
Incentive Mechanisms for Peer-to-Peer Systems

Bin Yu and Munindar P. Singh

Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

{byu, mpsingh }@eos.ncsu.edu

Abstract. Most of the existing research in peer-to-peer systems focuses on pro-
tocol design and doesn’t consider the rationality of each peer. One phenomenon
that should not be ignored is free riding. Some peers simply consume system
resources but contribute nothing to the system. In this paper we present an agent-
based peer-to-peer system, in which each peer is a software agent and the agents
cooperate to search the whole system through referrals. We present a static and
a dynamic pricing mechanism to motivate each agent to behave rationally while
still achieving good overall system performance. We study the behavior of the
agents under two pricing mechanisms and evaluate the impact of free riding us-
ing simulations.

1 Introduction

Peer-to-peer (P2P) systems are currently receiving considerable interest in both indus-
try and academia. P2P systems have emerged as a promising way to share files (Nap-
ster, Gnutella, and FreeNet), computing resource (SETI@home), and other valuable
information, e.g., reputation information [16]. P2P systems have also been studied in
academia recently, e.g., CAN [10], Chord [14], and Pastry [11]. These projects study
distributed hashing algorithms. Given an object, the algorithms guarantee to locate a
peer that has that object. However, most of the present research has been focused on
protocol design concerns such as file lookup, data replication, and load balancing. Typ-
ically, current approaches don’t consider the rationality of each peer and simply assume
that the peers will follow the given protocols.

One phenomenon that should not be ignored is free riding. Since users do not ben-
efit directly from sharing files with others, many users choose to decline the requests
from others. Free riding is found in many P2P systems but is not punished [4, 9]. For
example, in Gnutella, there is a significant amount of free-riding users. Adar and Huber-
man found that70% of the Gnutella users did not share any content files and90% did
not answer to any queries from other peers [1]. Uncontrolled or excessive free riding in
a P2P network leads to network congestion at some hotspot peers and the degradation
of system performance. It is thus important to design some mechanisms that encourage
peers to contribute and reduce free riding behavior in the P2P networks.

This paper presents an agent-based peer-to-peer system, e.g., a referral system, in
which each peer is a software agent and the agents cooperate to search the whole system
through referrals. Agents are rational and self-interested, and so they may not always

follow the protocols as the designer expects. Individuals participating in a referral sys-
tem can contribute in two ways: The first is simply by answering the queries. The second
is by actively giving referrals, thus providing the “glue” that holds the system together.
In a querying process, the agents could play one of the following three roles:

– requesters, who request and obtain answers from the referral systems.
– providers, who answer the queries from requesters.
– intermediaries, who provide referrals and facilitate interactions among requesters

and providers.

The study of referrals is important for the development of agent-based peer-to-peer
systems that lack specialized agents such as brokers or facilitators [2]. MINDS and
ReferralWeb are two previous approaches for referral systems. MINDS emphasizes
learning heuristics for referral generation [5], whereas ReferralWeb focuses on how
to bootstrap the referral system [6]. More recently, we focus on the effects of topology
dynamics on information flows and consider how to efficiently search large-scale un-
structured P2P systems, e.g., social networks, with the help of agents who act only on
the basis of local knowledge [17]. However, the problem offree riding remains to be
addressed. Many agents simply ignore the requests and may not give any answers.

In order to control free riding, we introduce pricing mechanisms into referral sys-
tems. We view the referral systems as a strategic game, in which each agent has a utility
function over their possible actions. We assume that arational agent plays astrategyto
maximize its own expected utility. Free-riding is an example of strategy where rational
users free ride and consume a resource but do not produce at the same level as their
consumption. We study the behavior of agents under two pricing mechanisms and then
evaluate the impact of free riding using experiments. Our goal is to design some in-
centive mechanisms that motivate each agent to behave rationally while still achieving
good overall system performance [8, 13].

The rest of this paper is organized as follows. Section 2 provides an overview of
peer-to-peer systems and referral systems. Section 3 describes the design of pricing
mechanisms and related micropayment protocols. Section 4 presents some experimen-
tal results. Section 5 summarizes the relevant literature. Section 6 discusses the main
themes and some directions for future research.

2 Agent-Based Peer-to-Peer Systems

The termpeer-to-peeris a generic label for network architectures where all the nodes
offer the same services and follow the same behavior. The topology of peer-to-peer sys-
tems could be structured, e.g., CAN [10], Chord [14], and Pastry [11], or unstructured,
e.g., Napster, Gnutella, and FreeNet. In this paper we only consider the unstructured
P2P systems. There are three main alternatives for the implementation of unstructured
P2P systems.

– centralized indexes:The best example is Napster. Napster uses a centralized database
to index the files each peer has in the system. To look for a file, a peer first sends a
request to the database, and then gets a list of other peers who may have the files.

– Pure P2P:The best known examples are Gnutella and FreeNet. Both of them have
a pure distributed architecture, where there is no centralized database. All the peers
in the systems establish a connection with others through request propagation.

– Hybrid solutions:Hybrid solutions have recently emerged, for example, FastTrack.
FastTrack has some supernodes, which are used for indexing the contents of part of
the system and play a major role in the organization of the systems.

2.1 Peer-to-Peer Systems

In P2P systems, a P2P node broadcasts a request to its peers, who propagate the request
to their peers, and so on. Messages that are broadcast are labeled by a unique identifier,
which is used by the recipient to detect where the message comes from. To reduce
the network congestion, all messages are characterized by a given TTL (Time to Live)
that defines the scope of searches. On passing through a node, the TTL of a forwarded
message is decreased by one. When the TTL reaches zero, the message is dropped.

However, many P2P systems form in an ad-hoc manner and do not consider the
interests of the peers and dynamics of the topology. In this paper we present agent-
based P2P systems, in which each peer is a software agent. The agent can learn about
which of its peers are more effective than others, and optimize the searching process
based on its past experience. Next we introduce a class of agent-based peer-to-peer
systems, referral systems, in which each peer is an agent, and the agents cooperate to
search the whole systems through referrals.

2.2 Referral Systems

Intuitively, in a referral system, each agent maintains a list of itsacquaintances. A query
in natural language specifies what information is being sought. A query from the agent
is sent to agents of the selected contacts. An agent who receives a query can decide if
it can answer or not (Each agent is associated with a user, who will eventually answer
the query.). If not, the agentmayrespond with referrals to others. In referral systems,
the requesting agent does not propagate the request to its peers. All referrals are sent
back to the requesting agent, who tracks the search process using a graph and adaptively
directs or ends the process.

Each agent maintains models of itsacquaintances. The closest acquaintances are
calledneighbors. An agent sends its query initially only to some of its neighbors. If
an agent receives a referral, it may pursue the referral even if the referred party is not
already an acquaintance—this is how acquaintances are added. An agent adapts its mod-
els of its acquaintances from its interactions with others, e.g., when they ask or answer a
query. Each agent is allowed only a small number of neighbors; however, no hard limit
is imposed on the number of acquaintances. Periodically, an agent may promote some
of its acquaintances to becoming its neighbors and also demote some existing neighbors
to make room for the new ones.

Each agent maintains two kinds of models: aprofile for itself; and anacquaintance
modelfor each of its acquaintances. We capture these models via the vector space model
(VSM) [12], a classical information retrieval technique. The vectors in VSM are term
vectors indicating a weight for each term. In our formulation, the terms correspond to

different areas of expertise. The expertise of each agent is modeled as a term vector.
Similarly, the query is modeled as a term vector.

In VSM, the similarity between two term vectors is defined as the cosine of the
angle between them. We define the similarity between a query and an expertise vector
as the cosine of the angle between them, but scaled by the length of the expertise vector.
Intuitively, for two agents with expertise in the same direction, the one with the greater
expertise is more desirable, whereas the traditional definition would treat them alike.

Definition 1. Given a query vectorQ = 〈q1, q2, . . . , qn〉 and an expertise vectorE =
〈e1, e2, . . . , en〉, the similarity betweenQ andE is defined as:

Q3E =
∑n

t=1 qtet√
n

∑n
t=1(qt)2

For example, consider a query vectorQ = 〈0.1, 0.9〉 and two expertise vectors
E1 = 〈0.5, 0.5〉 andE2 = 〈1, 1〉. In VSM, E1 andE2 are equally similar with the
query vectorQ, but in our approach,E2 is better thanE1, sinceQ3E2 > Q3E1.

The sociability of an agent reflects its ability to give good referrals. The intuition
is that some agents may not be good experts, but may be well connected and may give
good referrals. Therefore, the relevance of a neighbor to a given query depends not only
on the similarity of the query to the user’s expertise, but also on the weight assigned to
sociability versus expertise.

Definition 2. The relevance of a query vectorQ to Pj is computed asQ4Pj = (1 −
η)(Q3Ej) + ηSj , whereEj is the expertise ofPj , Sj is the sociability ofPj , andη is
the weight given to sociability.

Our previous work studied the effects ofη on the quality of referral systems [18].
We found that a certain emphasis (during learning and querying) on the agents’ referring
ability improves the quality of the system, but that an overemphasis on referrals at the
cost of expertise is not useful. For simplicity, we only consider the caseη = 0.3 here.

Each agent learns its profile and its acquaintance models based on an evaluation
of the answers received as well as the referrals that led to them. Areferral graphen-
codes how the computation spreads as a query originates from an agent and referrals or
answers are sent back to this agent.

Definition 3. A referralr to Aj returned fromAi is written as〈Ai, Aj〉, we sayAi is a
parentof Aj andAj is achild of Ai.

For convenience, we include the initial query among the referrals. This enables us
to write a referral chain of lengthl for a query originating withAr as〈Ar, A1, . . . , Al〉.
Thenancestoranddescendantare easily defined based on parent and child, respectively.

The referral chains for a given query induce a directed graph whose root is the
originating agent. Thedepthof a referral is its distance on the shortest path from the
root. Our algorithms ensure that the graph remains acyclic.

Definition 4. A referral graphG(Q) for a queryQ is a rooted directed graph(Ar, Λ, R),
whereAr is the requesting agent (root),Λ = {A1, A2, . . . , An} is a finite set of agents
(vertices) that includesAr, R ⊆ Λ× Λ is a set of referrals (edges).

Ar

A2

A5

A4

A3

A1

A6

Fig. 1. A referral graph generated from a query. The requesting agent is black; the agents that
have been queried are gray; the agent who have not been queried are white.

Definition 5. A referral r = 〈Ai, Aj〉 is redundantfor a referral graph(Ar, Λ, R), if
and only ifAi, Aj ∈ Λ andAj is an ancestor ofAi with respect toR.

Clearly, an acyclic referral graph includes no redundant referrals. In the context of Fig-
ure 1, a referral〈A4, A1〉 would be redundant, sinceA1 is an ancestor ofA4. Referral
〈A4, A2〉 is not redundant, since it introduces no cycles.

3 Mechanism Design

Much of the existing research in P2P systems, including referral systems, assumes that
peers or agents will always follow the protocols. However, some agents, representing
rational users, may deviate from a designed protocol in order to maximize their out-
come. Recently, Shneidman and Parkes advocate mechanism design of P2P systems,
in which peers are expected to be rational and self-interested [13]. Feigenbaum and
Shenker consider similar problems in distributed algorithmic design. They discuss the
challenges of distributed mechanism design in P2P systems and overlay networks with
techniques like redundancy and cryptography [3].

We study the mechanism design problem in the context of referral systems. We
discuss some micropayment protocols in referral systems, and then study the behavior
of agents and the impact of free riding using experiments.

3.1 Types of agents in referral systems

Given a query, some agents may respond unconditionally, and others may respond only
if they have some rewards. We categorize the agents in referral systems as one of the
following three types.

– Altruistic: agents always follow the protocols and give answers or referrals if they
can.

– Rational: agents play a strategy to maximize their expected outcome.
– Irrational: agents do not follow a strategy modeled by the mechanism. Antisocial

or malicious agents, for instance, prefer strategies that hurt other agents even when
these strategies reduce their own utility.

The altruistic and irrational agents are outside of our discussion. In this paper we
only focus on rational agents that can strategize about their behavior.

3.2 Micropayment Protocol

A natural approach is to charge agents for every query and to reward them for every
referral or answer.1 In this section we first describe a simple micropayment mechanism,
in which the costs for referrals and answers are fixed for all agents. We then present a
more complex protocol, where the costs are dynamic. Suppose,

– α is the cost or reward for one or more referrals given for a query.
– β is the cost or reward for an answer to a query.
– T is the initial budget for each agent, e.g., 500 points.

Answer

Payment

HasAnswer

Agent A Agent B

Query

Fig. 2. A referring process involving two agentsA andB, whereA sends a query toB.

We illustrate the micropayment protocol using two simple examples.

– First, we consider the situation only involving two agentsA andB. AgentA sends
a query to one of its neighborsB. If agentB finds that it can answer the query,
it will answer with aHasAnswermessage. AgentA will decide if it would like to
pay. If A agrees and pays the necessary points, agentB will send the answer toA.
In this process,

• The cost for agentA is β and the balance for agentA becomesT − β.

1 Another possible payment model is a flat rate membership fee. However, the flat fees are
unrelated to agent’s strategies, and may not be helpful for the free riding problem.

• The reward for agentB is β and the balance for agentB becomesT + β.

– Second, we consider the situation involving three agentsA, B, andC. AgentA
sends a query toB, andB finds that it cannot answer the query. However,B has
some neighbors who may answer the query fromA. B responds with aHasReferral
message. AgentA will decide if it would like to pay for the referrals. AgentA
receives a set of referrals after it pays toB. Suppose one of the referrals leads to
agentC and all others lead to dead-ends.C responds with an answer afterA pays
the points toC.

• The cost for agentA is α +β and the balance for agentA becomesT −α−β.
• The reward for agentB is α and the balance for agentB becomesT + α.
• The reward for agentC is β and the balance for agentC becomesT + β.

Algorithm 1 Constructing a referral graph
1: Suppose agentAr is the requesting agent, setΛ is the agents being visited.
2: Initially Λ = {Ar}. For any agentAi ∈ Λ, Ar sends a query toAi.
3: (If Ai = Ar, it means thatAr first sends a query to some of its neighbors).
4: if (Ai returns aHasAnswermessage)then
5: Ar pays the points toAi

6: Ar receives the answer fromAi

7: else if(Ai returns aHasReferralmessage)then
8: Ar pays the points toAi

9: Ar receives a set of referrals fromAi

10: For any referralr = 〈Ai, Aj〉,
11: if (Aj /∈ Λ) then
12: Ar appendsr to the referral graph
13: Ar addsAj into Λ
14: else if(Aj ∈ Λ) and (Aj 6= ancestor(Ai)) then
15: Ar appendsr to the referral graph
16: else
17: Ignore referralr
18: end if
19: end if

Algorithm 1 presents the process of constructing a referral graph from a set of re-
ferrals. For example, in Figure 1, requesting agentAr sends a query to its neighbors
A1 andA2. A1 refers toA3, who refers toA4. A4 refers toA1, A5, andA6. A2 refers
A6. SupposeA5 andA6 claim they have the answer, andAr pays to both of them.
EventuallyA6 returns an answer, butA5 doesn’t. The costs (rewards) for these agents
are,

– The cost forAr is 4α + 2β.
– The reward for each ofA1, A2, A3, andA4 is α.
– The reward for each ofA5 andA6 is β.

3.3 Dynamic Pricing

A more complex case is that the costs or rewards are dynamic. Since different agents
provide different qualities of services and they may place different prices for their re-
ferrals and answers. Also, some agents claim they have the answers or referrals, but
they may not respond after the requesting agent pays, e.g.,A5 in Figure 1. The request-
ing agent needs to decide which service it would like to buy, based on the history of
responding agents, and the number of agents who can provide the services.

We assume that each responding agent produces results randomized around a certain
quality for referrals and answers. But the quality of referrals and answers from different
agents may be different. As mentioned in Section 2, each agent has a profile and a set of
acquaintance models. SupposeAr is the requesting agent, and{A1, A2, . . . , An} are a
set of acquaintances ofAr. Ar has twoselling pricesin its profile:α′Ar

for one or more
referrals (given for a specific query), andβ′Ar

for an answer. Similarly, for any agent
Ai, 1 ≤ i ≤ n, Ar has tworeserve pricesin Ai’s acquaintance model:αAi for one or
more referrals andβAi

for an answer.
The values ofα andβ are used as the baselines for both selling prices and reserve

prices. For example, at timet0 (which is local to agentAr), given a requesting agent
Ar and any of its acquaintancesAi,

α′Ar
(t0) = αAi(t0) = α

β′Ar
(t0) = βAi(t0) = β

The selling prices are updated as follows

– The two selling prices will decay with a decaying coefficientρ at every time interval
t, where0 < ρ < 1. For example, given a agentAr, its selling price for a referring
service at timet0 + t is updated asα′Ar

(t0 + t) = ρ ∗ α′Ar
(t0).

– The selling prices of a referring service or an answer will increase with a factorσ
when any other agents would like to pay the price, where1 < σ < 2.

The reserve prices are used to estimate if the selling prices from other agents are
reasonable. For example, at timeti, agentAr receives a set of sell bids of answers from
sellers{A1, A2, . . . , Am}. For any sellerAj , the reward for agentAr is

βAj (ti)− β′Aj
(ti)

whereβAj (ti) is the reserve price of an answer in the acquaintance model forAj at
time ti andβ′Aj

(ti) is the selling price of an answer in the profile of agentAj .
Similarly, for referring services, the requesting agentAr computes the reward as

αAj (ti)− α′Aj
(ti)

Given a set of referring services or answers, the requesting agent will choose the
services from the highest to the lowest rewards. After the requesting agent receives
a service, it or its user will evaluate the quality of the service and revise the reserve
price for the service. The reserve prices are updated as follows at timeti if the agent is
satisfied with the service from agentAj ,

αAj
(ti) = αAj

(ti) + ω1 (for referring services)
βAj (ti) = βAj (ti) + ω2 (for answers)

Otherwise,

αAj
(ti) = αAj

(ti)− ω1 (for referring services)
βAj (ti) = βAj (ti)− ω2 (for answers)

where0 < ω1 < α and0 < ω2 < β.

4 Experimental Results

Our experiments are based on an extension of a simulation testbed previously developed
for information access [18]. The experiments involve between100 and500 agents. Each
agent is modeled in terms of itsinterest(describing the services it is interested in pur-
chasing) and itsexpertise(describing the services it is able to offer). Both interest and
expertise are captured as terms vectors of dimension5.

The agents are limited in the number of neighbors they may have, here4. The length
of each referral chain is limited to4. Moreover, we introduce a probabilityϕ between
0 and1 to model any free riding agentsAi. AgentAi will generate an answer from
its expertisevector upon receiving a query with the probabilityϕ even when there is a
good match between the query and its expertise vector.

In each simulation cycle, we randomly designate an agent to be the requester. An
agent may query some of its neighbors. When an agent receives a query, it may answer
the query based on its expertise vector, or may give a referral to some of its neighbors.
The originating agent collects all possible referrals, and continues the process by fol-
lowing some of the suggested referrals. Each agent may keep track of certain acquain-
tances. In our simulation, we allow12 acquaintances. Periodically, each agent decides
which of its acquaintances are dropped and which are promoted to neighbors (a subset
of acquaintances).

We initialize the network of agents in the following manner. Following Watts and
Strogatz [15], we begin from a ring but, unlike them, we allow for edges to be directed.
We use a regular ring with100 nodes, and4 out-edges per node (to its neighbors) as a
starting point for the experiment.

The initial budget for each agent is500. The baselines for prices of a referring
service and an answer are1 and10, respectively. Other parameters for dynamic pricings
are defined as follows,

– Decaying coefficientρ = 0.9 for every 100 cycles.
– Factorσ = 1.1.
– Other factorsω1 = 0.1, ω2 = 1 (We choose the values ofω1 andω2 in the same

ratio asα andβ).

Note that all these parameters are fixed and equal for all agents. An answer is good
if and only if the similarity value between the query and the answer is above0.2.

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000 1200

B
al

an
ce

Cycles

fixed pricing
dynamic pricing

Fig. 3. Balances of the free riding agent under different pricing mechanisms

4.1 Balance of the Free Rider

We suppose, of the total 100 agents, only one agent is a free rider. Its responding prob-
ability ϕ is zero. Figure 3 shows the balance of the free riding agent under fixed and
dynamic micropayment protocols. As intuitively expected, the free riding agent can-
not survive under either micropayment protocol. The balance of the free riding agent
becomes zero after 1200 cycles under fixed pricing mechanism and 900 cycles under
dynamic pricing mechanism. The agent who runs out of its budget has to purchase more
points with money. In a sense, no one can free ride any more, because they have to pay
for the services they receive from others.

4.2 Prices for High-Quality Services

Our second experiment studies the selling prices of referrals and answers for an expert
agent, where each dimension of its expertise vector is initialized as1. For example,
the selling price of answers (from the expert agent) increases from 10 to about 55 and
the selling price of referrals increases from 1 to 15 after 1000 cycles (Figure 4). A
consequence of dynamic pricing is that the requesting agents have to pay more for
the high-quality services. The prices will help to adjust the traffic at these high-quality
service providers. Note that the selling prices for answers and referral from the expert
agent may decrease if no agents are willing to pay the prices.

5 Related Work

Golle et al. first use a game theoretic approach to analyze the free riding problem in
peer-to-peer file sharing systems [4]. They analyze equilibria of user strategies under
several micropayment mechanisms. Our micropayment protocol with fixed pricing is
similar to theirs. More recently, Ramaswamy and Liu use utility functions to measure

10

20

30

40

50

60

0 200 400 600 800 1000

P
ric

es

Cycles

referring service
answer

Fig. 4. Selling prices of high-quality services

the usefulness of peers, e.g., the number of files, the total size of the data, and the
popularity of the files, and describe a utility based scheme to control free riding in
peer-to-peer systems [9]. Both of the above approaches study the free riding problem in
P2P file sharing systems, while we focus on the referral systems, in which the prices of
services can be either fixed or dynamic.

Shneidman and Parkes discuss the notions of rationality and self-interest in P2P
systems [13]. Similar ideas can also be found in Distributed Algorithmic Mechanism
Design (DAMD) [3]. Shneidman and Parkes highlight some open problems in DAMD
and specially P2P systems, e.g., computational complexity of mechanisms and effects
of mechanism design on network topology formation.

Pricing or micropayment is only one incentive mechanism. Krishnanet al.propose
other mechanisms to reduce the problem of free riding in P2P systems [7]. They de-
velop some non-priced incentives to encourage efficient behavior in P2P users. Some
examples include delay time (e.g., users who share more content with the system have
higher priority), network membership (e.g., removing non-sharing members from the
systems), or peer ratings of content providers. However, empirical analysis is needed to
measure the impact of these mechanisms.

6 Conclusion

This paper examines the problem of free riding in agent-based peer-to-peer systems,
especially referral systems. We introduce two classes of micropayment protocols and
analyze the strategies of agents under these protocols. Our paper only provides a prelim-
inary study of mechanism design in referral systems. For example, we simply assume
that the qualities of services are consistent for each agent. Also, we don’t consider the
topology of referral graphs and its effects on dynamic pricing. In future work, we plan
to focus on these problems and develop more efficient and incentive compatible mech-
anisms for referral systems.

Acknowledgements

This research was supported by the National Science Foundation under grant ITR-
0081742. We are indebted to the anonymous reviewers for their helpful comments.

References

1. E. Adar and B. Huberman. Free riding on Gnutella.First Monday, 5(10), 2000.
2. K. Decker, K. Sycara, and M. Williamson. Middle-agents for the Internet. InProceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), pages 578–583, 1997.
3. J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism design: Recent results

and future directions. InProceedings of the Sixth International Workshop on Discrete Algo-
rithms and Methods for Mobile Computing and Communications, pages 1–13, 2002.

4. P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. Incentives for sharing in peer-
to-peer networks. InProceedings of the Second International Workshop on Electronic Com-
merce, pages 75–87, 2001.

5. M. N. Huhns, U. Mukhopadhyay, L. M. Stephens, and R. D. Bonnell. DAI for document
retrieval: The MINDS project. In M. N. Huhns, editor,Distributed Artificial Intelligence,
pages 249–283. Pitman/Morgan Kaufmann, London, 1987.

6. H. Kautz, B. Selman, and M. Shah. The hidden Web.AI Magazine, 18(2):27–36, 1997.
7. R. Krishnan, M. D. Smith, and R. Telang. The economics of peer-to-peer networks, 2002.

working paper, Carnegie Mellon University.
8. M. J. Osborne and A. Rubinstein.A Course in Game Theory. MIT Press, Cambridge, MA,

1994.
9. L. Ramaswamy and L. Liu. Free riding: a new challenge for peer-to-peer file sharing systems.

In Proceedings of Hawaii International Conference on Systems Science 36, 2003.
10. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-

addressable network. InProceedings of ACM SIGCOMM, pages 161–172, 2001.
11. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing for

large-scale peer-to-peer systems. InProceedings of the 18nd IFIP/ACM International Con-
ference on Distributed Systems Platforms, pages 329–350, 2001.

12. G. Salton and M. McGill.An Introduction to Modern Information Retrieval. McGraw-Hill,
New York, 1983.

13. J. Shneidman and D. Parkes. Rationality and self-interest in peer-to-peer networks. InPro-
ceedings of Second International Workshop on Peer-to-Peer Systems, 2003.

14. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. InProceedings of ACM SIGCOMM,
pages 149–160, 2001.

15. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks.Nature,
393:440–442, June 1998.

16. B. Yu and M. P. Singh. An evidential model of distributed reputation management. In
Proceedings of First International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 294–301, 2002.

17. B. Yu and M. P. Singh. Searching social networks. InProceedings of Second International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 65–72, 2003.

18. B. Yu, M. Venkatraman, and M. P. Singh. An adaptive social network for information access:
Theoretical and experimental results.Applied Artificial Intelligence, 17(1):21–38, 2003.

