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Abstract To improve the controllability and utilization of

distributed energy resources (DERs), distribution-level

electricity markets based on consumers’ bids and offers

have been proposed. However, the transaction costs will

dramatically increase with the rapid development of DERs.

Therefore, in this paper, we develop an energy sharing

scheme that allows users to share DERs with neighbors,

and design a novel incentive mechanism for benefit allo-

cation without users’ bidding on electricity prices. In the

energy sharing scheme, an aggregator organizes a number

of electricity users, and trades with the connected power

grid. The aggregator is aimed at minimizing the total costs

by matching the surplus energy from DERs and electrical

loads. A novel index, termed as sharing contribution rate

(SCR), is presented to evaluate different users’ contribu-

tions to the energy sharing. Then, based on users’ SCRs, an

efficient benefit allocation mechanism is implemented to

determine the aggregator’s payments to users that

incentivize their participation in energy sharing. To avoid

users’ bidding, we propose a decentralized framework for

the energy sharing and incentive mechanism. Case studies

based on real-world datasets demonstrate that the aggre-

gator and users can benefit from the energy sharing

scheme, and the incentive mechanism allocates the benefits

according to users’ contributions.

Keywords Distributed energy resource, Energy sharing,

Incentive mechanism, Nash bargaining

1 Introduction

Distributed energy resources (DERs) have been dra-

matically developing across the world in the past decades.

However, the increasing penetration of DERs has imposed

great challenges to the reliable and economic operation of

power grids [1]. On the one hand, more traditional gener-

ation resources should be scheduled to smooth out theCrossCheck date: 15 January 2019
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fluctuations of DERs. On the other hand, due to the limited

controllability, the power grid cannot fully accommodate

DERs, which greatly reduces the utilization of DERs. In

China, for example, distributed solar capacity reached 6.06

GW in 2015, but the utilization rate was less than 60%

[2].

To improve the controllability for DERs, a number of

studies and pilot projects propose to establish a distribu-

tion-level electricity market. Reference [3] encourages the

entries of DERs and microgrids by establishing a distri-

bution system market, in which DERs submit bids/offers

for energy and reserve capacity. A pilot project has been

initiated by the US Department of Energy that allows end-

use customers to bid on the electricity price. However, with

the rapid development of DERs in distribution grids, it is

challenging to collect the bids from ubiquitous DERs and

clear the market in a centralized manner, which may result

in considerable market transaction costs. Additionally,

distinguished from the generators in a wholesale market,

end-use customers pursue a convenient way to schedule

their own DERs, and may thus be reluctant to frequently

bid supply curves. A simple settlement mechanism is

needed such that users just share the surplus of DERs and

then get paid. To this end, the concept of energy sharing

has been advocated as a promising solution to achieve

peer-to-peer energy trading among the users in a commu-

nity [4]. With the central theme of ‘‘access over owner-

ship’’, energy sharing enables electricity users to share the

surplus energy from the rooftop solar and batteries with

their neighbors, and then get paid for the shared energy.

As an emerging business model, sharing economy has

gained substantial popularity among transportation and

housing sectors. Firms like Uber and Airbnb give indi-

viduals economic incentives to provide ridesharing and

rent out their houses, which realizes the optimization of

resources through sharing excessive goods and services [5].

In recent years, a few studies have focused on the market

implementation for sharing energy storage and rooftop

photovoltaic (PV). In [6], a number of firms invest in

storage and share the stored energy with each other to

arbitrage against time-of-use prices. A Nash equilibrium is

formed and the optimal strategies are explicitly expressed.

In [7], renewable energy is shared among homes to balance

local energy supply and demand. In [8], an optimal sharing

algorithm is proposed to minimize the electricity charges of

a collection of homes. The losses of shared energy are

approximately considered. In [9], a hybrid energy trading

market is designed, comprised of an external utility com-

pany and a local trading center. The local trading center

allows users to exchange power. In [10], an optimal peer-

to-peer scheme is proposed to minimize the total energy

costs of users, incorporating the losses of distribution net-

works. In [11], a decentralized algorithm is presented to

coordinate smart homes with renewable energy and energy

storage systems (ESSs). These references focus on the

optimal scheduling for DERs in the energy sharing

framework. However, how to design an incentive mecha-

nism to guarantee the effectiveness of energy sharing

remains a critical task to be addressed.

Some of existing literature proposes market mechanisms

to incentivize energy sharing. In [12], an incentive mech-

anism using Nash bargaining (NB) theory is designed for

benefits allocation among microgrids. In [13], an incentive

mechanism is proposed to encourage microgrids to provide

ramping capacity. In [14], an incentive mechanism is pre-

sented to motivate DER owners to generate reactive power

for local voltage control. Among these studies, the sym-

metric Nash bargaining theory is widely adopted to equally

allocate the benefits among market participants. However,

as electricity users make different contributions to energy

sharing, a well-designed incentive mechanism should

identify the values that different users create, and accord-

ingly allocate the benefits. Therefore, in this paper, we

strive to further address the following two issues: � How

to develop an energy sharing scheme without the need of

users’ bidding on electricity prices? ` How to evaluate

different users’ contributions to energy sharing and design

an incentive mechanism for benefit allocation without

users’ bids?

To fill the aforementioned gaps, an energy sharing

scheme is developed, and a novel incentive mechanism is

designed for benefit allocation without users’ bidding on

electricity prices. In a distribution grid, an aggregator

organizes a number of electricity users to cooperate as a

single interest entity. Then the incentive mechanism is

implemented to allocate the benefits to users that incen-

tivizes users’ participation in energy sharing. The contri-

butions of this paper are threefold:

1) An energy sharing scheme is proposed and the benefits

brought on by sharing DERs are evaluated. A novel

index, termed as sharing contribution rate (SCR), is

presented to measure each user’s contribution to

energy sharing.

2) An incentive mechanism is designed to determine the

aggregator’s payments to users. Based on users’ SCRs,

a closed-form expression of the aggregator’s optimal

payments is obtained by solving an asymmetric Nash

bargaining (ANB) model. The proposed mechanism is

proved to satisfy individual rationality and other

properties.

3) To avoid users’ bidding, a decentralized framework is

developed to coordinate the aggregator and users using

alternating direction method of multipliers (ADMM).
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2 Energy sharing scheme

In this paper, we consider that one aggregator organizes

N energy users in a distribution grid in a day-ahead market.

Each user has a PV system, an ESS and local load. The

energy trading without and with energy sharing are

compared.

2.1 Energy trading without energy sharing

In this case, energy users are assumed to be price-takers,

who purchase electricity from the aggregator at a retail

rate, and sell back the surplus power of DERs at a net

metering rate (NMR). The following trading events happen

in order.

1) Each user schedules his/her local DERs and determi-

nes the net load to minimize individual costs under

fixed rates.

2) The aggregator collects the net load information of

user, and trades with the connected power grid for

energy balance.

3) The aggregator charges each user for the net load at a

retail rate, and pays each user for the net power at an

NMR.

In practice, as the retail rate is generally higher than the

NMR, the users cannot get sufficient and reasonable

payments to justify the investments of DERs. For example,

the NMR is about 3 cents/kWh in Pacific Gas and Electric

Company (PG&E) in California in 2017. However, the

retail rate during peak hours can reach 0.263 $/kWh [15].

2.2 Energy trading with energy sharing

As electricity is an undifferentiated good, a pool-based

energy sharing platform [4] is considered, in which each

energy user schedules the amount of shared energy and the

aggregator determines the associated payment for each

user. The following events happen in order.

1) All users enroll sharing contracts with the aggregator,

which sets up a rule that determines the sharing

incentives to users for an amount of shared energy.

2) Each energy user schedules his/her DERs and deviates

from individual optimum to share DERs.

3) The aggregator collects the net load and shared energy

information of users, and trades with the connected

power grid for energy balance.

4) The aggregator charges each user for the net load at a

retail rate, and pays each user for the net power at an

NMR, and for the shared energy with the sharing

incentives.

Instead of only trading with the aggregator, the users can

share DERs with each other in the platform. The proposed

energy sharing scheme enables the aggregator to organize

users to cooperate as a single interest entity, and minimize

the total costs. In contrast to the case without energy

sharing, the proposed scheme achieves Pareto optimality of

the aggregator and all users.

2.3 Decentralized implementation

The proposed energy sharing scheme aims at maxi-

mizing the total benefits of the aggregator and users, which

requires detailed information about users’ preferences and

DERs. However, it is challenging to collect the private

information of users and schedule energy sharing in a

centralized manner. Thus, a decentralized framework is

developed to preserve users’ privacy. The schematic is

shown in Fig. 1.

Each user is equipped with an energy management

controller (EMC), which controls the hourly load con-

sumption and communicates this load information to the

aggregator. The EMC also receives the price signals from

the aggregator. Therefore, the bidirectional communication

makes the interactions easy between the aggregator and

users. Based on the price signal, the EMC of each user

optimally schedules local load and DERs. Then the EMCs

communicate the net power to the aggregator. After col-

lecting the net power of all users, the aggregator updates

the price signal and sends it back to the EMCs of users. The

proposed energy sharing scheme can be applied in day-

ahead and intra-day markets. In Section 5, the decentral-

ized models and solution algorithm will be elaborated.

3 System model

Pursuing clarity and simplicity, the modeling assump-

tions are as follows: � We consider one aggregator orga-

nizes N energy users in the distribution grid; ` The

locational marginal prices (LMPs) in the connected power

Fig. 1 Decentralized framework for energy sharing
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system are predefined and constant; ´ The distribution grid

network and energy losses are not considered in this paper.

3.1 Net cost of aggregator

To depict the uncertainties in load and solar power,

scenario-based stochastic programming is adopted. Thus

the net cost of the aggregator OA is calculated below:

OA ¼
X

t;s

cs kint;sP
NL
t;s � koutt;s P

NS
t;s þ kSt

X

i

PNS
i;t;s � kRt

X

i

PNL
i;t;s

" #

ð1Þ

PNL
t;s ¼

X

i

PNL
i;t;s � PNS

i;t;s

� �

" #

þ

8t; s ð2Þ

PNS
t;s ¼

X

i

PNS
i;t;s � PNL

i;t;s

� �

" #

þ

8t; s ð3Þ

where cs is the probability of scenario s; k
in
t;s and k

out
t;s are the

prices for purchasing and selling electricity with the power

grid, which are different in practice due to transmission

service charges [16], tax [17], etc; kSt and kRt are the retail

rate and net metering rate; PNL
t;s and PNS

t;s are the aggregated

net load and surplus power of users; and PNL
i;t;s and PNS

i;t;s are

the aggregated net load and surplus power of user i.

In (1), the first term represents the aggregator’s cost for

purchasing electricity from the power grid, and the second

term represents the revenue by selling electricity back. The

third and fourth terms are the costs and revenues of the

aggregator trading with users. Two ratios xin=out are used to

reflect the difference between kin=outt;s and locational mar-

ginal prices (LMPs) kLMP
t;s :

kint;s¼xinkLMP
t;s

koutt;s ¼xoutkLMP
t;s

(

8t; s ð4Þ

In (2) and (3), �ð Þþ¼ max 0; �f g. Equations (2) and (3)

calculates the net load and power surplus of user. In

practice, the net loads of distribution grids and the LMPs

are influenced by each other. Analyzing the mutual influ-

ence needs solving the market equilibrium between the

distribution grid and the connected power system, deserv-

ing an in-depth study in the future. To focus on energy

sharing in a distribution grid, we do not consider the

impacts of the net loads on LMPs, and model the LMPs as

predefined constants.

3.2 A user model without energy sharing

In this paper, each user is modeled as an agent solving

the following stochastic program:

min
X

t;s

cs kRt P
NL
i;t;s � kSt P

NS
i;t;s � Ui PL

i;t;s

� �

þ cESSi PESS
i;t;s;a þ PESS

i;t;s;b

� �h i

ð5Þ

s.t.

PNL
i;t;s � PNS

i;t;s ¼ PL
i;t;s � PPV

i;t;s þ PESS
i;t;s;a � PESS

i;t;s;b 8t; s ð6Þ

Xi ¼ PNL
i;t;s; P

NS
i;t;s; P

L
i;t;s; P

PV
i;t;s; P

ESS
i;t;s;a; P

ESS
i;t;s;b; E

ESS
i;t;s ; 8t; s

n o

2 vi

ð7Þ

where Ui �ð Þ is the utility function of user i. Without loss of

generality, we use a quadratic concave utility function [18].

cESSi is the ESS operation cost of user i, which is caused by

the degradation of the ESS’s charging and discharging

[19, 20]. In practice, the cost of an ESS mainly comes from

the capital cost, while the operation cost is measured as the

replacement cost of the storage bank over the lifetime

throughput [21], which is relatively a small fraction. The

decision variables are denoted by Xi, including user i’s net

load PNL
i;t;s, surplus power PNS

i;t;s, hourly load PL
i;t;s, solar

power PPV
i;t;s, the charging and discharging power PESS

i;t;s;a and

PESS
i;t;s;b, and the stored energy in the ESS EESS

i;t;s .

In (5), let OU
i denote the objective function of user i,

which is to minimize the difference between the total costs

and his/her utility. In (6), the net power equals the differ-

ence between the load and the power of the PV and ESS.

Note that the minimization of the objective function

guarantees that at least one of PNL
i;t;s and PNS

i;t;s is 0. When the

user’s net load is positive, PNL
i;t;s[ 0 and PNS

i;t;s ¼ 0. When

the user’s net load is negative, PNL
i;t;s ¼ 0 and PNS

i;t;s[ 0. In

(7), the feasible region vi includes the constraints for user

i’s PV, ESS and load, as described in Appendix A. In

model (5)-(7), user i can only trade with the aggregator,

without sharing DERs with others. Let O
U;0
i and OA;0 be

user i’s objective value and the aggregator’s net cost

without energy sharing, known as the disagreement point

[12, 13].

3.3 Energy sharing model

In the proposed energy sharing scheme, the aggregator

organizes all users to cooperate as a single interest entity,

and the shared power from users can be optimized. Energy

sharing requires users to deviate from individual optimal

schedule to accommodate the surplus or demand from their

neighbors. Thus, the aggregator should incentivize the

users to share DERs by allocating the sharing benefits. The

payment from the aggregator to user i is pESi . The net cost

of user i is OU
i � pESi , and the net cost of aggregator
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isOAþ
P

i

pESi . The energy sharing model is to minimize the

total costs of the aggregator and all users:

min OAþ
X

i

pESi þ
X

i

OU
i � pESi

� �

¼ OA þ
X

i

OU
i ð8Þ

s.t. (2)-(4), and

PNL
i;t;s � PNS

i;t;s � PES
i;t;s ¼ PL

i;t;s � PPV
i;t;s þ PESS

i;t;s;a � PESS
i;t;s;b

8i; t; s
ð9Þ

X

i

PES
i;t;s ¼ 0 : kESt;s 8t; s ð10Þ

Xi 2 vi

� PC
i;max �PES

i;t;s �PC
i;max

(

8i; t; s ð11Þ

where PES
i;t;s is the variable for shared power, restricted by

the capacity of a building’s fuse PC
i;max. In contrast to (6),

the decision variables for shared power are added to (9).

Equation (10) is the constraint for balancing the shared

power. Note that the loss of energy sharing and the dis-

tribution network are not considered in this paper [12]. The

Lagrangian multiplier of constraint (10) is denoted by kESt;s ,

interpreted as the clearing price for shared power. Let O
U;1
i

and OA;1 be the objective value of user i and the net cost of

aggregator by solving the energy sharing model.

Although the energy sharing model defines the amount

of users’ shared power, it cannot reveal the payments to

users that will incentivize the deviation from individual

optimum. Thus, an incentive mechanism is proposed for

benefit allocation according to users’ contributions.

4 Incentive mechanism

As energy sharing requires users to deviate from indi-

vidual optimal schedule, thus increasing individual costs,

an incentive mechanism is needed for benefit allocation so

as to incentivize users to participate in energy sharing. In

this paper, an incentive mechanism is required to satisfy

the following properties [22]:

1) Pareto optimality: there doesn’t exist another solution,

in which the cost of every participant is no greater than

that in the proposed energy sharing scheme, and the

cost of some participants is strictly less than that in the

proposed scheme.

2) Individual rationality: the aggregator and all users

should reduce their costs by energy sharing compared

with their costs without energy sharing.

3) No exploitation: the users without sharing DERs

should not be given any benefits.

4) Monotonicity: if a user makes more contributions to

energy sharing, this user should gain more benefits.

5) Budget balance: the total benefits are allocated among

the aggregator and all users.

We firstly propose a novel index, termed as SCR, to

evaluate users’ contributions to energy sharing. Then an

ANB model considering SCRs is developed for benefit

allocation.

4.1 Sharing contribution rate

In this paper, a user’s contribution to energy sharing is

defined as the economic value of the shared DERs, CU
i;t;s:

CU
i;t;s ¼ kESt;s PES�

i;t;s

�

�

�

�

�

� 8i; t; s ð12Þ

where PES�
i;t;s

�

�

�

�

�

� is the amount of a user’s shared power; kESt;s is

the clearing price for shared power; CU
i;t;s can be interpreted

as the economic value for sharing DERs, which is a

straightforward choice to measure users’ contributions to

energy sharing. Alternative definitions of users’

contributions deserve in-depth study in the future.

Therefore, user i’s SCR, denoted by SCRi, is defined as

his/her contributions over the total contributions of all

energy users:

SCRi ¼ 1� sA
� �

P

t;s csC
U
i;t;s

P

j;t;s csC
U
j;t;s

8i ð13Þ

where sA 2 0; 1ð Þ is the rate of return of an aggregator,

which is predefined and constant in this paper. In regulated

environment, the permitted rate of return of an aggregator

is regulated by the government. In deregulated markets, the

selection of sA involves the pricing strategy of an aggre-

gator: a higher sA can improve the rate of return of an

aggregator, but lead to the loss of users. A lower sA may

attract more users, but the rate of return decreases. Note

that for the users without participating in energy sharing,

their shared power is always 0. According to (13), their

SCRs equal 0.

4.2 Benefit allocation mechanism

The Nash bargaining problem studies how market par-

ticipants share a surplus that they jointly generate by

maximizing the product of market participants’ excess

utilities [23]. In a few existing studies, symmetric Nash

bargaining (SNB) models are adopted for cost allocation, in

which market participants are assigned with identical

contribution rates regardless of their distinct behaviors

[12, 13]. However, users can make different contributions

to the energy sharing. For example, a user shares 1 kWh

Incentive mechanism for sharing distributed energy resources 841
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electricity while another user shares 10 kWh electricity.

These two users should be allocated with distinct

benefits.

An asymmetric Nash bargaining model based on users’

SCRs is proposed for benefit allocation:

max OA;0 � OA �
X

i

pESi

 !sA
Y

i2UES

O
U;0
i � OU

i Xið Þ þ pESi

h iSCRi

ð14Þ

s.t. (2)-(4), (9)-(11) and

OA;0 � OA �
X

i

pESi � 0 ð15Þ

O
U;0
i � OU

i þ pESi � 0 8i 2 UES ð16Þ

where the decision variables are pESi ;PES
i;t;s;Xi; 8i; t; s

n o

;

UES represents the set of the users whose SCRs are posi-

tive. Constraints (15) and (16) are the individual rationality

for the aggregator and users. By solving the ANB model,

the aggregator’s payments to users can be obtained.

Theorem 1 The proposed incentive mechanism satisfies

� Pareto optimality, ` individual rationality ´ no

exploitation, ˆ monotonicity, and ˜ budget balance. The

solution to the ANB model defines the payments to users:

pES�i ¼ SCRi � Dþ O
U;1
i � O

U;0
i 8i ð17Þ

where pES�i is the optimal payment to user i; and the total

benefit D induced by energy sharing is:

D¼OA;0 � OA;1 þ
X

i

O
U;0
i � O

U;1
i

� �

� 0 ð18Þ

Proof See Appendix A.

According to Theorem 1, the optimal payment to a user

can be interpreted as two parts. The first is O
U;1
i � O

U;0
i ,

representing the incremental cost after sharing DERs. The

second is SCRi � D,indicating a user’s share of the total

benefits that all market participants jointly generate. The

net benefits of the aggregator and users are derived below:

O
U;0
i � O

U;1
i � pES�i

� �

¼ SCRi � D 8i ð19Þ

OA;0 � OA;1þ
X

i
pES�i

� �

¼sA � D ð20Þ

The benefit of each market participant is related to his/her

SCR, reflecting the contributions he/she creates. Therefore,

all participants can benefit from the energy sharing.

5 Decentralized implementation

The proposed energy sharing scheme and incentive

mechanism requires detailed information about users’

utility levels and DER parameters. However, it is chal-

lenging for the aggregator to collect the private information

of all users. Therefore, a decentralized framework is pro-

posed in Fig. 1. In this section, the energy sharing and

Nash bargaining models are decentralized, thereby avoid-

ing users’ bidding.

5.1 Decentralized energy sharing

The energy sharing model is decentralized and solved by

using ADMM [24]. The following auxiliary constraints are

introduced to the energy sharing model:

P̂x
i;t;s ¼ Px

i;t;s 8i; t; s; x 2 NL;NS;ESf g ð21Þ

where P̂x
i;t;s is an auxiliary variable, interpreted as the

power recommended by the aggregator; NL, NS and ES

represent net load, net surplus power and energy sharing.

By relaxing these constraints, the energy sharing model can

be decomposed into the local program of aggregator and

the individual program of each user, shown as follows:

1) Aggregator’s local program:

min OA þ
X

i;t;s;x

csw
x
i;t;sP̂

x
i;t;s þ

q

2

X

i;t;s;x

cs P̂x
i;t;s � Px

i;t;s

� �2

ð22Þ

s.t.
X

i

P̂ES
i;t;s ¼ 0 : kESt;s 8t; s ð23Þ

where the decision variables are P̂x
i;t;s; ; 8i; t; s; x

n o

; wx
i;t;s is

the Lagrangian multiplier of (21); q is the step for updating

the Lagrangian multiplier wx
i;t;s, i.e.,

wx
i;t;s k þ 1½ � ¼ wx

i;t;s k½ � þ q P̂x
i;t;s � Px

i;t;s

� �

ð24Þ

where wx
i;t;s k½ � represents the Lagrangian multiplier in the

kth iteration. In this paper, we set the step q ¼ 1= k þ 1ð Þ.

2) User i’s individual program:

min OU
i �

X

t;s;x

csw
x
i;t;sP

x
i;t;s þ

q

2

X

t;s;x

cs P̂x
i;t;s � Px

i;t;s

� �2

ð25Þ

subject to (9) and (11), where the decision variables are

Xi;P
ES
i;t;s; ; 8t; s

n o

. Then the energy sharing model can be

solved in a decentralized manner by iteratively coordinat-

ing the aggregator and users.
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5.2 Decentralized settlement

After solving the energy sharing model, the optimal

scheduling for DERs is obtained as well as the total ben-

efits. Then the proposed ANB model is decentralized for

benefit allocation to avoid users bidding. We firstly take the

logarithm of the objective function of the ANB model:

max sA ln OA;0 � OA;1 �
X

i

pESi

 !

þ
X

i2UES

SCRi O
U;0
i � O

U;1
i þ pESi

� �

ð26Þ

Then the following auxiliary constraints are introduced:

p̂ESi ¼ pESi 8i ð27Þ

where p̂ESi is the auxiliary variable, interpreted as the

aggregator’s recommended payment to user i. By relaxing

these constraints, the local program of aggregator and the

individual programs of users are shown as follows.

1) Local program of aggregator:

min � sA ln OA;0 � OA;1 �
X

i
p̂ESi

� �

þ
X

i

SCRi � w
p
i p̂

ES
i þ

q

2

X

i

p̂ESi � pESi
� �2 ð28Þ

where the decision variables are p̂ESi ; 8i
� �

; and wp
i is the

Lagrangian multiplier of (27).

2) Individual program of user i:

min � ln O
U;0
i � O

U;1
i þ pESi

� �

� wp
i p

ES
i þ

q

2
p̂ESi � pESi
� �2

ð29Þ

where the decision variables is pESi .

The optimal solution to the models (28) and (29) can be

directly obtained by solving the Karush-Kuhn-Tucker

(KKT) conditions without the need of optimization. Due

to the convexity of the energy sharing and ANB models,

the convergence of ADMM can be guaranteed.

By decentralizing the energy sharing and Nash bar-

gaining models, the scheduling for DERs and the associ-

ated settlement can be achieved without users bidding.

6 Case studies

Case studies are performed using MATLAB R2015b

and CPLEX 12.4 [25] on a computer with 2.40 GHz CPU

and 8 GB RAM. A distribution grid with 10 and 50 energy

users is tested. Here, the users refer to large consumers in a

distribution grid, e.g., industrial parks or commercial

buildings.

The quadratic and linear coefficients of users’ utility

functions are randomly generated from uniform distribu-

tions, i.e., ai 2 U �0:5;�0:1½ �; bi 2 U 20; 50½ �. The yearly

load and solar power data of different users are collected

from [26]. In the 10-user case, the load and solar data are

described in Fig. 2.

The minimal and maximal loads of users are set to 0.8

and 1.2 times of the actual loads. Users’ daily minimum

loads are set to his/her actual daily load demand. The ESS

parameters of users are as follows: PESS
i;t;s;a=b = 5 MW;

gESSi = 95%; EESS
i;min = 5 MWh; EESS

i;max = 30 MWh;

cESSi = 3.7 $/MWh [16]. The initial stored energy is ran-

domly generated from U [5] MWh. The ESS operation cost

is estimated as the replacement cost of storage bank over

the lifetime throughput. According to the data from [27]

and [28], the replacement cost per year is about 13400 $/

MW, and the yearly charging/discharging hours are

1800 h. Therefore, the operation cost cESSi is expressed as

follows:

cESSi ¼
13400

1800 gESSi þ 1=gESSið Þ
¼ 3:7 $=MWh ð30Þ

PG&E summer retail prices are 0.212 $/kWh from 1:00 to

8:00 and from 22:00 to 24:00, 0.239 $/kWh from 8:00 to

12:00 and from 18:00 to 22:00, and 0.263 $/kWh from

12:00 to 18:00. The net metering rate is 0.03 $/kWh [15].

The yearly LMP data at a bus in the PJM market are col-

lected from [29]. The two ratios in (4) are xin ¼ 2:0 and

xout ¼ 1:5. To verify the effectiveness of the proposed

approach, three methods are compared, as shown in

Table 1.

NS is the traditional energy trading scheme without

sharing. ANB is the proposed sharing scheme settled by the

ANB model considering SCRs. SNB is the proposed

Fig. 2 Users’ load and solar power data

Incentive mechanism for sharing distributed energy resources 843

123



sharing scheme settled by the traditional symmetric Nash

barging model, in which all energy users have identical

weights without identifying different users’ contributions,

i.e., SCRi ¼ 1� sAð Þ=N, where N is the number of users. In

ANB and SNB, sA ¼ 0:2. Note that since the proposed

energy sharing scheme is adopted in both ANB and SNB,

these two methods have identical dispatch results for

energy sharing, but differ in the payments to the users.

6.1 Impacts of energy sharing

The average power curves of an energy user without and

with energy sharing are compared in Fig. 3.

In the case without energy sharing, the user has no

incentives to arbitrage with the ESS against retail rates.

The ESS is only used to store the surplus of solar energy,

and discharge to satisfy the night-time load. Due to the low

NMR, the user will minimize his/her net load instead of

selling back the surplus power.

However, in the case with energy sharing, the utilization

of the ESS is greatly improved for shifting the day-time

load to the night hours. As the net load shows, the user

consumes electricity at night but supplies DERs at day

time. In addition, by comparing the electrical load curves,

one can observe that the load is also shifted from day time

to night time after energy sharing. Figure 4 shows the

average curves of the LMPs and aggregated loads. In the

energy sharing scheme, the aggregator organizes users to

respond to the LMPs. Compared with the case without

sharing, energy sharing can provide additional 132.35

MWh power for the power grid during peak hours from

6:00 to 20:00, thereby contributing to power balance in the

power grid.

Table 2 shows the daily total electrical loads, the energy

charged/discharged by ESSs and the accommodated solar

energy of 10 users.

As energy sharing provides users with a more prof-

itable manner to consume electricity than the retail rates,

some users will consume more electricity to increase the

utility levels. Thus the users’ total loads increase by 2.27%.

The utilization of ESSs dramatically increases by 173.06%.

Due to zero operational costs of PV systems, the solar

energy can be fully accommodated in both cases. The costs

of the aggregator and users without and with energy

sharing, i.e., by NS, ANB and SNB are listed in Table 3.

Note that ‘‘A’’ refers to the aggregator, and a negative

cost represents a revenue. Compared with the case without

energy sharing, energy sharing requires the users to deviate

from individual optimal schedule, thus increasing users’

Fig. 3 Power curves of a user without and with energy sharing

Fig. 4 Average curves of LMPs and aggregated loads

Table 1 Three methods compared in the case studies

Method Energy sharing Incentive mechanism

NS 9 Fixed retail rates and NMR

SNB H Symmetric Nash bargaining

ANB H Asymmetric Nash bargaining
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costs. However, by taking advantage of users’ shared

DERs, the aggregator earns great benefits after energy

sharing.

To guarantee that users have incentives to participate in

energy sharing, the aggregator allocates some of the shar-

ing benefits to users. As one can observe, both ANB and

SNB can reduce users’ net costs. By ANB, the aggregator’s

net revenues increase by 3.96%, and the users’ net costs

decrease by 0.44–0.53 thousand dollars. Thus, the aggre-

gator and users benefit from the energy sharing scheme.

6.2 Impacts of incentive mechanism

In SNB, the symmetric Nash bargaining model is used

to allocate the sharing benefits. All users have identical

weights, without distinguishing the users’ contributions to

sharing. However, the proposed ANB identifies users’

contributions for benefit allocation. The cost savings of

users by ANB and SNB are shown in Fig. 5.

As one can observe, the cost savings of all users are 0.49

thousand dollars in SNB. However, the cost savings range

from 0.44 to 0.53 thousand dollars in ANB. As afore-

mentioned, a user’s cost savings are related to his/her SCR,

defined as the user’s proportion of the economic values of

shared DERs. Figure 6 shows the relationship between

users’ SCRs and shared DERs. Note that a user’s shared

DERs refers to the total amount of the absolute value.

In ANB, users’ SCRs are positively related to the shared

DERs, indicating that the more DERs a user shares, the

higher level of contributions this user makes. However, all

users’ SCRs equal 0.08 regardless of the distinct behaviors

in SNB. Therefore, the proposed ANB can reveal the

contributions of different users and then allocate the

benefits.

6.3 Sensitivity analysis on storage capacity

In this subsection, we investigate the impacts of storage

capacity on energy sharing. Based on the parameters of

users’ ESSs mentioned above, a rate is introduced to

expand or reduce the power capacity, energy capacity and

initial stored energy of an ESS. The rate equal to x repre-

sents that the parameters of an ESS in the based case is

multiplied by x. The total amounts of charged/discharged

Fig. 5 Cost savings of users by ANB and SNB

Table 2 Users’ daily total loads, storage energy and solar energy

Scheme Load (MWh) Storage energy (MWh) Solar energy (MWh)

Without sharing 379.96 110.71 189.62

Energy sharing 388.60 302.31 189.62

Table 3 Costs of the aggregator and 10 users without and with energy sharing (Unit: thousand dollars)

No. Cost by NS Cost by energy sharing Cost ? payment by ANB Cost ? payment SNB

1 1.54 10.76 1.10 1.05

2 4.26 13.62 3.78 3.77

3 1.00 12.07 0.53 0.51

4 2.81 9.45 2.33 2.32

5 - 0.11 12.13 - 0.64 - 0.61

6 3.98 9.25 3.48 3.49

7 7.60 9.54 7.10 7.11

8 2.10 14.57 1.64 1.61

9 2.81 12.00 2.29 2.33

10 5.16 12.07 4.64 4.67

A - 31.31 - 121.76 - 32.55 - 32.55
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energy under different rates are shown in Fig. 7. Note that

the rate 1.0 represents the base case.

With the increase in storage capacity, the total amounts

of energy charged/discharged by ESSs increase in both

cases without and with energy sharing. Without energy

sharing, the utilization of ESSs only increases from 102.07

to 114.28 MWh when the rate varies from 0.5 to 2.0.

However, in the energy sharing scheme, the utilization

increases significantly from 200.13 to 376.28 MWh

because the aggregator can make full use of users’ storage

capacity to support the power grid. The users’ cost savings

by ANB and SNB are shown in Fig. 8.

From the results, the increase in storage capacity can

improve the benefits of energy sharing, while the marginal

benefit decreases. With the rate varying from 0.5 to 2.0, the

total benefits greatly increase by 60.05% from 4.43 to 7.09

thousand dollars.

6.4 Sensitivity analysis on aggregator’s rate

of return

In this subsection, we conduct sensitivity analysis on the

aggregator’s rate of return sA. The cost savings of the

aggregator and users are shown in given different sA (as

shown in Fig. 9).

As one can observe, with the increase in the aggrega-

tor’s rate of return, the aggregator can get higher revenues,

while the cost savings of the users decrease. The total cost

savings of the aggregator and users remain a constant $

6149.41, indicating that the proposed mechanism achieves

Pareto optimality of the market participants in the distri-

bution grid while influencing the profit sharing among

them. The SCRs of different users can be directly calcu-

lated from the slopes of the cost saving curves, which can

be explained in the theoretical analysis shown in (19).

6.5 Sensitivity analysis on net metering rates

In practice, the governments in many countries provide

financial subsidies for the surplus energy from DERs to

Fig. 8 Users’ cost savings by ANB and SNB under different capacity
rates

Fig. 9 Cost savings of the aggregator and users give different sA

Fig. 6 Relationship between users’ SCRs and shared DERs

Fig. 7 Total amounts of charged/discharged energy under different
capacity rates
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boost the development of demand side resources. In this

subsection, we conduct sensitivity analysis on NMRs to

analyze the impacts on energy sharing. Note that the NMR

in this paper is the price at which the aggregator pays users

for the surplus energy. The total amounts of charged/dis-

charged energy under different NMRs are shown in

Fig. 10. The NMR is 0.03 $/kWh in our base case.

As can be seen, with the increase in NMRs from 0.03 to

0.23 $/kWh, the utilization of ESSs without energy sharing

decreases from 100.71 to 27.03 MWh because the rational

users are willing to sell more surplus solar power instead of

self-sustaining by storage. However, when the NMR

reaches 0.33 $/kWh exceeding the retail rates, the utiliza-

tion of ESSs significantly increases to 86.55 MWh because

ESSs are used for arbitrage. In addition, the changes of

NMRs will not influence the scheduling of energy sharing.

The utilization of ESSs remain unchanged in the energy

sharing scheme, equaling 302.31 MWh. This is because the

proposed scheme minimizes the total costs of the aggre-

gator and all users, in which the NMR is an internal

transfer payment price. This result also implies that though

energy sharing yields great benefits, the government should

design an effective subsidy mechanism to encourage the

development of DERs.

6.6 50-user case

To validate the effectiveness and robustness of the

proposed scheme and mechanism, we collect the data of 50

users from [26]. The daily load and solar energy of 50 users

are shown in Fig. 11. Figure 12 compares the storage

energy of users without and with energy sharing.

As one can observe, most of the users improve the uti-

lization of ESSs after participating in energy sharing. Over

50% of the users increase the daily storage energy by 27.80

MWh. Therefore, the total storage energy of all users can

be dramatically increased from 311.85 to 1612.01 MWh.

The settlement results for 50 users are shown in Fig. 13.

Figure 13a shows the cost savings of 50 users after energy

sharing; Fig. 13b shows the relationship between users’

SCRs and shared DERs. From the results, all the users can

earn profits after energy sharing, indicating that the

proposed mechanism fulfills individual rationality. The

cost savings lie within 0.23 and 0.30 thousand dollars, and

over 50% of the users save 0.28 thousand dollars. In

addition, the cost savings and the SCRs of the users are

positively related to their shared DERs when settled by the

propose mechanism. However, the traditional SNB mech-

anism ignores different users’ contributions, and equally

assigns the users’ contribution rates as 0.016.

Fig. 11 Daily load and solar energy of 50 users

Fig. 12 Users’ storage energy comparison without and with energy
sharing

Fig. 13 Settlement results for 50 users

Fig. 10 Total amounts of charged/discharged energy under different
NMRs
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7 Conclusion

In this paper, an energy sharing scheme is proposed in

which an aggregator organizes electricity users to cooper-

ative as a single interest entity. Then we compare the cases

and trading events without and with energy sharing. An

incentive mechanism is designed for benefit allocation

according to users’ SCRs. To avoid users bidding, a

decentralized framework is proposed to schedule DERs in

the energy sharing scheme and determine the aggregator’s

payments to users. Case studies based on 10 and 50 energy

users validate the effectiveness of the energy sharing

scheme and incentive mechanism. Compared with the case

without energy sharing, the utilization of DERs can be

improved, and the total costs of the aggregator and all users

can be significantly reduced by energy sharing. Addition-

ally, in contrast to the traditional SNB model, the proposed

ANB can identify different users’ contributions and

accordingly allocate the benefits that incentivize users’

participation.

Two issues deserve in-depth studies in the future: � the

market equilibrium among distribution grids and the con-

nected power grid in an energy sharing scheme; ` a sys-

tematic energy sharing model considering distribution

networks and power losses.
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Appendix A

Constraints of the energy sharing model

In Section 3, the feasible region vi includes user i’s

constraints, shown as follows:

0�PNL
i;t;s

PNS
i;t;s �PC

i;max

(

8t; s ðA1Þ

0�PPV
i;t;s �PAPV

i;t;s 8t; s ðA2Þ

PL
i;t;s;min �PL

i;t;s �PL
i;t;s;max 8t; s ðA3Þ

X

t

PL
i;t;s �QL

i;s 8s ðA4Þ

0�PESS
i;t;s;a �PESS

i;a;max 8t; s ðA5Þ

0�PESS
i;t;s;b �PESS

i;b;max 8t; s ðA6Þ

EESS
i;t;s ¼ EESS

i;t�1;s þ gESSi PESS
i;t;s;a � PESS

i;t;s;b=g
ESS
i 8t; s ðA7Þ

EESS
i;min �EESS

i;t;s �EESS
i;max 8t; s ðA8Þ

EESS
i;NT ;s ¼ EESS

i;0;s 8s ðA9Þ

where PAPV
i;t;s is the available solar power of user i;

PL
i;t;s;min and PL

i;t;s;max represent the minimum and maxi-

mum hourly load of user i; QL
i;s is the daily load require-

ment of user i; PESS
i;a=b;max are the maximal power of

charging/discharging; gESSi is the ESS efficiency of user i;

EESS
i;min and EESS

i;max are the minimum and maximum of the

stored energy in the ESS; and NT is the number of daily

time slots.

Constraint (A1) shows the limit for the net power of user

i. Constraint (A2) shows the solar power of user i is

bounded by the forecast value. In (A3), the hourly load of

user i is limited by the lower and upper bounds. Constraint

(A4) shows the daily minimal load requirement of user

i. Constraints (A5) and (A6) show the bounds of charging

and discharging power of user i’s energy storage. Con-

straint (A7) shows the dynamics of the stored energy in

user i’s energy storage, restricted by the lower and upper

bounds in (A8). In (A9), the stored energy in the final time

slot is equal to the initial value.

Proof of Theorem 1

According to the logarithm form of the proposed ANB

model, the KKT conditions with respect to pESi are:

�sA

OA;0 � OA �
P

i

pES�i

þ
SCRi

O
U;0
i � OU

i þ pES�i

¼ 0 8i

ðA10Þ

By solving (A10), the optimal payment pES�i is:

pES�i Xið Þ ¼ SCRi � Dþ OU
i Xið Þ � O

U;0
i 8i ðA11Þ

where

D ¼ OA;0 � OA þ
X

i

O
U;0
i � OU

i Xið Þ
h i

ðA12Þ

Note that pES�i is the function of user i’s decision variables

Xi. Based on (A11), the objective function of the ANB

model (14) can then be transformed as follows:
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max kD ¼ k OA;0 � OA þ
X

i

O
U;0
i � OU

i

� �

" #

ðA13Þ

where the constant k is:

k ¼ sA
� �sA

Y

i2UES

SCRið ÞSCRi ðA14Þ

As OA;0 and O
U;0
i are constants determined by the models

without energy sharing, the objective function (A13) is

equivalent to the minimization of the total costs:

max kD , min OA þ
X

i

OU
i ðA15Þ

Therefore, the asymmetric Nash bargaining model is

equivalent to the proposed energy sharing model that

achieves Pareto optimality.

Note that individual rationality is naturally satisfied

because of the constraints (15) and (16) of the ANB

model.

In addition, for the users without energy sharing, their

shared power PES�
i;t;s

�

�

�

�

�

� is always 0, so their SCRs are 0. The

optimal payments and the net benefits are 0, which fulfills

no exploitation.

It is obvious that if a user makes more economic values

by sharing DERs, this user’s SCR will be larger, and he/she

will earn more net benefits. Thus, monotonicity is

satisfied.

The sum of the net benefits of the aggregator and all

users are shown as follows:

sADþ
X

i

SCRi � D ¼ sA þ
X

i

1� sA
� �

P

t;s
csC

U
i;t;s

P

j;t;s
csC

U
j;t;s

2

6

4

3

7

5
D

¼ D

ðA16Þ

Therefore, budget balance is fulfilled.
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