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ABSTRACT

Two agents are involved in our model. The first agent is to announce
a schedule of rewards (or, equivalently, charges) which is a function of
the amount produced by the second agent. Then the second agent will decide,
using utility maximization, how much to produce. Knowing only the form-of
the second agent's utility and production functions--not the exact values
of their parameters—-the first agent seeks to choose a schedule’which
maximizes the minimum (over all possible utility and productivity parameter
values) of a quantity related to his residual gain (residual gain being
that part of output remaining after rewards have been paid out). We show
that in a broad class of cases the only such maximum is a schedule which
takes one-half of production. It should be noted that this result is
valid even when schedules are allowed to have certain kinks and/or dis-
continuities, so that such discontinuities and kinks do not yield any

special incentive properties in our model.

This problenm is motivated by situations in which the first agent
may be thought of as the government and the residual gain (revenue from
taxation) is to be used for a paramount national or social objective,
e.g., defense to ensure national survival; in this case the second agent
represents the country's labor force to be rewarded so as to stimulate
a degree of effort maximizing the residual available for national defense.
Another possible interpretation is with first agent as a landlord, the
second as sharecropper, with value added as the "product” and the problem,
seen from the landlord's point of view, being that of maximizing his share

of value added.
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INTRODUCTION

Our analysis covers at least two models, one from the private and one
from the public sector. We first discuss the former: a landlord owns
land which can produce a single good, amounts of which are denoted y. The
land is worked by a sharecropper. The landlord must choose. and announce
a schedule of rental fees (charges) for the use of his property. The
schedule takes the form of a "reward" function p(y) prescribing that if y
units of the good are produced+ from the land, then p(y) units are to be
kept by the sharecropper, and y - p(y) units (the "residual gain'") paid
to the landlord.
The sharecropper's state of satisfaction depends on two factors:
the levelof effort expended in producing the good and the amount of reward
received:rrThe reward is determined by the output y through the reward
function p. We shall also make assumptions which imply that effort expended
is a (single-valued) function of output y. Thus, indirectly, the share-
cropper's state of satisfaction is determined by the level of output y.
We denote by uly) the level of satisfaction obtained by producing y units
of output, and call u the ("indirect") utility function of the sharecropper.
It is postulated that the sharécropper will produce b units where b
is a point at which u assumes its global maximum. We call b the worker's

. Tt
optimal output. (Thus "optimal" does not mean "Pareto optimal.") "

L

'In a more realistic interpretation, y is the total value added, resulting
from the operation of the land by the sharecropper.

++It is assumed that the landlord is unable to observe the level of the
worker's effort. It is for this reason that the reward is postulated to be
a function of output as the variable the landlord can observe.

+
'++See Remark 1. g,
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It will be convenient to assume until the end of Section 1 (but not in any
proofs) that u has a unique global maximum b, so the optiﬁal output b is
uniquely determined. Since the utility of producing y units will depend
on the reward r = p(y) received by the sharecropper for producing y units,
as well as on the effort he must expend, the utility u(y) depends on p.
On the other hand, the landlord's choice of p depends on u because the
landlord will use his knowledge about the sharecropper to select p so as
to maximize his profit.

In previous work,Jr one of us has investigated the extent to which
these opposed interests (in our model they are the interests of the
utility-maximizing worker and of the residual gain-maximizing landlord)
result in a determinate outcome. In that work 1t was shown that, among
linear (fixed share) reward schemes, a 50-50 split is best for the landlord
under certain assumptions concerning production and utility functions.
Also, a conjecture concerning rewards other than linear ones was stated.
Here we confirm that conjecture and obtain further results. After making
some restrictive assumptions concerning production and utility functions
(less restrictive than those in the earlier work) we will prove that if
the landlord is motivated solely by his own interests and knows nothing
about the sharecropper's utility function, and he has at his disposal a
class of reward functions ("piecewise smooth" functions) which is much
broader than the linear reward functions,then his best action is still to
share with the sharecropper, 50-50, the proceeds of production.

Another model encompassed by our analysis is that of a community

threatened by an outside danger. The community's total output of goods

+An early version was presented by Hurwicz at the Conference on the
Economics of Internal Organization at the University of Pennsylvania,
September 19-21, 1974. See also Hurwicz [197T7].
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and services y (which we shall treat as if it were one-dimensional) must

be divided, between consumption and defense of the community's existence.
This is done by announcing a reward function p(y) to be applied to individual
output,+ i.e., an individual worker who produces y units will retain p(y)

for his own consumption and y - p(y), the "residual gain," will go toward

the community's defense. As in the previous model, each worker is assumed

to maximize a utility u which is indirectly determined by the level of
output. Here the community, like the landlord of the previous example,

wants to pick p so as to maximize its residual gain, but the choice of

such a p depends on u. And the worker's utility, maximized with respect

to y, depends on p. This example differs from the first in two important
respects: first, it is natural to assume that the workers, whose paramount
desire is that the community survive, will want the community to maximize

the residual gain available to cope with the dangeri+whereas the sharecropper
is presumably not interested in the landlord's raximizing his residual gain.
Second, the lack of information on the part oi ihe community about which u's
are to be faced 1s due to the variety of workers as well as to their desire
for privacy.

For simplicity we will use, in the remainder of this paper, the terms
landlord and worker.

The reader interested in other formulations of incentive problems in
sharecropping may refer to works by Bardhuzn and Srinivasan (1971), Bell and
Zusman (1¢76), Cheung (1969), and Stiglitz (197k). Approachtes to incentive
problems which are related to our model can be found in works by Keren
(1969), Leibenstein (1966), Marschak (1976), and Mirlees (1973). Models
with analogous structure have been studied by Moiseev (1975) and Vatel and

Frezhkov (1973).

TAgain, value added might be a more appropriate interpretation of y.

++The "paradox' is that, despite this desire, the worker's individual
effort is assumed to be at a level maximizing his own utility rather than
the community's welfare. But concern for the community's survival would
presumably make the worker vote in favor of adopting a reward function p
maximizing the residual gain.



1. DEFINITIONS, A SPECIAL CASE, AND AN OUTLINE OF THE PAPER

1.1 Definitions: utilities U and u, disutilities ? € &, optimal output ®

and profit .

We let z denote the worker's effort and r the reward which the worker
receives.+ We assume the worker's utility function can be written in the
form U(r,z) = r - ¥(z).* We assume the production function y = f(z) to be
invertible;ﬁfso setting y o f—l = ¢ and recalling that the reward r is

given by p(y), we have

u(y) = Ulp(y),£7H3) = o(y) - oly).

It is to be noted that the "indirect" utility function u is determined by
the "direct" utility function U, the production function f, and the
reward function p.

We call the term ¢(y) appearing in the representation ul(y) = p(y) - o(y)

the disutility term and call ¢ the disutility for short. We assume that

the landlord knows nothing about which disutility ¢ appears in the worker's
utility function except that ¢ is a member of a certain set ¢. Many of
our definitions and results will depend on what we choose ¢ to be, i.e.,

on what we assume the landlord knows about the worker.

If the production function f were of the constant returns to scale
type, f(z) = cz for some c > O,and the disutility term ¢ (in the direct
utility function U) were quadratic, Y(z) = dz2 for some 4 > O, then we
B

would havecp(y) =Yoo f (y)= ay2 where o = d/cg, We denote by'¢a the

function (y) = ay2 for y > 0. We refer to the disutilities for a > 0
P Z )

r, ¥y, and utilities are real numbers throughout the paper. =z is a real
number in our examples, but much of our analysis is applicable to a multi-
dimensional z (see next footnote).

++In fact, we need only assume that for each y > 0, the set {Y(z): f(z) = y}
has a mininum. With this assumption it is more plausible to view z as

ranging over a multidimensional or other space, and our results are applicable
provided that the function @ o F has the assumed properties.

* See Proposition 7.4 for the case U(r,z) = r’ - y(z), v<1.



as quadratic disutilities.

Given a reward function p and disutility ¢ we define b(p,p) to be

the global maximizer (assumed unique+) with respect to y > 0 of

u(y) = p(y) - o(y), and we call b(p,p) the worker's optimal output. Since
p will be understood from the context we will suppress it and write b(@),
the optimal output of the worker characterized by . Given p and ¢ we

define the landlord's residual gain (or, for short, gain), to be

m(p,p) = ble) - p(b(e)). We may write m for m(p,p). One would expect
the landlord to choose a reward schedule P so as to maximize his gain T.
In general, "maximizing m" is an inadequate criterion for choosing

(see 1.11). but we next discuss a special case where it is adequate.

1.2 The special case of linear rewards

Let us consider the special case where the landlord must choose his
reward function p from among the linear reward functions, i.e., those of
the form pk(y) = ky for some k > 0, and where the set & of disutilities

is that of the quadratics, ¢ = {¢a: a > 0}.

1.3 Lemma. For any real numbers k > 0 and o > O we have

-k = L 2

Proof. The optimal output b(pk,@a) is defined to be the global maximizer
of uly) = ky - ay2 with respect to y > 0 and that quadratic function assumes its

. k : . . .
maximum at 5=. The gain ﬂ(pk’qb) is defined to be

This assumption is made mainly for simplicity of exposition and is not
needed in any proofs (see Remark 2.3). We drop this uniqueness assumption
in Sections 3, 4, and 5, where our main results are proved.
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b(p ) - o (6P ,9,)) = 5%-— k(zo) = 55 k(1 - k).

The next lemma is obvious but we will need to refer to it often.

1.4 Lemma. The maximum of k(1 - k), with respect to k, occurs only at k =

N |

Thus the inequality %-f_k(l - k) has only one solution, namely, k = %n

The next result follows from the previous two lemmas. It was first

proved in [Hurwicz, 1977].

1.5 Theorem. For each o > 0 the maximum of ﬂ(pk,wa), with respect to k > 0, occurs

only at k = %u Thus if the landlord is restricted to choosing linear reward

functions pk, k > 0, and faces guadratic disutilities Py > a > 0, he can

maximize gain only by choosing the reward function p*(y) = %-for all y > O.

We will use the symbol p* throughout the paper for the reward function de-

fined by p*(y) =,% for y > 0.

l36 Remark. Because this paper deals with the objective of maximizing
the residual gain of the landlord it is important to note that, in general,
the "joint welfare" of the landlord and the worker is not being maximized.
In particular, the sclution just offered (k = %) does not yield an allo-
cation that is Pareto optimal for the worker and the landlord. It i not

difficult to see that, among the linear solutions {pk: k 2.0}, the only

one that is Pareto optimal gives to the worker all of the output (k = 1).
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1.7 Outline of the paper

The previous theorem says that if the landlord (1) must choose his
reward schedule from the linear ones pk, (2) faces only quadratic dis-
utilities g , and (3) seeks a reward schedule p which maximizes ﬂ(p,ma)
for each a, then his only choice is p¥. It is the aim of this paper to
generalize the theorem with respect to the hypotheses (1) and (2),
but this will require our weakening the criterion (3) of maximizing .

We will still obtain the conclusion that p¥ is the only choice satisfying
the weakened criterion.

We denote by P the set of reward functions from which the landlord

may choose. Thus, in Theorem 1.5, P = {p. : k 3_0}, the linear rewards.

K
In the remainder of Section 1, we will describe the largest class
P of rewards to which our results apply. We will call the members of
this largest class "permissible'; they are essentially the piecewise ot
functions. We will also consider various criteria which the landlord
might apply in choosing a reward function, and will settle on what we

call "efficiency,"

which requires that p maximize the infimum over & of
efficiency ratios (not gains ). The efficiency ratio is defined to be

the ratio of gain to the supremum of possible profits assuming complete
information, and is analogous to Savage's "regret." That p¥ is an efficient
reward will imply that it is undominated. DMost of the remainder of the paper is
devoted to proving that p* is the unique efficient reward function in a very
general setting. In order to motivate and clarify the lengthy proof that

p* is the unique efficient reward in this general setting, we present in

Section 2 a special case where the proof is relatively simple. The most
crucial assumptions we make in this special case are that ® is the quadratic

disutilities and P consists of rewards satisfying: If y > 0, then there
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is a disutility @a (i.e., a worker) such that y maximizes u(y) = p(y) - q&(y)

(i.e., y is the worker's optimal output), and p(y) is a Cl function in y > 0.
It is worth noting that just the assumption that p is Cl would not yield

a simple proof; the proof in that case is almost as long as the proof in

the general piecewise ¢t ("permissible'") case.

In the general case we must discard our assumption on rewards 0 € P
that optimal output b(p) is unique (i.e., that for each 9 € &, p(y) - oly)
has a unique maximizer with respect to y 2_0), and this requires some re-
definitions which we give in Section 3. These redefinitions all reduce to
the former ones in case b(@) is unique for all @€ &. In Sections 4 and 5
we prove that p* is the unique efficient reward when P is the largest set
considered, the permissible rewards, and & is the quadratic disutilities.
This is done by proving the result, in Section L4, for an artificially
contrived special case, then, in Section 5, reducing the general case to
the one in Section L.

All the cases discussed in Sections 1-5 assume ¢ is the quadratic
disutilities, ¢ = {@a: o > 0}. Section 6 is devoted to seeing how much
we can weaken this assumption on &. It is easily proved (6.1) that
o¥ remains undominated as long as ¢ contains {Cﬁx: a > 0} as a
subset. But p¥ will not remain the unigue efficient reward function if
we enlarge ¢ arbitrarily. We show this by an example (6.3). We then show

(6.7) that p* is the unique efficient reward if & D { ¢ ; a > 0} and each

t

positive

¢ in ¢ satisfies the following conditions: ¢ '(0) O and @, @', o

on the interval (0,») and 9" > 0 on (0,®) (primes denote derivatives).



In section 7 we study four cases, in each of which p* is dominated
by another permissible reward function. The first two cases result
from bounding (above or below) the values of o which may appear in the
worker's disutility term ¢, . In the third case we replace @a(y) = ay2
by the function cpg(y) = ayB for some B >1, and in the fourth case
we replace the direct utility U(r,z) = r - ¢(z) by UY(r,z) = v’ - y(z)
for some vy , 0< v 1. Although o* is dominated in each case, it turns
out that, in the first three cases, if the landlord has somewhat less
information available then the results of sections 5 and 6 apply and p*
is the unique (among linear rewards) efficient reward. In the fourth

case the linear reward given by o(y) = y/b for y 2 0 is the unique

(among linear rewards) efficient reward function.



1.8 Which rewards p can the landlord choose?

Empirically, we often observe (possibly with y as value added) that
P is either the linear functions {pk: k > 0} (in sharecropping, for example)

or the piecewise affine functions (in income tax schedules, for example).+

We will be more tolerant and define the most general class, of "permissible"
reward functions, to be the piecewise C1 functions, 1.e., those having a

continuous derivative except on a closed discrete set--see Figure 1(b).

Before defining the permissibie reward functions we review some

+
standard notation. For any real function f, we write f(x ) = lim f£(t),
trxt

and f(x ) = 1lim f(t). Also, f;(x) = 1im , and similarly for

tx~ trxt

-+
fi(x). Thus fl(x), the right derivative of x, may nct =g <l f'(x ), the right
limit of ordinary deriwvauives of x. Clearly. { is continuous at x iff f(x )

and f(x+) exist and equal f(x). We say f has a jump discontinuity at x if £(x7)

and f(x+) both exist and are unequal. A function £ of a real variable is said

to be nonincreasing if x <y iaplies f(x) 2 f(y), nondecreasing if x <y implies

flx) f_f(g). W+ denotes the set. of nonnegative real- We cay a function f
. . . . +
defined on E+ is Cl at zero if fl exists at 0 and equals f£'(0 ).

With this notation and terminoclogy we can define "permissible"

rigorously:

To explain our terminology "piecewise affine," we note that an affine

function is one of the form ply) = ky + & for constants k and 2; an affine
function is linear when & = 0. We say a function p is piecewise affine if
it is affine on each one of a countable set of intervals and these intervals
cover the real line except for a closed discrete set of points. A closed
discrete set 1s one having a finite number of points in any, finite interval.
Thus the set of integers is closed discrete while the set {H: n = 1,2,...}

is not, whether or not zero is added to it. (See Figure 1(a). where points
in the discrete closed set are marked a, b, c.)



(a)

Figure 1

1-7a
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1.9 Definition. The function p(y): B, > B, is permissible if and only if:

(a) 0 < ply) <y for all y > 0.

(b) p(y) is piecewise Cl, i.e., it is continuously differentiable
except on a closed discrete set X. Furthermore, 0 & X.

(c) The discontinuities (if any) of p are jump discontinuities.

(d) If p is discontinuous at y € X, then p(y) = max{o(y+),p(y—)}.

Part (a) of this definition is a natural assumption to make about
reward functions which the landlord can choose, namely, that he will never reward
the worker with more than is produced and that the rewards are always nonnegative.
With a more careful analysis we might be able to omit the condition p(y) < y:
if we consider a reward functicn p such that ﬁ(yo) > ¥, for some y,. it
is reasonable to expect that the landlord could find another permissible reward

function B with B(YO) > S(yﬁ) > yO,such that each worker produced the

same amount under S as 5, yet 5 would cost the landlord potentially less
in rewards. Concerning the hypothesis p(y)'i 0, if we allowed p(y) to be
negative, then the landlord cculd "enslave' workers, for example with
the schedule p(y) = -1 for all y., in which case the worker would always
have to pay the landlord all of his output plus one unit of the good.

Part (c) of this definition and the assumption O € X have been added
to simplify the analysis--they are probably not essential.

Bewr (d) of the definition means trat at a discontinuit; the worke»
gets Jhe more advantageous of the two limiting values p(y+), oly ). As is proved
in the following proposition, part (d) of the definition implies that if dis-
utilities are quadratic, then u(y) has a maximum for any permissible p, i.e.,
that every worker, indexed by some «, has an optimal output b(wa)(= maximizer

of u)., It is easy to show that without part (d) such a maximum might not

exist, in which case it would not be clear how to define optimum, profit, etc.
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1.10  Proposition (Existence of optimizing outputs). If p is permissible

and the disutilities are quadratic, then for every O > 0 there is at least

one point b(@a) > 0 such that u(b(wa)) = sup {uly): y > 0}, i.e., such that

u attains its global maximum at b(mu).

Proof. Since p(y) < y by part (a) of Definition 1.9, we know that
2
u(y) = oly) - o, (y) <y -oy” =y(1 - ay).

This implies that u(y) < 0 for y i.i’ Since part (a) with y = 0 implies
u{0) = 0, we conclude that it suffices to prove the existence of some

b(qu)e [O,éﬂ such that u(b(q}))=sup {uly): vy € [O,%]}. But part (da) implies
that p is upper semicontinuous, so u is upper semicontinuous, and any

. . . . 1
upper semicontinuous function on a compact interval such as [Oqa Jattains its

maximum., Q.E.D.

1.11 Criteria for choosing a reward functicn

It will be helpful to view our model as a game, where p (the landlord's
strategy) must be chosen from P, ) (the worker's strategy) must be chosen
from ¢, m(p,p) is the payoff to the landlord, and u(b(p,p)) the worker's payoff.
In the language of game theory, Theorem 1.5 says P* is a dominant strategy

for the landlord when P = {pk: k > 0} and 9 = {¢a: o > 0}.

1.12 Definition. Given sets P and & and a (payoff) function m: Pxd - R,

and p,po € P, we say pO dominates p over & for the function T if.ﬂ(po,@) > ﬂ(p,¢)

for allg € ¢ and strict inequality holds for some ¢ € ¢. We say po is

‘dominant (with respect to &, P and n) if for every p € P, po dominates p over

¢ for m, and we say po is undominated (w,r,t.®,P and ) if no p € P dominates

po over ¢.

In the case of linear rewards p,_ and quadratic disutilities ¢, Ve (1.5)

found a dominant reward function p* which "maximized profit," but in the
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more general cases we will consider there will not exist a deminant reward
function for the payoff function m. To see the problem more clearly, refer
to Figure 2 where we have graphed ﬂ(p,wa) as a function of g%-for different
1 2) 2

3) that Tr(pk,cpa) = —(k - k7), and k - k

functicns p. Recall from (1.3 o
1
2

attains its maximum at k = = , so the graph of ﬂ(p*,qu) dominates (is above)
. 1

that of W(pk,¢u) for k # 5, for all a > 0. But other rewards p lead to
graphs of ﬂ(p,¢a) such as those marked po, pOO in the graph. In each of
these cases the reward function dominates p¥* for extreme values of g&

. s 0 . 1. 00 .
(specifically, p dominates p¥* when Bg 18 near 0 and p dominates p¥

1 0 00 . .
when ga-tends to +®) but each of P and p is dominated by p for other
values of gi.

o

Although we cannot expect p¥ to be dominant in general, we should at
least expect it to be undominated, i.e., there should not exist p € P such
that ﬂ(p’¢a)‘z ﬂ(p*,¢a) for all 0. This follows from our results.

. . T . .
One criterion we could ask p* to meet in a more general setting is

that it maximize the infimum of gains
(1.13) inf {m(p, ): ¢ & @}.

Unfortunately, this will yield no worthwhile result, since the infimum in

]

-f-
(1.13) is always zero for the p's and ®'s we will consider. = This problem
is not unfamiliar in game theory and statistics, and one response to it
(Savage, 1954, p.163) has been to use "regret" instead of "payoff.'" The

regret is usually computed by finding the best payoff assuming complete

+Another criterion, maximization of expected profit with respect to a probabil-
ity distribution which is assumed given, has been used by others such as
Stiglitz and Mirlees.

1

This is because as o - ©, the maximum of u(y) = ply) - ay2 occurs at points

b(epy) converging to zero and then m = blg ) - p(b(¢a)) converges to zero.

o
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Aﬂ(p,cpa)
00
o p¥
1
P> kK #3
0
0
> 1
0 8a

Graphs of ﬂ(p,@a) as a function of gé, for various p's.

_Figure 2
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information and subtracting the payoff from it. We use the regret approach
in this paper. However, we will use division instead of subtraction
because of the multiplicative relationships between gquantities in our
model. Inthis form, regret can be interpreted as a measure of efficiency
of a policy. We acknowledge that the regret principle does have certain
disadvantages (see, for example, Chernoff, 1954).

In order to compute our version of regret, we define the "best payoff'

assuming complete information" by:

ﬁp(m) = sup {m(p,¢): p € P} for 9 € ¢.

1

It follows from Theorem 1.5 that in the case P = {p_: k > 0}, ﬁp&pu) = 5

k
for a > 0. 1In all other cases we consider, ﬁ (@ ) = —l-for all o > 0

P'Ya Lo
(see 2.2). Thus a landlord who knows ¢ can do twice as well (in fact,
appropriate virtually the "total surplus—-see the proof of Lemma 2.2)
when not confined to linear reward functions. On the other hand, it will
be seen below that in terms of our efficiency (regret) criterion the landlord
derives no advantage from being permitted to use nonlinear reward functions

when he is ignorant of ¢. Notice that T/T measures the "efficiency" of

the reward system.

1.14 Definition. A reward function po is efficient with respect to P and

®if po € P and po maximizes

inf {TT(OaCP)/"I?fP(‘(P)Z g€ o}
among all p € P.

As mentioned above, we will show that in several cases p¥ is the unique

efficient reward in P. In turn, this uniqueness implies that p¥ is undominated;
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in fact it implies that p* is undominated for both payoff functions T and

m/%. To see this for /T, suppose on the contrary that p dominates p*, i.e.,
(1.15)  7(p,o)/T(q) > m(p*,9)/T(9) for all @€ o.
Then, certainly

inf {m(p, ) /Tlp): @ € 0} > inf {n(p*,9)/T@): @€ o}

so p¥* could not be the unique efficient reward. To see that p¥ is undominated
for m, note that the truth of (1, 15)remains unchanged if we multiply through

by ﬁ(¢), which is positive for all ¢ we consider.



2. A SOMEWHAT SPECIAL CASE

Although it is our goal to prove our claim that p* (defined by
p*¥(y) = y/2 for y > 0) is the unique efficient reward, in as general a
setting as possible, we feel that it will be helpful to present here a some-
what special (but broader than linear) case. The proof in this special case is
rather simple, but the general proof (see Section U4) parallels it quite
closely, thus we feel that an understanding of this special case will greatly
facilitate following the rather lengthy proof in the general case. None of

the results from this section except Lemma 2.2 are used in subsequent sections.

2.1 Theorem

Suppose the set ¢ of disutilities is that of the guadratics,

o = {p,: a > 0}

2 . .
where @a(y) =ay fory > 0, and P is the set of reward functions P satisfying

2.1.1 ply) is a Cl function for y > 0
2.1.2 p(0) =0
2.1.3 Given an amount of production y > 0, there is an o > 0 such
that ¥y maximizes u(y) = p(y) —@aty)with respect to y > O.
2.1.L For every o > O there is a unique maximizer]ﬂqh) of uly) = ply) - @a(y)

with respect to y > 0, and b(¢u) > 0 for o > 0.

Then p¥ is the unique efficient reward function with respect to P and ¢.

Before proving 2.1 we will compute ﬁP(¢a). This computation will be

used again in a later section.



2.2 Lemma. For any set P of rewards such that p(0) > O for all p € P,

-

% (g,) <

p @

=

o

for all o > 0. If P is defined by 2.1.1-2.1.k4, then ﬁP(mu) = H%

Proof. First, we claimthat if p(0) > 0 and if b = b&pu) is an optimal
output, i.e., b maximizes uly) = p(y) - @a(y) with respect to y > 0, then
the landlord's ggin 1is no greater than b - ab2 (a term we might call the

"total surplus"). This is because

b - abs = [b - o(b)] + [p(b) - ob"]

and the first bracketed term is the landlord's gain while the second is the
worker's utility. Utility at b must be nonnegative since u(b} > u(0) by

>
the assumption of utility maximization and u(0) = p(0) - al~ > 0. Non-

negativity of utility implies that b - ab2 >b - p(b), as claimed.

~
Simple calculus shows that the maximum of b - ab” occurs at b = 1/2a

and is 1/bka. Thus we conclude that if each p € P satisfies p(0) > O, then

o A
”P(wa) S Lo

Now suppose P is defined by 2,1.1~2.1.4. Then we claim that given

@ >0 we can, by an appropriate choice of p € F, get the worker with dis-

utility @a to produce near ;% and the gain to be arbitrariiy close to
—
1 1.2 1 o A ! o .
Ta a(§&) = I+ This will prove ﬂ?(¢a) = Lo Theg we choose is
illustrated in Figure 3 below: p itself ir 3(z) and its derivative p'

, 2
in 3(b). The function p is, for some € > 0, equal to ay + €y on the

(1 - ¢)°
] and to y - g on the interval [

20,

1l - ¢
2o

),

interval [O,

Recalling that



A A
(y) = ay® Hy) = 2
P \Y) = oy Cpu(y Oty\
p(y)—>
T ) > T T -
1-e 1 y -& 1
20, 20 20, 20,
(a) (b)

Figure 3

2-2a
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one can easily see from Figure 3(b) that the maximum of p(y) - ay2 occurs

at b = Eéu The gain for this b is

b -p(b)=b - (b -

(1 - 8)2) _ (-

Lo
) 1 . .

and as € - v tiniz converges to Ea; All that rewains i. to show that the p

defined above and pictured in Pigure 3 satisfies conditions 2.1.1-2.1.kL.

Conditions 2.1.1-2.1.2 are clear, and using graphs like those in Figure 3

one easily checks that conditions 2,1.3-2.1.4 are satisfied (but note that

the fixed o which is used to define p here is different than the variable

o appearing in the conditions 2.1.3,4).

Proof ¢ Thecrem 2 1. TFor p¥ to be tie unique efficient » ward means,

in this case, that it is the only reward which maximizes

inf {ﬁ(p,@&)/%(¢a): o > 0}. Thus we must prove that if p € P and p satisfies

(0) inf {ﬂ(p,cpu)/ﬁ(cpa): o > 0} > inf {ﬂ(p*,cpa)/ﬁ(cpa): a > 0},

then p = p¥. By 1. and the previous lemma, (0) is equivalent to:
inf {kam(p,9 ): a > 0} i% .

Since W(D,¢a) = b(@u) - p(b(@a)), this is in turn equivalent to:

(1) halo(e,) - o(b@ ))] > —é— for all a > 0.

Thus the proof will be completed if we can show that p € P and (1) imply
p = p¥.

. - 2 . . 1

Since b(¢q) maximizes p(y) - ay” with respect to y > 0 and p is C7,

the first-order conditions hold:
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o' (bla)) = 20b(a) for all o > O.

(The equality holds because b(a) > 0 by assumption 2.1.4, so b(a) is not a

corner solution.) We substitute 2a = p'(b(a))/bla) in (1) to get

%.i p'(bla))(1 - ola) for all a > 0.

By hypothesis 2.1.3 each y > 0 is equal to b(@u) for some o > 0, so we conclude

(2) <pe'y)1 - QLXJJ for all y > O.

Take the limit as y = 0 in (2), and use our assumption that p(0) = 0, to get:

Since p' is continuous, and never zero by (2), (3) implies
(k) p'(y) >0 for y > 0.
Next, we claim

(5) p'(y) > 9§Xl- for y > 0.

The inequality (5) says marginal reward is never below average reward. It
would follow from standard arguments (as would the rest of this proof) if
we had assumed convexity of p. To prove (5) we suppose, seeking a contra-

diction, that for some y > 0, p'(y) < p{y)/y. Apply this to (2) to get

o - 28y <o - o]
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which is impossible by Lemma 1. L4 . Next, we claim that
(6) %&Zl is nondecreasing.

This is because, by (5),

4 olry o Loy - ey s o,

dy ¥y N Y
By (2) and (4), p(y)/y is bounded above by 1, so for some finite L,

as y > o,

(m Al

We claim that there do not exist Yo and § > 0 such that

(8) o'(y) > Q§Xl'+ § for y > Yo

If (8) held, then by (7) we could pick ¥, large enough so that

§
(9) o' (y) > L + > for y > g

But this is impossible for it would imply

oly) L [0 1 Y
L = lim =lim; p'(t) dt +lim§ p'(t) at
yo® yre© 20 yoe Yo
Y
_>_O+lim-—J (L+%) dt=L+g
yooo yO
Thus there is no § > 0 satisfying (8). This and (5) imply that for some
sequence {yn} + oo,
p(yn)
(10) lim p’(yn) = lim —— .
n n n

Apply this to (2) and use (7):



Lm0
TS lim p (yn)[l i
n n

Now (3), (6), and (7) imply p(y)/y = %3 as desired.

N[

By Lemma 1.Lk , L =

2.3 Remark. Hypothesis 2.1.3 is quite strong--it is what simplifies the
proof of 2.1. See Figure 4 in Section 3 for an example where it does not
hold, even though p is Cl. The existence and unigueness of optiwmal output
b(wa)-—Q.l.h--would follow if we strengthened 2.1.2 to 0 < p(y) <y for all y:
existence is proved above in 1.10 and uniqueness could be derived from

Lemma 4.1 below.
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3. NONUNIQUENESS OF OPTIMAL OUTPUT b(¢) AND THE REDEFINITIONS IT NECESSITATES

Until Section 6 we will discard our assumption that b(yp) is unique, i.e.,
that for each p € P and ¢ € ¢, p(y) - ¢(y) has a unique maximizer with
respect to y > 0. This will require a more complicated notation. It also
happens that until Section 6 we will only consider cases in which the set
of disutilities & is the quadratics, and this will allow us to simplify our
notation somewhat since we will be able to use b(a) in place of b(wa). In
this section we will discuss the effects of these changes.

Notice that in the two special cases we have considered thus far,
optimal output b(wa) has been unique: in 1.2 , the linear case, this was
because the utility u(y) = ky - ay2 was quadratic so had a unique maximizer,

and in 2.1 it followed from our assumption (2.1.3) that all possible positive

amounts of production were covered--see the remark at the end of Section 2.

Proposition 1.10 shows that if p is permissible, then for each a > O
the utility function uly) = p(y) - @a(y) has at least one maximizer, but
what if it has more than one? In that case the worker would have some leeway
in deciding how much optimally to produce. To explain this situation it will
help to introduce some notation. Fix a permissible 0, and for a > 0 let
B(o) denote the set of global maximizers, with respect to y, of
uly) = ply) - ayg. By definition, B is a correspondence and since there
may be more than one such maximizer for a given a, it is not necessarily
a function. A listing of choices by each worker, of how much to produce,
is a selection b(e) from the correspondence B(+), and we call such a function b(e*)
an "optimal selection" which is compatible with p (see 3.1 below).

To see visually what is happening, consider the reward function in

Figure L4(a), whose derivative is graphed in Figure 4(b). The correspondence
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1 By by b, v b, b b
(a) (v)
B
bl
by
Figure 4 b2 i
b -
L
B(a)
T T >
o o o



B(*) related to p is graphed in Figure L(c). The reward function p(y) is
meant to be equal to y/2 on the intervals (O,bl) and (bh’w) and to dip as

indicated on (bl’bh)' Thus, by 1.3 , B(a) = {gi} on the intervals (0,b,)

1
and (bh’w)’ since the dip in (bl’bh) is not large enough to change the
behavior outside (bl’bh)' To understand these graphs it is helpful to
keep in mind the first-order condition which says that if b maximizes the
function ply) - ayg, then p'(b) = 20b, i.e., the graphs of w = p'(y) and

w = 20y intersect over thepoint y = b. Also, keep in mind that since the

p in the figure is Cl,

v
oly) - uy2 = J (p'(t) - 2at) at.
0

so maximizing p(y) - ay2 is equivalent to maximizing the area between the

graphs of w = p'(y) and w = 20y. Notice that for a = a, as marked in 4(b

but for o = O there

and 4(c), there is a unique maximizer, marked b, 5

and b,.

are two maximizers, namely, b2 3

3-2

Cl

)

When we made assumptions implying that u(y) had a unique maximizer for

each o, B(*) was a function so there was only one optimal selection b(*)

compatible with p. In the more general case the gain 7 = bla) - p(bla)),

which was previously a function of ¢ and o, will be a function of 0 and
b(*) and 0. That is to say the landlord's gain will depend not only on
the o-~value of the worker faced but also on which one of the worker's
utility-maximizing b's he decides to produce. This alters the definition
of the efficiency ratio ﬁ/ﬁ and of an efficient reward function. We now
give these broader definitions, to be used until Section 6, all of which
reduce to the former definitions in case disutilities are quadratic and

uly) = ply) - ay2 has a unique maximizer for each a. Since we will be
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dealing only with permissible reward functions until Section 6 (see 1.9
for the definition of permissible) we will not explicitly refer to the set P of
rewards.

3.1 Definition. The function b(e): R+ - E+ is compatible with the reward

function p if, for every a > 0, b(a) is global maximizer for u(y) =

oly) - ay2 with respect to y, i.e.,
(3.2) (b(a)) - alb(a))? °
p(bla afbla)]” > ply) - ay for all y > 0.

Given a permissible reward function 0 and b(*) compatible with p. we define

the landlord's residual gain or, briefly, gain, from a worker indexed

Fvoo, to be
m=m(p,b(*),a) = bla) - p(bla));

and for a > 0 we define T by

m(o) = sup {m(p,b(*),a): p is permissible, b(*) is compatible

with p, and a > 0}.

We define the efficiency ratio of a permissible reward function p at

t(*) and @ > 0 to be:
e(p,b(*),a) = m(p,b(*),a)/m(a)

(notice we have introduced the new notation e), and we say a permissible

reward function p is efficient if for every b(*) compatible with p we have
inf {e(p,b(+),a): a > 0} > inf {e(p,b(*),a): a > 0}

for every permissible p and b(*) compatible with p. (Of course, this
definition of efficient is with respect to the set & of quadratic dis-

atilities and the set P of permissible rewards.)
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4. FIRST STEP IN THE GENERAL PROOF: REDUCING TO A SIMPLER CASE

In this section we begin the proof that in our most general case, p¥
(defined by p*(y) = y/2 for y > 0) is the unique efficient reward function.
Here and in Section 5 we will prove this theorem for the case where P,
the set of reward functions from which the landlord may choose, is that
of the permissible functions (defined in 1.9--these are essentially the
plecewise Cl functions) and where &, the set of disutility functions which
the landlord may face, is that of the quadratics, ¢ = {¢a: a > 0} where Py
is defined by @a(y) = ay2 for @ > 0. In Section 6 we will extend the
result to larger sets O.

As one would expect from the special case proved in 2.1, the proof
that p* is the unique efficient reward with respect to P and ¢ = ﬁpu: a > 0}
easily reduces to chowing that if p € P and b(*) is ecrmpatible with p, then

the hypothesis

(b.1%) < 2o0(bla) - p(bla))] for all a > 0

=

implies p = p¥, i.e., ply) = y/2 for all y > 0. We shall refer to (L.1%¥)
as the "maximality hypothesis." 1In this section we will establish this
key implication for an artificially constructed set P of reward functions.
Then, in Section 5, we will reduce the general case (P = permissible
rewards) to the one we have considered here.

We begin with a lemma which will also be used in Section 5. Thus

we state and prove it for any permissible reward function.

4,1 Lemma. Suppose p is permissible (cf. 1.9), b(*) is an optimal selec-

tion compatible with p, and the maximality hypothesis is satisfied:

(*) i—'i 2afb(a) - p(b(a))] for all a > 0.



Then (i) b(-) is nonincreasing, (ii) b(») > 0 for all o > 0 ,

: +
({ii) b@) - 0 as & - . (iv) b@) - = as a# -0 .,

(v) (First Order Condition) If o is .gl at b(#) then_

o' (@) =2b@) .

Proof: (i) Llet o < B ; we must prove b(») = b(B) . By compati-~

bility (3.2) applied to b(B) and y =b(x) , then to b(e) and

y = b(8) , we have
p(b®)) - B BB = p(b@) - 8 b)?
(@) - a b@’ 2 p(b(®)) - o b()>
Adding these together and rearranging, we get
B b -ab@’l - Bb® -ab@lzo0 ,
which is of the form
® s’ -as’) -’ -acl)zo
whe\re s =b(@), t =b(B) . The expression (*) can be rewritten as
®-a0 -tHzao

Since B > a , this implies s 2 t , or b(¢) = b(B) , as desired.

(i1) To prove b(¥) > 0 for all & , recall our maximality

hypothesis:
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75 2be - ob@)] .

Since p 1s nonnegative by 1.9a, we must have b(w) > p(b(@)) 2 0 .

(iii) If iii is false then since b 1is nonincreasing there

is an- M > 0 such that b(y) *t M as @ - . By (3.2)for y =0,

(*%) 5(0) < o(b@)) - a[b@)]® for all & .

Take the limit as @ —= ® in (**) and use 1.9c to get

6(0) £ o) - Lime b@)> .
a—m

But the Limit is 4= since b(@) - M > 0 , a contradiction.

+
(iv) We assume, on the contrary, that b(¥) - M<® as o -0 .

By the maximality hypothesis,

1
= < Lim 2x[b() - p(b(®))]
47 Lot

so we must have

+o = Lim [b(@) - p(b@))] =M - o) ,
e—0

which is impossible for M < =
(v) 1f p is ¢l at b(w) then since b(y) 1is a maximum with
respect to r 2 0 of p(r) - drz , and b(y) 1is an interior maximum

by (ii), the first-order conditions must hold, namely o'(b(a)) - 2qb@g)=;o,

This completes the proof of the Lemma.
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The rest of this section is devoted to proving the following.

4.2 Theorem. Suppose 0 is a reward function, b(*) is compatible with P,

and they satisfy:

L.2.1 p is permissible (defined in 1.9);
4.2.2 p is continuous and nondecreasing;
4.2.3 There is a countable set of disjoint intervals [CQ,dQ] with

£ =1,2,... such that ¢, > 0 for all & and if ¥y > 0 and y # b(a)

2

for all o > 0, then y € [Cg’dg] for some . ({(Some or all of
: i > 1

the intervals [cﬂ’dl] may be empty (if cy dl)')

4h.2.4 For every & =1,2,...,
p()=62+k for all y € [c,,d, ]
J Y 2 J 2%
. ] _ + 3 -
where kg is a constant and CQ = b(BQ), dQ = b(BQ)-

If p and b satisfy the maximality hypothesis

(b.1%) < 2afb(a) - p(b(a))]  for all o > O,
then p(y) = y/2 for all y > O.

Before beginning the proof of 4.2 we will try to explain and motivate
the conditions 4.2.2-bL.2. U,

The conditions 4.2.2-L.2.4 are implied by the conditions on p given
in the "sowewhat special case," 2.1. For example, if (by 2.1.3) b(+) is

onto (0,»), then 4.2.3 and L.2.4 are satisfied with { ] empty for all %.

cl,dz

Tt is also possible to show that if b(+) is onto, then p is nondecreasing.
The previcus comment about L4.2.3 and L.2.L4 shows that they generalize

the condition 2.1.3 that b(+) is onte. They do so by imposing a special,

quadratic structure on p, onthe intervals | ] which b(+) may miss.

cz,d2

The purpose of this special structure is best explained by Figure 5.
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Figure 5(b): Graph of b(e).
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Graph of p'.

Figure 5(c):
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rigure 5a is the graph of a reward function p satisfying
conditions 4.2, 5b is a selection b(-) compatible with p , and 5¢ is
a graph of the derivative p' of p . It ié useful to use lemma 4.lv,
the first-order condition, to understand figure 5¢, and that figure in
turn will help clarify 5a and 5b. The first-order condition 4.1lv means
that given o , if p 1is C1 at b() then b(y) is a y-value at
which the graph of w = p'(y) intersects the straight line w = 2oy .
A few such straight lines are drawn in 5c, labeled o, i=1,2,3,4

(i.e. oy marks the line w = 2aiy) and the corresponding o, values

are marked on 5b.

Notice that the y's which b(:) misses, i.e. those y's such
that y # b(w) for all & > 0, are all in the interval [2,4],

The interval [2,4] is where b(.) "jumps" in 5b, at & =& As one

4
can see most easily from figure 5c, maxima of p(y) - a4y2 occur at

every point of the interval [2,4]. Condition 4.2.4 is designed to

ensure that if b "jumps" at B then the value it takes at the jump
could be any point on the interval between the limiting values b(B+),
b(B") -- in our example B = aé .
plain 4.2.3 and 4.2.4 further: We shall see in section 5 that the

One other comment may serve to ex-

conditions 4.2 are typical in that each permissible p is "equivalent"
to one satisfying 4.2. This equivalence is analogous to the fact that
a consumer's utility function with indifference curves given by the

solid line in figure 6a 1is equivalent to a convex one, as in 6b.

By equivalence of the utility functions we mean that if a utility-
maximizing choice from a budget set such as the shaded area is consistent

with 6a, then it is consistent with 6b.
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Now to return to the proof of Theorem L.2. We assume L.2.1-L.2.4

and the maximality hypothesis 4.1%* and separate the proof into five lemmas:

L.,3 Lemma. Ifp iﬁ_cl at b(a), then

==

Proof. By the first-order condition 4.1v, p'(b(a)) = 2ab(a). Now the
Lemma follows if we substitute 2a = p'(b(a))/b(a) into the maximizing

hypothesis L.1%, which is permitted since b(a) > 0 by 4.1ii.

4,% Lenmma. If p is C1 at vy and y > 0 then

@ o'y 2 E§Zl

Proof: First consider the case when y is in the range of b(-), i.e.

y = b(@) for some o . Let us assume, by way of contradition, that
(i1) o' (y) <oM/y .

Then we claim

(1) £ o' ML - o /yl <o’ M - p' M .

The first inequality follows from 4.3, writing y in place of b (&)

4

the second from (ii) and the fact that po'(y) = 2¢b(@) > 0 by &.1ii,

Now (iii) contradicts (take r = p'(y)) ,so we have proved the lemma

if y=bG) .
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We are left with the case y is not in the range of b, i.e., y # b(a)
for all o, in which case (by 4.2.3 and our assumption y > 0), y € [cg,dl]
for some & and p(y) = Bgy2 + K, for some constant K. We denote By » Kos
Cgo and d2 by B, K, ¢, and d for the remainder of the Lemma's proof. If

we substitute 2By for p'(y) and By2 + K for p(y), (i) reduces to
(iv) By > K/y for y € [c,d]. .

Recall that B > O since b(*) is defined only on positive reals, and ¢ > O
by 4.2.3. Thus if K < 0, (iv) follows easily. So suppose K > 0. Then
the left side of (iv), By, is increasing in y while the right side, K/y,

is decreasing. Thus it suffices to prove (iv) for y = c¢. We need to prove

(v) Be > K/c.

Since ¢ > 0 by L.2.3 and p is piecewise Cl by 1.9, there is a sequence {an}

such that p is ol at, b(an) for all n and o v B, b(an) + ¢. Then since

t =
0 (b(an)) 2anb(an), we have
= ' >
2o bla ) = p'(bla_)) > plbla ))/bla )
from the first paragraph of the proof. Taking the limit on n gives

(vi) 2Bc i_ELgl

9
&4

and substituting ple) = 602 + K in (vi) gives (v), as desired.

4.5 Lemma. The function p(y)/y is nondecreasing in y > 0.

Proof. 1If p is ¢t oat y, then by L.k

%g(O(Y)/Y) = (1/yXp'"(y) - oly)/y) > 0,



. . . s s 1 .
so p(y)/y 1is nondecreasing on intervals where it is C . But since
p 1is continuous and is C1 except on a discrete closed set (1.9b)

this implies p(y)/y 1is everywhere nondecreasing.

4.6 Lemma. % < p(y)/y <1 for all y > 0 .

Proof: We have assumed (1.9b) that O is not in X , the discrete
closed set where p 1is not C1 . Thus p is C1 in a one-sided
neighborhood of 0 in 'R+ , and, using the assumption (i.9a with y=0)

that p(0) = 0 , we have

X . ) . 1
(1) Lim 29 - 1im p'(y) =0'(0) .

Since p 1is Cl in such a one-sided neighborhood and b)) - 0 as

@ - by 4,1iii, for & sufficiently large p 1is C1 at b(a)

Thus by 4.3
(ii) % s p'(b@))[l - p(b(@))/b(@)] for o sufficiently large.

We can take the limit as e~ in (ii) and apply (i) to get

250 O - 5" (0]

Now 1.4 implies p'(0) = % . Since by Lemma 4.5 p(y)/y 1is non-

decreasing, this and (i) imply 1/2 < p(y)/y for all vy .
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The other inequality, o(y)/y < 1', is part (1.9a) of the defini-
tion of permissibility. But since we feel that this part of the definition
can be omitted, we will here prove the inequality independently. 1If
p(yo)/y0 > 1 for some Yo then by Lemma 4.5 o(y)/y > 1 for all
y >Yg - Since by 4.1liv b(@) - » as & - 0 we can find “ with
b(ao) > Yy s 8O o(b(ao))> b@yo) . This is impossible because of the

maximizing hypothesis (4.4):

%‘ 29[b(&) - p(b(@))] for all a > O.

4.7 Lemma. o(y) = y/2 for all vy .

Proof: By Lemmas 4.5 and 4.6, p(y)/y converges to some number L as

y—-® ., If L = % then 4.5 and 4.6 imply p(y)/y = % for all vy ,

which is what the theorem claims. So let us prove L = %
We claim there is a sequence {ql,az,...} such that {b(an)} - ®

and p 1is C1 at b@:n) and p'(b(qn)) - L . Let us prove this. 1If

it is false then by 4.4 there is some § > 0 and some y = Yo such
that
1) p'M@)) >L + 8 for all « such that b(y) > Yo and p
is C1 at b(w)
We make Yo larger, if necessary, so that Yo ¢ [cz,dzl for all g .
Next we will show
,(ii) p'(y)2L+8 if y > Yo and p is C1 at y :

If y =b{) then (ii) follows from (i) so we need only prove (ii)
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for y e [cz,dz] for some ¢ . Since p'(y) = ZBLy for y e [cz,d£]>

it suffices to prove
iii) 2 2L+
(iii) Bzcz L )

Since yo é [cz,dz] and p 1is piecewise C1 we can choose a sequence
. 1
o, } Bz , SO b@rn) t s and such that p is C~ at bG?n) for all

n . Then

(iv) 2a b ) = o'(bcrn)) >L+ 8§

and we can take the limit on n 1in (iv) to get
25LCL 2 L+3

Thus (ii) follows from (i).
By 4.2.2, p 1is continuous and since (1.9b) it is differentiable ex-

cept on a discrete closed set, and p(0) = 0 , we have

y
p(¥) =fo o' (t)dt

This and (ii) imply

y : y
L = Lim & _ i L f 0 o' (t)dt + Lim L j o' (t)dt

y
> 0+ Lim = [ @+ 8)dt = Lim Lo 8)(y ~yy) =L+8 ,
o Y o Y 0 .
y Yo y
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a contradiction. Since (ii) yields a contradiction, a sequence
{al,qz,...} such that {b@yn)} - o , with 2anb0gn) = p'(baxn)) - L,
must exist.

We use this sequence {al,qz,...} in the maximizing hypothesis

(b.1%)

, p(b (&n) )
(v) Z < Zan [b (an) -0 (b (an)) ] = 2anb (@n) [1 - —b—(.ﬂ ) ]
n

Since o(y)/y =L as y -, weknow p(b(w ))/b( ) ~ L as

n -, Use this and the fact that 2anb(gn) - L as n - to con-

clude from (v) that

p(b@,))

-375;7-—] =L[1 - L] .

=

< Li -
Lim Zancrn)[l

N—xc

N

By 1.4 we conélude L =

This completes the proof of L.2.



5. PROCF OF MAIN THEOREM

5.1 Theorem. Suppose ® is the set of quadratic disutilities,

¢ = {CPa(y): a > 0}

2
wherecpa(y) =ay fory > 0, and P is the permissible reward functions

(defined in 1.9). Then p* is the unique efficient (as defined in 3.1)

reward function with respect to & and P.

Proof. To prove the theorem we must show that if p is a permissible

reward function, b(+*) is compatible with p, and
(1) inf {e(p*,b*(+),a): a > O}_z inf {e(p,b(*),a): a > O},

where b*(+) is the unique (by 1.3) optimal selecticn compatible with p¥*,

then p = p¥. First we claim that, with P = the permissible rewards,

(i1) %p(qa) = Eé’ for all o > 0.

This was proved in 2.2 for P = rewards satisfying 2.1.1-2.1.4, and to prove
it in case P = permissible rewards one uses the same proof, except that
one needs only prove that the reward function p defined in that proof
and pictured in Figure 3 is permissible, a trivial task since that p is
1
everywhere C .
Combining (ii) with the result from Lemma 1.3 that m(p¥,b*(+),a) = 1/8a,
and the definition (3.1) of efficiency, one sees that (i) is equivalent to

the maximizing hypothesis previously denoted (L.1%):

< 2a[bla) - plbla))] for all a > 0.

=

(5.2)

Thus, tc prove Theorem 5.1 we muzt show that (5.2) implies p = p¥*.
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To complete the proof of 5.1 we will study 0 and b(*), assumed to
satisfy (5.2) for the remainder of this section, and construct a closely
related function O which will also satisfy (5.2) with the same b(+).

Then we will invoke Theorem 4.2 to conclude ¢ = p¥, and this in turn will

imply p = p¥.

5.3 Discontinuities of b(*): Definitions of By > cgs dy -

Since the optimal selection b(+*) is noninereasing (4.1i), it has at
most countably many discontinuities, say, at {BQ: 2 =1,2,...}, and these
must be jump discontinuities. (See Figure 5b, for example.) The set {BQ}
may be finite or even empty, and we cannot assume 81 < 82.... For each £

we define
(5.3.1) ¢y = b(BQ), dy = b(Bi).

For each % which does not correspond to a BR’ let [CQ’dQ] be empty (for
example, Cy T 2, dQ = 1). ‘Then since b is nonincreasing the intervals
[cg’dg] are disjoint. We list for future reference three properties
which follow from these definitions, properties of monotone functions,

and Lemma L4.1.

(5.3.2) cy > 0 for all & (use L4.1ii and b4.1iii to prove this).
(5.3.3) If ¢, < bla) < dy, thena = 8.
(5.3.4) If vy > 0 and y is not in the range of b(*) (i.e., y # b(a)

for all a), then y € [CQ,dQ] for some  (use b.1iii and b4.liv

to prove this).
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5.4 TLemma. For each £ such that [Cg’dQ] is nonempty,

2 2
(5.4%) ple,) - By, =p@) - BldzA and

(5.4%%)  p(e,”) = plc,) and

+
(5.4%k%) p(d,") = p(d,)

Proof: We denote 8 d by- 8, ¢, d respectively for this

L 1 s

proof. Choose sequences Yo 6n with Yo ‘B, ém t B . Since

, C
c =b(e"), d =b(8”) it follows that
b(y) tc and b(6) ¢ d
From the compatibility of b (3.2), applied to b(y,) and b(8 )
1) p(d(5)) - v b6 )1° € p(b(v.)) - ¥ [b(y )]
1) p(b(E ASLICH p(bly A LIC
(1) p(8)) - 5 [b(6)1% = p(b(y)) - 6 [bey )1
P m m m o Yn m Yn ¢
Taking the limit as n - in (i), and as m - » in (ii), we get
1) p(d(8)) - B,[b(8 1% < p(c7) - B
( p o s o o} c

1 p@h - a2 opev ) - BIby 1
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Use the compatibility of b again, for b(ém) and b(yn)
111) p(b(6)) - 6 [b(6 1% = p(e) - 6 ¢
(111) p(d(8 )) - 8_[b(5_ p(e) - &_
(iv) 0@ -y d = o)) -y by )1’
n n n n
Then take limits as m - ® in (1') and (iii) to get:
+ 2 - 2
(i") p(d) -Bd =op(c) - Bc
(111" 0@ - 8a® 2 p(e) - B
In 1.9d4 we assumed p(c ) < o(c) , so (i") and (iii') imply
+ 2 - 2 2 + 2
(v) p(d) -Bd =po(c) -Bc <p(c) -Bc Sp(d) - Bd
Since the expressions o(d+) - de on the extreme left and right of (v)
are equal, all the inequalities in (v) are actually equalities, 1In

particular, equality of the middle expressions in (v) shows p(c) =p(c) ,

which is (5.4%%). Equality of the expressions on the left of (v) is
+ 2 - 2
(vi) p(d') - fd =p(c) -Bec .
Now once we prove 5.4%%%, that p(d+) =p(d) , (vi) will imply 5.4%,

so it remains only to prove p(d+) = p(d) . Take limits as n —- ® in

(ii') and (iv):



1™ p@h - Ba? = p(e) - Be?
(v') p() - Bd® < p(e) - Be

We have assumed p(d+) < p(d) so, as before, all four expressions in

(1i") and (iv') are equal, in particular p(d') = p(d)

5.5 Construction, elementary properties of o

2 : 2
B,y +p0(d) -8,d," if ye [c,,d,]
(5.5.1) o(y) =
p(y) otherwise .

One easily computes that p(dl) = c(dz) for all g . 1In fact we

also have D(CL) = c(cz) for all ¢ . To see this, write (5.4%) as

2
ple,) =B,c,” +p@,) -8,d,

This agrees with the definition of c(cz) . By definition of o ,
g = p outside the intervals [cL,dz] . Summarizing, we have con-

structed ¢ so that

(5.5.2) If y é (cz,dz) for all g then o(y) = o(y)

5.6 Proposition. g(b(¥)) = o(b(®»)) for all & > 0 .,

Remark: This is the '"close relation' mentioned above between p and
g : 1t says that they give the same rewards to workers who behave

according to the optimal selection b(-)



Proof: If b(w) ¢ (cz,dz) for all ¢ we're done by 5.5.2. So

suppose ¢, < b(») < dz . Then & = Ez , SO we must prove

U(b(Bﬂ)) = p(b(Bz)) . Let ém be a sequence with 6m t Bz , SO

b(ém) i d By compatibility (3.2) applied to b(ém) and y = b(BL) ,

P
b(s ) - 6 _[b(5)1° = o(b 5 b3 )12
JCICH 217 2 0B - 8 bBHIT .
Now take the limit as m — « and use p(d£+) = D(dl) from (5.4%%%) to get:

2 2
(1) 0(d,) -8,d" 2 0(b@®,)) - 8,[bB,]

But by compatibility applied to b(Bz) and y = dz , S holds in (i),

so

. 2 2
(i) o(d,) -8,d,° =p(®@®)) -8,bB)I" .

Now notice that by the definition of ¢ , for cl <y <4

2
(111) o(y) - B,y =0() -8, ° .

Finally, put y = b(Bz) in (iii) and apply it to (ii) to get
cb®)) - 8, 5B,)1% = od(8,)) - B [b@, )1
j/ 2 y L [ JA
Now cancel -Bz[b(sz)]2 to complete the proof.

5.7 Proposition: The optimal selection b(-) which is compétible with

o is also compatible with ¢ .
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5.7
Proof. We must prove that for each & > 0 ,
2 2
o(@) - afb@)] 2o0(y) -y for y=0 .
By 5.6 we need only prove
. 2 2
(1) o(b@)) - ab@)]” 20(y) ~ay for y=20

If y ¢ (cl,dl) for all p , then o(y) = p(y) by 5.5.2 and (i)
follows since b(-) 1is compatible with p . So we may assume

€y, <y < dL for some g ., First suppose & S BI . Then since
y < dz and Ber - arz is a nondecreasing function of r ,

2 2 2 2 2 2 2 2
i d - > - - > -
(ii) Bz ‘ ddz B,y ay , or Bld Bzy ddz ay

It follows from the construction of o (5.5.1) that

(119) 8,a° - 8,y° =0@) - o(m .

Combine (ii) and (iii) to get

iv) ola,) - adi > oly) - oy

Q/)

Thus it suffices to prove (i) in case y = dz , which we have already

done. The remaining case, o 2 Bz , is handled similarly, with cz

in place of dl .



5.8 Proposition: o is nondecreasing, -

Proof: Suppose y < z and assume by way of contradiction that

oc(y) >c(z) . These two inequalities imply
2 2
(*) o(y) ~ay >o(z) - az
Now 2z 1is not in the range of b(:) , since if z = b(y) for some
@ then the fact (5.7) that b(w) = z maximizes o(r) - arz with
respect to r would contradict (*). Since 2z 1is not in the range of

b(:) it follows from 5.3.4 that =z ¢ [ck,dk] for some k . On

[ck’dk] , o 1is increasing by construction so o(y) > o(z) and y < z imply

ag(y) > o(ck) and y < ¢ -

Since’ {Bz} is countable we can construct a sequence {Yn} with

k SO

Yo i Bk and Yo # Sz for all £ and n . Then b(Yn) t ¢
p(by))~ p(e, ) = p(ey)

by 5.4%%. Since Yo ¢ 18,} » bCr) € [e,,d,] for all 4 and by 5.5.2,

ab(y)) = P )) = pley) = o(ey)

Thus for sufficiently large n ,

5-8
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y <b(y,)) and o(y) >o(bly)) .

But this is impossible as explained in the first three sentences of

[]

the proof (take =z b(yn)) .

5.9 Proposition: ¢ 1is continuous.

+ -
Proof. Since 0 is nondecreasing, o(y ) and o(y ) exist for all N
. . - +
s0 1t suffices to prove a(y ) = o(y) = oly ). We will prove only

o(y ) = o(y), the other equality being similar. Thus we can assume y > O ,
and since O 1is nondecreasing it suffices to prove oly ) > aly).

Ity e (cg,dz] for some £, then o(y ) = o(y) because of the continuity
of ¢ on (Cgﬁdg]' So we may assume y & (czﬁdﬁl for all £.

Because the intervals (Cgﬁdg] are disjoint and y & (CQ’dQ] for all &,

there is a sequence {yn} with y, > 0 for all u, Y, + v and Yy & (c,,d

L’ 2]

for all n and . Since Y, > 0, it follows from 5.3.k that for each

n there is Bn~ with Vg = b(Bn) . The sequence {Bn} is decreasing
since {yn} is increasing. The sequence {Bn} is bounded by 4.1iii,
so sn | B for some B . To summarize:

B

nt B BBty .

) . 2
Since b(en) maximizes g(r) - enr with respect to r by 5.7,
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() S®B®) - BB’ 2 o) - 8y .
Take the limit on n in (*):
o(y7) - By’ = o(y) - By? , :

so o(y ) zo(y-

5.10 Reviewing the hypotheses of Thecrem 4.2

Recall our plan to apply Theorem 4.2 to 0. At this point we have
proved that 0 satisfies all the hypotheses of Theorem L.2 except permissibil-
ity : We have proved (5.8 and 5.9) that ¢ is continuous and nondecreasing.
and that is hypothesis 4.2.2. Hypotheses L.2.3% and Lk.2.4, properties of
the interwvals [cg,dz], are covered by the definitions and properties listed
in 5.3. The maximality hypothesis 4.1 follows since we have assumed it for
p and ¢ = p at the points b(a) by 5.6. An unnumbered hypothesis, that o
is compatible with b(¢), was shown in 5.7.

Our next goal, then, is to prove that ¢ is permissible, which is
Theorem 5.13. We will see in the proof of 5.13 that the only nontrivial
part is proving that o is C1 wherever p is. That is intuitively reasonable:
0 is got from p by changing p on the intervals {Cﬁ’dﬂ] to be whatever

quadratic function smoothly connects the points (cz,p(c )) and (dz,p(dl)).

L

Thus, if anything, we have "smoothed out" p.
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The technical difficulties arise when the endpoints {cz,dzz L =1,2,...}
which give nonempty intervals, have a cluster point., If we could assume
this set of endpoints was a set of isolated points things would be much
easier, but that is an unjustifiable assumption. Thus we need to prove.
two messy lemmas, which will be used in the proof of Theorem 5.13.

5.11 ILemma: Suppose op is C1 at v >0, p(v) =ao(y) , and

y ¢ (cz,dz] for all 4 . Then o!(y) =p0'(y) . 1f p is C at

y2 0 and y ¢ [cp,dﬂ) for all g , then U;(Y) =o' (y)

Proof: We will prove only the first statement of the lemma; the proof of

the second is similar. Assume p is o oat y > 0, oly) = ply) and y & (CZ’d ]

R
for all L.
Define D(t) = 2&2%_5_3122 . Let e >0 . To prove c'(y) =

p'(y) we must Tind § > 0 such that
(* 0<y-2z<§& implies |D(z) - o' (M| <

Our & will have to satisfy four conditions; after each condition

we indicate why it is satisfied for all sufficiently small & .

(1) 0<y-=-b@ <& implies [D®@) - '] <% : Use
p(b(@)) =co(b(@)) for all o and the fact that p is differentiable

at y .
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(ii) 1If |bG!) -yl <6 and |z -yl < 8 then Ib@) - z| < f: :

Since b is nonincreasing, b(®) - 0 as g -+, and y >0 , we

conclude that if 6 1is small enough then for some 8 > 0 , Ibom) - y| < 8

implies & > B . Also pick & > gg . Then |b(q) - y| < & and

|z - y| < &6 imply |b@) - z| < Ib@) - y| + ly - z| < 28 < fé < %; .
s . ) . 1
(iii) p 1is C in (y - 8,y) : Simnce p 1is C~ except on a

closed discrete set.

(iv) 0<y-2z< 6 implies Ip’(z) - p'(y)| < % : Follows from
(iii).
Having chosen § small enough to satisfy (i-iv) we choose it

(perhaps) smaller, so that
v) y -8 ¢ [Cz,dzl for all g .

This is possible since vy ¢ (cz’dz] for all g and the intervals
[cz,dL] are disjoint.

Now suppose O <y -2z < 8. If z =b(w) for some &« we are
done by (i), so we can assume z e [ck’dk] for some k ., Denote .
by ¢, dk by d, Bk by B, for the rest of this proof. By (v),

y-8<ec, and d <y since y ¢ (c,d] is a hypothesis. Thus

[c,d] 1is contained in (y - §,y) . It remains to prove that

(*) sup{|D(z) - p'(M]|: cszsd}<e .



5-13

Since ¢ 1is continuous, D 1is continuous. Thus the supremum in (%)

is attained at some point in [e,d] , say at zy -

Case I: z0 =¢ . Since y - 86 < ¢ we can choose a sequence

{b@wn)} with y - 6 < bﬂwﬁ) < ¢ for all n and boun) - ¢ . By (1),
|D(bﬂqn)) - p'(y)l < % so taking the limit on n we see
[D(e) - o' (v)] s%< e , and (*) holds.

Case II: z, =d . Since d <y we can find a sequence {b@ym)}

0
with d < bG&m) <y and bOxm) -+ d . Now argue as in Case I.

Case IIT: zo € (c,d) . Since ¢ 1is equal to the differentiable
function (Bz2 + constant) for z ¢ (¢,d) and |D(zo) - p'(y)l >0,

|p(z) - p'(y)| is differentiable at and since it has a local

Z0 N
maximum at z its derivative at z, is 0 . This implies D'(zo) =0 .
A computation using the definition of D and o(z) = 522 + constant
implies D(zo) = ZBz0 . (More simpiy, one can argue that at a critical
pbint z, of the difference‘quotient D , the line through (yv,0(y))

and (zo,c(zo)) must be tangent to ¢ at z, and therefore has slope =

0
c'(zo) = 2520 and this slope is clearly also equal to D(zy)) . So it

remains to prove IZBzo - p'(y)l < & ., By the triangle inequality,
v1) |28z, - o' (| = |28z, - 28b8)| + [28b(8) - o' ()]

Recall that b(B) e [c,d] , so [c,d] & (y - 8,y) implies

Ib(S) - y| < § . We also have |z0 - yl < 6 , so (ii) implies

(vi1) [28z; - 28b®)| = 28|z, - b®) | < 28(zp) =3



By (iii) gbove, p is C' at b(8) , so by &.1v, p' (b(8)) = 28b(8)

Hence, using (iv) and the fact that 0 <y - b(B) < § we get
wit) |285®) - o' = [0'®BE) - o' <5 -
Combining (vi), (vii) and (viii) yields

282, - o' ()] <5+ 5 -
This completes the proof of the lemma.

5.12 lemma. Suppose p is C1 at y >0 and y ¢ (c[,dl) for all

£ . Then ¢ 1is differentiable at y and o'(y) =p'(y)

Proof: If y ¢ [cz,dz] for all 4 then lemma 5.11 implies

GL(Y) =c'(y) =p'(y) , so o'(y) exists and equals po'(y) . Thus

we can restrict ourselves to the cases y = cz and y =d We will

z .

consider only the case y =c, . From lemma 5.11 we know c:(cz)

2
exists and equals p'(cl) , So we need only prove c;(cz) = p'(cz)
Let ﬁyn} be a sequence with v | Bz » then by ) t ¢, since

+
cz = b(az) . Since p 1is piecewise C1 we can assume 0 1is C1 at
b(qn) for all n , then by the first order condition 4.1lv,

o' (b)) = 2 b))

5-14
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Now take the limit on n , and use the fact that p is C1 at

y=c, to get

o'(cz) = ZBch .

But by the definition of o , c;(cz) = ZBocz , so we conclude

p'(c!) = ci(cz) , as desired.

5.13 Theorem. The function ¢ is permissible.

Proof: Parts (c¢) and (d) of the definition (1.9) of permissibility
are vacuous for o since ¢ 1is continuous.

Part (a) of permissibility, that O < g(y) = y, follows from
the corresponding properties for p and the construction of ¢ in
5.5: To proﬁe g(y) <y note that by 5.5.2 o =p outside the inter-
vals (cz,dz) , and p(y) <y for all y,6 so @(y) <y outside all the
intervals (c{'dL), and in (cz,dz) the function o(y) 1is an upwardly
convex quadratic by 5.5.1. To prove O < g(y) for all y , recall that
by 5.3.2 cL >0 for all ¢ so by 5.5.2 o(0) =p(0) =0, and ¢ is
nondecreasing.

All that remains is to prove that ¢ 1is continuously differentiable
except on a discrete closed set X , and O ¢ X . Since p has this
1

property, it suffices to prove: If p 1is C1 at y then ¢ 1is C

at y .



If p is C1 at y then certainly o is differentiable at y .

This is proved in lemma 5.11 for y =0 , in lemma 5,12 for y > O
and y ¢ (cl’dl) for all ¢ , and on (cz,dz) o 1is equal to a differen-
tiable (even quadratic) function. Since p 1is piecewise C1 it will
- suffice to prove that if o 1is C1 at y then c'(y+) and o¢'(y)
are both defined and equal ¢'(y) . The function ¢ is clearly C1
on (cl,dt) so we can assume y ¢ (cz,dz) for all g .

We will prove .c'(y-) exists and equals c¢'(y) , the proof for
c'(y+) being similar.

If y = dl for some ¢ then, since by construction ¢ is quadratic
on (cz,dzl , d'(yﬁ) =g'(y) . So we can assume y ¢ (cz,dL] for all
£ . By lemma 5.11 and the differentiability of o- at y , o'(y) =
o'y .

Let € >0 . We must find & > 0 such that

(i) if O <y -2 < & then ]c'(z) - p'(y)l <€
(This part of the proof is similar to lemma 5.11.) Since p is C
at y we can find § > 0 so that

(ii) 0 <y -2z < § inmplies |p'(z) - p'(y)l <E® .,
We can also choose & small enough that p 1is C1 in (y - §8,y).
Suppose z € (y - 8,y) . If z ¢ (cl,dz) for all 4 then by lemma
5.12 ¢'(z) = p'(z) so (i) follows from (ii). The only case remaining
15 z e (cz,di) for some ¢ . Then o'(W) = ZBzw for w ¢ [cz,dz]
so |

(1i1) c'(cz) <o'(2) < c'(d!) .

5-16
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Since both c'(cz) and c'(dz) are within § of p'(y) , (iii)
implies ¢'(z) is also. This completes the proof of the theorem that

o 1is permissible.

5.14 End of Proof of Main Theorem 5.1: It remains conly to prove that

o(y) =y/2 for y2 0 . We have just completed showing that the re-
ward function o which we constructed from p satisfies the hypotheses
of Theorem 4.2--see the discussion in 5.10 above. Now
we apply that Theorem to o and conclude that o(y) =y/2 for
all y2 0. Since b(-) is compatible with o , by 1.3 b(x) =
1/4e for all o > 0 , so every positive number y is in the range of
b(-) . By 5.6 , 0 =p on the range of b(.) , so we conclude p(y) =

1

y/2 for y > 0 . We have assumed (1.9) that o 1is C° at O , thus

p(y) =y/2 for y=2 0 . This completes the proof of Theorem 5.1.



6. MORE GENERAL DISUTILITIES

In this and the next section we revert to the less cumbersome notation
of Section 1, making the assumption that, for each p € P and ¢ € ¢, the
indirect utility uly) = p(y) - @(y) has a unique global maximizer b(p,P)
with respect to y > 0. Thus, for example, we will use W(p,¢a) in place
of the m(p,b(*),a) of Sections 3-5. This assumption, uniqueness of optimal
output, is made only to simplify proofs. It is not essential in the results

of Sections 6 and 7. We borrow one notation from Section 3 which will also

simplify matters: the efficiency ratio is denoted eP(p,m):

(6-1) eP(Oa(p) =

We may drop the P and write e(p,p) if P is clear from the context.

In this section we will always assume of the set of disutilities &
that each ¢ € ¢ satisfies@ (0) = 0. This can be done without loss of
generality since it merely changes the scale of the utility function u.

The next proposition relies mainly on an "inheritance" property of

undominatedness. Undominsated is defined in Section 1.

6.1 Proposition. Let P = the permissible (see 1.9) rewards and assume

0] gontains the set of guadratics {wu: o > 0}. Then p*¥ is undominated

(see 1.12) with respect to ¢, P, and the paycff function €p-

Proof. Suppose, on the contrary, that p dominates p¥ for some

permissible p. Then, since ¢ contains {@u: a > 0}, we have in particular
e(p*.p, ) < e(o,cpa) for all a > O,

which implies



int {e(p¥*,9 ): a > 0} < inf {e(p,? ): o > o}.

This contradicts Theorem 5.1 which says p¥ is the unique efficient reward.
The same trick does not apply to the efficiency property, however.

There the situation is much worse.

6.2 Lemma. If the disutility ¢ satisfies @' > 0 on (0,*) and y maximizes

the

vy - @(y) with respect to y > 0, then ﬁP(¢) =§ - ©F), where P

permissible rewards.

Proof: This is a slight generalization of lemma 2.2, so we will
only outline the proof. We could show n<b - o(b) for some
real number b , as in the first paragraph of the proof of 2.2,
Since 37 is a maximizer of y - ¢(y) , we have b - o(b) S;r-cp(;l)- .
We conclude ; < ; - w(&) . To prove ; - w(;) ST we construct
a function similar to the one pictured in the proof éf 2,2, using

the fact that ¢' 20 on (0,®) .

6.3 Proposition. There is a set § of infinitely differen-

tiable disutility functions containing {¢(x: o > 0} , such that

p* is not the unique efficient reward function with respect to this

¢ and P = the permissible rewards. In fact, for this ¢, if p* is

efficient, then so is every permissible reward function p.

Proof: We will begin by exhibiting some functions § which,
when smoothed out so as to be infinitely differentiable and then

added to {tpa: o >0}, give a class & such that



(1) inf{e(p¥*,0): @ € 8} =0 .

Then we will show that this implies the propositiom.

Consider functions & as in Figure T

The continuous function & is zero from O to b , has
constant slope between one half and one from b to § , and
has constant slope greater than one from § on, It is easily
seen that b is the maximizer with respect to y of the utility

u(y) = p*(y) - €(y) and y of y - &(y) . By lemma 6.2,

e(p*’g) = ﬁ/;f = .]‘3._:_9.*_(21

y - 8 °

Now consider changing £ by moving § to the right while
keeping the slope between b and ;r unchanged, and keeping b
fixed. Clearly § - §(§) increases without bound, while

b - p*(b) remains constant, so for such E&'s e(p*,§) goes to

zero. Let (& : n=1,2,...} be a sequence of such £'s ,with

Gi) Lim e(p*,gn) =0 .,
-
We can smooth each of’the §n's slightly at their kinks - see
the dotted lines in the figure - to make them infinitely dif-
ferentiable while retaining the property (ii). Now let &
denote the union of {§n: n=1,2,...}. and {Cpa: o >0} . Since

e(p*,9 )= % for all o > 0 by 1.3 and 2.2, we have proved (i), that

the infimum of efficiency ratios is 0.
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Now suppose p* 1is efficient for this ¢ . Then any other

reward function p satisfies
(1ii) inf{e(p,p): © € §} < 0

and the reward function p is efficient if equality holds in (iii).
But for every p and every o , e(p,p) =2 0 . (To prove this note
that we have assumed ¢(0) = 0 for every disutility ¢ , thus
¥ being the maximizer of y - p(y) implies m =§-m(;r) 20 by 6.2,
and ®m =b - p(b) 2 0 by 1l.9a.) Since e(p,p) is always non-
negative, equality always holds in (iii), so every p 1is efficient,
as was claimed. Q.E.D.
Although the unique efficiency property of o* is quite
sensitive to the size of § (see Secticn T), there are some sets ¢ for which
we can prove that p* remains the unique efficient reward

function.

6.4 Proposition. If 5 contains f{o : o > 0}, P = permissible rewards., and
.e(p*,9) =2 % for all ¢ € § ,

then p* 1is the unique permissible efficient reward function

with respect to $ and P.
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Proof. If e(p*,p) = % for all ¢ € & , then since e(p*,p) = %

for o > O

infl{e(p*,p): @ € 8} = %

Now suppose 0 1is permissible and efficient, so in particular

infle(p,®): @ € 8} 2 infle(p*,®): © e 8} =% .

Since § = {¢(x: @ > 0} , this implies

N[

inf{e(p,cpa): a > 0} > 5 = inf {e(p¥,q,) 1o > O}.

This says p is efficient with respect to {o ol @ o} .
Now Theorem 5.1 implies o0 = p* . Thus p* is the unique

- efficient reward function with respect to & .

6.5 Which disutilities satisfy e (p*,0) 2 %, P = permissible rewards?

The examples § in the proof of proposition 6.3 can be altered

slightly to show that even if we assumed that ¢'(0) = 0 and that
A o' and ¢'" are all positive on (0,®) , it would not follow that

eP(o*,¢) 2 % . But if we assume in addition that the third derivative @'"

is nonnegative then we obtain e(p*,p) =2 # ., We outline a proof of

<
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this last assertion using a picture (Figure 8) of the graphs of the
derivatives of the functions ¢ and p¥. Note that the assumption "' 2 0

implies ¢'is convex upwards.

AThe quadra@ic function a(y) = ayz is chosen so that its
(linear) derivative a' intersects p*' at the same point as
does ¢' . (This point is the optimal output b for our ¢
and for the disutility a , by.the appropriate first-order con-
ditions.) Let §1,§2 denote the § values (see 6.2) for ¢ aund a,
zespectively. Tae docted 1lae in Figuve $ i3 meant to be tangeuc
to @' at the point (b,%) . Since e(p*,a) =% by 1.3 and 2.2, we need

only prove e(p*,a) < e(p*,p) in order to show e(p*,qp > 5.

By 6.2,
b-p*(b) Ig(l'p*'(t))dt
e(p*’m) = " - = §
IO ey ae
0
and

b
- (1-p*'(t))dt
e(p*,a) = ‘b () - IQ

s y
¥pa(yy) JoZa-a'(e))ae

Since the numerators are equal in these expressions, we need only

show

A ~

le(l-w'(t))dt < IZZ(I-a'(t))dt 3
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Noticing the areas marked A and B in Figure 8, we see

~ ~

Jyoz(l-a'(t))dt - le(l—cp'(t))dt =A-B,

so we need only show A 2 B , But this is clear since the two
triangles, one formed by a' and the dotted line and w = 1 , the
other by a' and the dotted line and w = 0 , are of equal area
and one contains B , the other is contained in A . We have

sketched a proof of:

6.6 Proposition: If ¢ is a disutility function satisfying

9'(0) = 0 and @', ¢" positive on (0,®) and ©'" nonnegative

on (0,®) then ep(p*,m) 2 % , where P = permissible rewards.

Combining this with 6.4 we obtain:

6.7 Theorem. If 3 is a set of disutilities containing

e o> 0} and each @ € § satisfies ®©'(0) =0 and ©',

@'" are positive on the interval (0,®) and ©'"2>2 0 on

(0,®) , then p* is the unique permissible efficient

reward function with respect to & and P = permissible rewards.




7. FOUR CASES IN WHICH p* IS DOMINATED

In the first two cases, we maintain the assumptions implying that
the indirect utility function is given by u(y) = p(y) - uy2, but addi-
tional information is assumed to be available to the landlord concerning
the possible values of a, namely, that they are bounded below (in T7.1)
or above (in T7.2) by a known, positive value §. In both cases, p¥ is
dominated by a permissible reward function (but, by the first sentence of
1.5, p¥ is not dominated by a linear reward). Of course, without this
additional information p* is undominated and even efficient, by Theorem 5.1

and the remark following 1.1k.

7.1 Proposition. If § > 0 and ¢ is given by

P = f?u: § < o < »}f,

and P is the permissible reward functions, then the reward function p

defined by

= L

2
8

dominates (see 1.12)p* for the payoff function T and for the payoff function ep-

Proof. The Proposition will follow if we can prove:

(1) m(p*,p,) < m(p,¢,) for § < a < =, and

(11) m(o*,9)/T (@ ) < m(p,@)/TL(® ) for § < a < =,
Since %P(¢a) > 0 for all o > O (see (ii) in the proof of Theorem 5.1),
we need only prove (i).

To compute ﬂ(p,@a) we first compute the maximal output b(p,¢a). Since
tﬂp,¢u) is the maximizer of the quadratic equation p(y) —CPu(y), one easily

computes



_ 1
b(p’@a) " (ba - 268)

From this, 1t follows that

Lo, - 36

(iii) ﬂ(p,@a) m P
2(ho - 2

blp.p,) - o(b(p,¢&>) =

Recall from Lemma 1.3 that

1
: * A
(iv) m(p ,q&) 8, for all a > 0.

Now (i) follows from (iii) and (iv) since

ha - 38 1

2.~-1
- 2L = (Balba - 28)2) M [48(a - 8)]
2(ka - 28)% O

is positive for § < a.
The proof of the following proposition is tedious but straightforward,

so we omit it.

7.2 Proposition. If ® is given by

<I>={c1>OL(;>r):o<oc<1é—(S

and P is_the permissible reward functions, then the reward p given by

0 for 0 <y < 28

ply) =
%-- § for 26 < y

dominates p* for the payoff function T and for the payoff ep-

In the third case of this section, the disutility term is assumed to

have the special form ¢(y) = ayB, o >0, B>1. Now the situation where

.1..

B z_2 and B--like g--is assumed to be unknown to the landlord, is covered

Professor P. N. Bardhan pointed out to us that this is a more appropriate
assumption for modeling sharecropping.
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by Theorem 6.7, where p¥*¥ is found to be the unique efficient reward function
(hence undominated). On the other hand, when B > 1 is known to the landlord
(while o remains unknown), the linear reward function Py > k = % , is
dominant within the class of linear rewards. Hence, when B is known to

the landlord, p¥* is dominated by p except for B = 2.
1/8

7.3 Proposition. If B > 1 and ¢ is given by

- P o>
¢ ={p :a>0}
whﬂzze,cpg(y) =oay for ally > O, and P is the linear rewards,

P = {pk: k > 0},

then the reward function p, with k = < dominates all cther revard functions

B

in P, with respect to P, ¢, and the payoff function 7.

Proof. If o(y) = QyB, then the maximal output b(pk,Q) is a maximizer of

(i) u(y) = ky - uyB,

and, assuming B > 1, (i) attains its maximum with respect to y at

(1) blo0) = (5

If we plug the value (ii) into the equation for gain, we get
“1/(B=1) (1 _ eyt (BD)

(iii) ﬂ(pk,w) = (Ba)

and the maximum of (iii) with respect to k occurs only at k =

™k

The fourth and final case broadens the scope of inquiry in that it
involves utility functions that are not linear with respect to reward.

Guch functions may be more appropriate to a general equilibrium analysis.)
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However, we confine ourselves to a very narrow class of such functions,

viz. those of the form U(r,z) = el - ¥(z), Y > 1; in particular, U remains
additively separable with respect to reward versus effort. When vy is

known to the landlord and the disutility (z) is ayg with o unknown to the
landlord, the reward pk with k = %‘is dominant among linear rewards. We
remark without proof that if the value of Y is not known, except that

0 <y <1, so that in computing efficiency we take the infimum of =/ over-all

Y, 0 <y <1, as well as over all quadratic disutilities, then the unique

efficient reward (when P = linear rewards) is p(y) = y/4, y > O, not o¥.

7.4 Proposition. Suppose we assume the direct utility function U to be

of the form
Ulr,z) = v' - p(z)

for some y < 1, and otherwise retain all the assumptions and definitions

Oof Section 1. If & is the set of all quadratic disutilities and P is

the set _of all linear rewards, then the reward function p, with k = %

dominates all other reward functions in P, with respect to P, ¢, and the

payoff function .

Proof. The utility function

)

uly) = (ky qu

attains its maximum with respect to y (assuming Yy < 1) only at

blo,0,) = (5L k)Y@

Fcr this optimal culp ..., the zain is

2 n(Dk,qh) = (5%’1/(2-V)(1 i k)yY/kZ-Y)

The maximum of (i) with respect to k occurs, by the same computation used

in the proof of Proposition 7.3, at k = %u This complietes the proof.
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