting that the DM’s optimal a∗ is to
estimate θ with µr, the expert’s honest report of the posterior mean, and
that E(θ − µr)2 is the posterior variance σ2/(t + n). Substituting for d1

and d2,

EUn = u1 − 2c(n + t/2) + [c(n + t)2/σ2 − u2]σ2/(t + n).

To find the optimal n∗, take first differences:

∆EUn = EUn+1 − EUn = u2σ
2/[(t + n)(t + n + 1)]− c,

which decreases in n. The optimal n∗ is the least n such that u2σ
2/[(t +

n)(t + n + 1)] < c, thus solving problem (2.9). Note that the DM could
have enough prior information (t large enough) so that gathering more
information would not be worthwhile. This would be the case if ∆EU0 ≤ 0
or u2σ

2/[t(t + 1)] ≤ c. In this case, n∗ = 0, there is no contract with the
expert, and the DM’s EU0 = u1 − u2σ

2/t. (Thanks to Dennis Lindley
for suggesting this example and showing that the same results, including
derivation of d1 and d2, can be obtained by a conventional optimization
approach.)

Example 3.2 (Binary Scoring Rules). Consider a situation in which the
DM is interested in an upcoming event G and asks the expert to report the
probability p that G will occur. In this case, the expert can be rewarded
according to a binary scoring rule where she receives S1(p) if G occurs
and S2(p) otherwise. From Savage (1971), strictly proper binary scoring
rules can be generated by taking any function J (p) that is convex and
differentiable for 0 ≤ p ≤ 1 and setting S1(p) = J(p) + (1 − p)J ′(p) and
S2(p) = J(p)− pJ ′(p). The expected score E[S(p)] = J(p).

Suppose the expert can learn about the event by binary outcomes 1
(success) and 0 (failure). This experiment is related to G (and the comple-
ment Gc) by the likelihood function:

P (1 | G) = α; P (0 | G) = β;

P (1 | Gc) = γ; P (0 | Gc) = δ;
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where α + β = γ + δ = 1, and α, β, γ, and δ are all positive. If the expert’s
prior probability of the event is 0.5, then after observing the outcome from
one experiment her probability will be:

P (G | n = 1) =

{
α

(α+γ) with preposterior probability P (1) = (α + γ)/2
β

(β+δ) with preposterior probability P (0) = (β + δ)/2
.

Likewise, for any n identical independent experiments,

P (G | k successes, n trials) = Pn,k = αkβn−k/(αkβn−k + γkδn−k).

Furthermore, prior to observing the n observations, we can calculate
the predictive probability of getting k successes in n trials:

P (k successes|n) = 0.5
(

n

k

) (
αkβn−k + γkδn−k

)
.

Now consider the expert’s preposterior expected score as she decides
how many experiments to conduct. Her preposterior expected score En[J(p)]
for conducting n experiments can be written:

En[J(p)|n] = 0.5
n∑

k=0

(
n

k

) (
αkβn−k + γkδn−k

)
J(Pn,k).

Taking α = δ = 0.75 and β = γ = 0.25, Table 1 shows how En[J(p)]
changes as the expert considers different sample sizes. En[J(p)] has been
calculated in Table 1 for the three common binary scoring rules shown
below :

S1(p) S2(p) E[S(p)] = J(p)
Quadratic −(1− p)2 −p2 −p(1− p)
Logarithmic log(p) log(1− p) p log(p) + (1− p) log(1− p)
Spherical p[J(p)]−1 (1− p)[J(p)]−1 p2 + (1− p)2]1/2

Note that in all three cases the expected score increases at a decreasing
rate, thus satisfying (2.11).

As before, assume that Cn = cn. To create a quadratic scoring rule
that will induce the expert to choose sample size 5, for example, choose b5

so that
b5(E5 −E4) = b5(.0178) ≥ c
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n Quadratic ∆ Logarithmic ∆ Spherical ∆
0 -0.2500 -0.6931 0.7071
1 -0.1875 0.0625 -0.5623 0.1308 0.7906 0.0835
2 -0.1500 0.0375 -0.4631 0.0992 0.8311 0.0406
3 -0.1205 0.0295 -0.3837 0.0794 0.8669 0.0357
4 -0.0988 0.0218 -0.3197 0.0640 0.8901 0.0232
5 -0.0810 0.0178 -0.2672 0.0525 0.9110 0.0210
6 -0.0672 0.0138 -0.2241 0.0431 0.9256 0.0146
7 -0.0557 0.0115 -0.1884 0.0358 0.9390 0.0134
8 -0.0466 0.0091 -0.1587 0.0297 0.9487 0.0096

Table 1: Preposterior expected scores En[J(p)] for binary scoring rules. In the

table, we use the constants α = δ = 0.75 and β = γ = 0.25. The column headed

by ∆ is En[J(p)]− En−1[J(p)].

and
b5(E6 −E5) = b5(.0138) ≤ c.

These conditions are satisfied when b5 = 65c. Now choose a5 so that
a5+65c(−0.0810) = 5c, which implies that a5 = 10.265c. Thus, the strictly
proper scoring rule that we seek is:

S1(p) = 10.265c− 65c(1− p)2

S2(p) = 10.265c− 65cp2

The following table shows the preposterior expected score En[J(p)] us-
ing this scoring rule for n = 3, 4, 5, and 6:

E3[J(p)] E4[J(p)] E5[J(p)] E6[J(p)]
2.43c < C3 3.84c < C4 5.00c = C5 5.90c < C6

4 Asymmetric Information

The analysis and examples above require that the DM know the expert’s
cost structure C. In this section, we investigate the importance of this
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assumption. We would like to find conditions under which the DM can
guarantee that he will be able to create a contract that induces the expert
to take a sample of a size that is optimal for both the expert and DM,
and that the expert will report the resulting information honestly. Further,
if the DM does not have this guarantee, can we say anything about the
decision that he must make?

Suppose that the DM knows only that each element of C lies in a closed
interval: C−

i ≤ Ci ≤ C+
i , ∀ i ∈ {1, · · · , N}. Now consider the general

nature of the DM’s problem. The task is to solve some version of (2.5) and
(2.9) that deals with unknown cost C, and to offer the resulting contract to
the expert in an effort to obtain her services. There are two observations
to make. First, if the expert accepts the contract, the DM automatically
knows that he will be paying the expert at least as much as her reservation
wage, because the expert would reject the contract if her expected payoff
were less. Second, if the expert accepts the contract, this only means that
En(Sn)−Cn ≥ 0 for some n, and in fact, the expert will choose sample size
that maximizes this difference. Thus, the DM is unsure of the sample size
actually chosen, but knows that he is paying too much.

Under some circumstances, the DM can get around the first problem.
Suppose that he chooses contract Sj so that

Ej(Sj)− C+
j ≥ 0, and (4.1)

Ek(Sj)− C−
k ≤ 0, k 6= j. (4.2)

These conditions say that the only way the expert can obtain a positive
expected profit is by choosing sample size j, for which he is guaranteed a
positive profit. From this, we have:

Proposition 4.1. If there exists a set of strictly proper scoring rules such
that Sj satisfies (4.1) and (4.2) for every j, then C+

j ≤ C−
j+1, for every

j∈{1, ..., N − 1}.

Proof. The proof follows directly from the monotonicity of Ej(Si) with
respect to j and the conditions (4.1) and (4.2).

This proposition says that if the DM wants to use a strictly proper
scoring rule to induce the expert to take the optimal sample size, the DM
must know that each Cj lies in an interval that does not overlap with the
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interval for any other Ci. The condition is necessary but not sufficient; even
if the DM knows this much about the cost structure, he may still be unable
to find a complete set of scoring rules, each of which satisfies (4.1) and
(4.2).

A sufficient condition can be found, however. Replace condition (2.10)
with:

C+
j ≤ C−

j+1 and C+
j − C−

j−1 ≤ C−
j+1 − C+

j , ∀j ∈ {2, . . . , N − 1}. (4.3)

This is a strong condition specifying that the intervals are spaced in
such a way as to guarantee that the costs increase at a weakly increasing
rate. With (4.3), we have:

Proposition 4.2. If (4.3) holds, and if a strictly proper scoring rule exists
that satisfies (2.11), then the DM can solve (2.5) for every n.

Proof. Choose bn so that:

bn(En − En−1) > C+
n − C−

n−1 (4.4)

bn(En+1 −En) < C−
n+1 − C+

n . (4.5)

With (4.4) and (4.5) replacing (2.12) and (2.13), the proof follows the
same lines as the proof of Proposition 2.1, ultimately finding constants an

and bn so that En ≥ C+
n and Ek < C−

k , ∀ k 6= n.

Example 4.1 (Binary Scoring Rules Revisited). Example 3.2 above
demonstrated the technique for scaling a quadratic scoring rule so that it
would induce the expert to take a sample of a specified size. Suppose now
that the DM has only the following information about costs: 1 ≤ C1 ≤ 2,
2 ≤ C2 ≤ 3, 5 ≤ C3 ≤ 6, 9 ≤ C4 ≤ 10. A quadratic scoring rule that induces
sample size 3 is: S1(p) = 22.513− 137(1− p)2 and S2(p) = 22.513− 137p2,
leading to preposterior expected scores En(S) as follows:

En(S) En(S) En(S) En(S)
−3.17 < C−

1 1.96 < C−
2 6.00 = C+

3 8.98 < C−
4

Note, though, that this example does not satisfy (4.3) because C−
4 −

C+
3 = 3 < C+

3 −C−
2 = 4. Thus, we have demonstrated that condition (4.3)

is not a necessary condition.
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Up to this point, the focus of the paper has been to look for conditions
that allow the DM to design a contract that induces the expert to obtain a
sample of a specific (i.e., optimal) size. When the DM’s knowledge of the
expert’s cost structure is such that he cannot guarantee a particular sample
size, the basic problem changes. Now n is no longer a decision variable in
the problem; the only decision is the scoring rule. Without any analysis,
we can make some observations about the problem. First, any scoring rule
S that the DM uses will have preposterior expected score En(S) for each n.
If the DM has a probability distribution for C, he can use this distribution
to infer a probability distribution for the expert’s choice of n, conditional
on the expert accepting the contract. Using this distribution for n, the DM
can compute a predictive distribution for yr. That predictive distribution
will be a mixture of predictive distributions for yr conditional on n, with
the mixing weights being the DM’s probabilities for the n’s. Equipped with
this information, the DM can perform his preposterior analysis, conditional
on the expert accepting the contract.

For any scoring rule, the DM can also calculate the probability that
En(S) < Cn for every n. This is probability πS that the expert will refuse
the contract altogether and the DM will have to take an immediate terminal
action. Assuming that in this case the DM must make his decision based
only on his prior information, the expected payoff of the optimal terminal
action a0 must be included in the payoff function. Because the DM no
longer controls n, constraint (2.3) is no longer in the problem. The asym-
metry of the information about C renders (2.2) irrelevant. Note, though,
that the cost of not contracting and settling for a0, which (2.2) prevented,
is now endogenous to the problem through πS . By the revelation princi-
ple, we can still restrict the DM to proper scoring rules. Thus, the DM’s
problem becomes:

max
S(yr,θ)

[
πS

∫

Θ
V (a0, θ)dF (θ)

+(1− πS)
∫

Y

∫

Θ
[V (a∗, θ)− S(yr, θ)]dF (θ|yr)dFm(yr)

]
(4.6)

subject to
∫

Θ
S(y, θ)dF (θ|y) ≥

∫

Θ
S(yr, θ)dF (θ|y), ∀yr ∈ Y,

where Fm denotes the mixed predictive distribution. This problem is solv-
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able, but further analysis yields little in the way of insights without sub-
stantial additional modeling assumptions.

5 Conclusion

In this paper, we have reinterpreted scoring rules using tools and concepts
from agency theory and revelation games in economics. From this perspec-
tive, the DM’s problem of contracting with an expert can be viewed as
having to devise a contract or scoring rule that provides positive incentives
for the expert to obtain an optimal sample size and then reveal the resulting
information honestly. An important observation is that the use of strictly
proper scoring rules (familiar from the statistics literature) is indeed quite
appropriate; no improper scoring rule could make the DM better off. We
further showed conditions under which the DM can design a scoring rule
that provides the appropriate incentives to the expert, and those conditions
centered on knowledge of the expert’s cost structure. Proposition 1 shows
that, under certain conditions, strictly proper scoring rules can be scaled
to accomplish incentives as the DM desires. Although this is a relatively
simple approach, it has important implications for managers in general,
even though the specific conditions of the propositions may not apply. In
particular, by scaling a strictly proper scoring rule, a manager can manip-
ulate an expert’s incentive to exert more or less effort, or to obtain more
or less precise information.

Throughout, we have assumed that the expert and the DM agree on
prior information. If the DM has some uncertainty about the expert’s
prior information, he may wish to model that uncertainty (see Kadane and
Larkey (1982)). In this case, the DM can know only a noisy version of the
expert’s preposterior expected score for any scoring rule. This amounts
to the same kind of informational asymmetry about the expert’s expected
payoff that we studied under uncertainty about C.

There is another useful perspective for considering the situation in which
the expert has prior information and the DM knows that he has this in-
formation but not what it is. Augment C with a 0th element C0 = 0 to
represent the expert’s incremental cost of acquiring the information that
she already has. Thus n = 1 now means that the expert takes a sample of
size 1 and incorporates the data with her prior information. The problem
remains essentially as before, except that now one of the expert’s alterna-
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tives is to acquire no new information, but simply to reveal her current
information and earn her reservation wage. The DM still has the problem
of assessing his beliefs about the expert’s prior, and thus the discussion of
the previous paragraph applies.

The model also assumes that the DM and the expert agree on the
likelihood function. This is a strong assumption that, in the context of the
model and taken along with agreement on prior information, allows the DM
to adopt the expert’s posterior distribution as his own without knowing the
actual sample size taken. Whether it is reasonable to endow a DM with
such knowledge is debatable; indeed, reasons for hiring an expert in the first
place may include knowlege about available data and the nature of those
data. One can imagine alternate models in which the DM is able to adopt
the expert’s posterior distribution as his own without this assumption; for
example, the DM might believe that the expert’s information set subsumes
all of his own information.

Our model has assumed implicitly that the contract made between the
DM and the expert is all that motivates the expert. Kadane and Winkler
(1988) discuss the importance of this condition, showing that the presence
of other incentives can, in principle at least, lead the expert to distort
her information. In the context of our model, if the expert contracts with
multiple DMs via different incentive schemes, it is no longer clear that a
strictly proper scoring rule will provide a positive incentive to tell the truth.

Yet another assumption of the model is that θ is revealed before the DM
pays the expert. In practice this rarely happens explicitly. The parallel,
however, might be that the DM must decide in the future whether to hire
the expert again; if the expert has not been accurate in the past, the DM
may be less inclined to hire her.

Finally, we invoked the assumption of risk neutrality for both expert and
DM. If the expert is not risk-neutral, but the DM knows the expert’s utility
function, then the contract or scoring rule can be designed to conform to
that utility function. In particular, if the expert has utility function UE ,
then the contract can be designed as U−1

E (S). If UE is unknown, then the
DM can assess his uncertainty about UE and incorporate this uncertainty
into the problem as described above in the case of uncertain information.

The problem is more complex if the DM is not risk neutral. Risk neu-
trality has played an important role in our model, albeit implicitly, because
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it allows the objective function in (2.1) to be separated into the expected
value of the optimal action minus the expected value of the contract:
∫

Y

∫

Θ
[V (a∗, θ)− S(yr, θ)]dF (θ|yr, n)dF (yr|n)

=
∫

Y

∫

Θ
V (a∗, θ)dF (θ|yr, n)dF (yr|n)−

∫

Y

∫

Θ
S(yr, θ)dF (θ|yr, n)dF (yr|n).

This allowed an important simplification in the analysis: We were able
to focus only on the expected value of S rather than the form of S per se.
Second, the economic interpretation of the objective function is clear: The
DM seeks a contract that equates the marginal increase in expected payoff
equal to the marginal increase in the expected cost of the contract. If the
DM has utility function UD, then (2.1) becomes

max
n,S

∫

Y

∫

Θ
UD[V (a∗, θ)− S(yr, θ)]dF (θ|yr, n)dF (yr|n).

Optimizing this expression over n and S, subject to the constraints,
becomes a problem in optimal control to choose functional S, which will
involve more than choosing an S with an appropriate preposterior expected
value. As mentioned in the introduction, Cervera (1996) discusses this
problem briefly, but does not provide optimality conditions. We leave the
analysis of this problem for future research.

The arguments in the previous paragraphs can be classified into matters
of information and control on the part of the DM. On the information side,
the DM needs to know about the expert’s cost structure (and possibly
utility function) and must agree with the expert regarding prior information
and the likelihood function. On the control side, the DM needs the power
to specify the scoring rule and also to control the nature and number of
incentives to which the expert is subject. All of these requirements suggest
reasons why the DM might prefer to hire and maintain experts in-house
rather than hire outside consultants: Knowing the cost structure as well
as agreeing on prior and likelihood may be more easily accomplished if
the expert is an employee in the DM’s firm. Likewise, controlling the
specific scoring rule and limiting the expert’s exposure to other incentives
can be more easily accomplished if the expert is an employee. The DM’s
economic problem becomes that of deciding whether the cost of maintaining
the expert in-house (as opposed to hiring an outside expert) is justified by
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the ability to exercise finer control of the expert’s incentives. We leave the
analysis of this problem to future research.
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