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Abstract

Azrieli et  al. (J Polit Econ, 2018) provide a characterization of incentive compat-

ible payment mechanisms for experiments, assuming subjects’ preferences respect 

dominance but can have any possible subjective beliefs over random outcomes. If 

instead we assume subjects view probabilities as objective—for example, when dice 

or coins are used—then the set of incentive compatible mechanisms may grow. In 

this paper we show that it does, but the added mechanisms are not widely applica-

ble. As in the subjective-beliefs framework, the only broadly-applicable incentive 

compatible mechanism (assuming all preferences that respect dominance are admis-

sible) is to pay subjects for one randomly-selected decision.

Keywords Experimental design · Decision theory · Mechanism design

JEL Classi�cation C90 · D81 · D84

1 Introduction

Consider an experiment in which subjects make two choices. The first is to choose 

from the set {apple,left shoe} , and the second is to choose from the set {banana,right 

shoe} . Most subjects would prefer the apple over the left shoe and the banana over 

the right shoe. But when both choices are paid then subjects may choose the shoes 

instead, because they prefer a pair of shoes over having both an apple and a banana. 

In other words, complementarities between choice objects may distort subjects’ 

choices when multiple decisions are given. An experimenter might infer incorrectly 
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that the left shoe is preferred to the apple and that the right shoe is preferred to the 

banana. In this case we say that the payment mechanism is not incentive compatible 

(IC) because it did not incentivize subjects to reveal their true preference in each 

individual problem separately.1

A proposed solution to the problem of complementarities (due to Allais 1953) 

is to pay for one randomly-selected decision. We call this the Random Problem 

Selection (RPS) mechanism.2 With this mechanism subjects cannot receive both 

shoes, and therefore have no incentive to choose the shoe in either decision prob-

lem. Although this solves the complementarities problem, it introduces randomness. 

And there are examples of preferences over lotteries for which the RPS mechanism 

is not IC.3 Thus, exact conditions under which this mechanism is incentive com-

patible were not well understood. Neither was it known whether other mechanisms 

can be used to guarantee truthful revelation of choices in experiments with multiple 

decisions.

In our earlier work (Azrieli et  al. 2018) we filled this gap by studying experi-

ment incentives in a general framework in which subjects are permitted to have any 

subjective belief over random outcomes. Assuming state-wise monotonicity (which 

requires that subject’s preference respects dominance) and nothing else, we showed 

that the RPS mechanism is the only incentive compatible mechanism that can be 

applied to any experiment. There can be contrived examples of experiments for 

which other mechanisms are incentive compatible, but these are almost never seen 

in practice.

But what if an experiment consists entirely of objective lotteries? For example, 

suppose the experimenter flips a fair coin to determine which problem is paid. In 

this case allowing subjects to have any belief distribution over random outcomes 

may be too permissive. But if we restrict beliefs to equal the objective probabilities 

then we restrict the model, and in doing so we may open the door for additional 

incentive compatible mechanisms. Thus, it is important to study whether the set of 

incentive compatible mechanisms grows when we assume objective lotteries, and 

whether any of the new mechanisms would have broad applicability.

In this paper we assume objective probabilities and that all preferences which 

respect stochastic dominance are admissible. In this framework we show that the set 

of IC mechanisms is strictly larger than that characterized by Azrieli et al. (2018). 

But the newly-identified mechanisms are again only applicable in certain contrived 

experiments. In almost every real-world experiment the RPS mechanism is the 

unique incentive compatible mechanism under our assumptions.

As in Azrieli et al. (2018), we model an experiment as a list of decision problems, 

i.e. a list of sets of choice objects from which the subject should choose. The sub-

ject announces a chosen object from each decision problem. The experimenter then 

1 Shoes are an extreme example of complementarities. For a more realistic example, suppose each shoe 

is a risky lottery, and the pair of lotteries together constitutes a less-risky portfolio of lotteries.
2 This is often called the Random Lottery Incentive Mechanism (RLIM). We choose RPS to stay con-

sistent with our terminology in our other paper.
3 An early example is Holt (1986). See Azrieli et al. (2018) for a detailed discussion of such examples.
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maps that announced vector of choices into a payment, which may be random. For 

example, the RPS mechanism takes the announced vector of choices and randomly 

chooses one of them for payment.

A crucial observation in this analysis is that the choice objects and the payment 

objects in an experiment are typically non-overlapping sets. In the example above 

the set of all choice objects would be {apple,banana,left shoe,right shoe} . The exper-

imenter is interested in learning the subject’s preferences over those choice objects, 

which we denote by ≻.4 But the subject actually is being paid lotteries over these 

choice objects. Thus, the set of payment objects is a set of lotteries over the choice 

objects.5 Which choice objects the subject chooses in the experiment will therefore 

be driven by their preferences over payment objects (lotteries), not their preference 

over choice objects. We denote the preference over payment objects (lotteries) by 

⪰∗ . In the experiment the subject chooses (or “announces”) the choice objects that 

map into her most-preferred payment object (according to ⪰∗ ). We say that the pay-

ment mechanism is incentive compatible if what she announces coincides with her 

most-preferred choice objects according to ≻ . In other words, incentive compatibil-

ity ensures that the subject will reveal truthfully her most-preferred choice in every 

problem.

We refer to ⪰∗ as an extension of ≻ . For us to study incentive compatibility we 

must make some assumptions about how ⪰∗ relates to ≻ . If they are not related—

meaning every extension is admissible—then no mechanism can be incentive 

compatible. This is Proposition 0 of Azrieli et  al. (2018). A natural restriction on 

extensions is that they satisfy monotonicity with respect to first order stochastic 

dominance (FOSD), relative to the underlying preference ≻ . Formally, an extension 

is monotonic if lottery f is preferred to lottery g whenever f dominates g in the sense 

of FOSD. Monotonicity places no restrictions on lotteries that are not ranked by 

dominance.

We show in Theorem 1 that, as long as all admissible extensions are monotonic, 

the RPS mechanism is IC. In other words, if a subject’s preferences are such that she 

never prefers a dominated gamble, then any RPS mechanism provides her the right 

incentives to truthfully reveal her favorite element in each decision problem. The 

logic is simple: any time a subject switches from telling the truth to lying on any 

decision problem, they shift probability away from their most-preferred object and 

onto a less-preferred item. The resulting lottery is therefore stochastically dominated 

by the lottery induced by truth-telling. Notice that expected utility is not needed for 

this argument; the RPS mechanism is incentive compatible as long as monotonicity 

is satisfied.6

4 Or, at least, which objects are most preferred in each set.
5 Specifically, the 50-50 lottery between an apple and a banana, the 50-50 lottery between an apple and a 

right shoe, the 50-50 lottery between a left shoe and a banana, and the 50-50 lottery between the left and 

right shoes.
6 If additional axioms are assumed on ⪰∗ then expected utility may become necessary. For example, if 

⪰∗ satisfies the reduction of compound lotteries, then assuming monotonicity implies that ⪰∗ satisfies 

expected utility. We discuss this in Sect. 6.
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Monotonicity is satisfied by nearly every decision-theoretic model of choice 

under uncertainty. Indeed, it is often viewed as normative, and models that violate 

monotonicity are often dismissed as implausible; see Quiggin (1982), for example. 

Thus we view monotonicity as a minimal assumption on ⪰∗ , though we discuss its 

limitations in the sequel and more extensively in Azrieli et al. (2018).

Assuming all monotonic extensions are admissible (and that beliefs coincide with 

objective probabilities), we characterize the class of all IC mechanisms for any given 

experiment. The main result of this paper, Theorem 2, shows that, in a certain sense, 

any IC mechanism resembles the RPS mechanism, but that the class of IC mecha-

nisms may extend beyond the RPS mechanism in certain contrived experiments.

To understand how incentive compatibility could extend beyond the RPS mech-

anism in some experiments, consider the following example. Let D1 = {x, y} , 

D2 = {y, z} and D3 = {x, z} be the three decision problems in some experiment. 

Now, for every (strict) preference over {x, y, z} , if the subject truthfully announces 

her choices, then her favorite alternative from the set E = {x, y, z} will also be 

revealed. Below we will call sets with this property surely identified sets. We can 

imagine an RPS-like mechanism that not only pays for choices in the actual deci-

sion problems, but also might pay for the inferred choice from this surely identi-

fied set E. For instance, consider the distribution � over subsets of {x, y, z} given 

by �(D
1
) = �(D

2
) = �(D

3
) = 0.3 and �(E) = 0.1 . And suppose the subject has pref-

erences x ≻ y ≻ z . If she announces truthfully in each D
i
 then their message vec-

tor will be (x,  y,  x), and the experimenter can use that to infer that x is also her 

most-preferred element in E. The mechanism will therefore pay x with probability 

�(D
1
) + �(D

3
) + �(E) = 0.7 and y with probability �(D

2
) = 0.3 . If the subject mis-

represents and instead announces (y, y, x), then y would be inferred to be the most-

preferred in E, so the subject would instead receive x with probability 0.3 and y with 

probability 0.7. This is strictly dominated by the truth-telling lottery, so any sub-

ject who respects dominance will not choose it. Indeed, any non-truthful message 

will result in a dominated lottery, so the mechanism is incentive compatible under 

monotonicity.7

Still, we can generalize even further by allowing � to put negative weight on some 

of the sets. For instance, set �(D
1
) = �(D

2
) = �(D

3
) = 0.4 and �(E) = − 0.2 . For our 

subject with x ≻ y ≻ z reporting truthfully in this mechanism pays x with probability 

0.6 and y with probability 0.4. Misrepresenting by announcing (y, y, z) would again 

switch those probabilities, leading to a dominated lottery. However, if we choose 

the weights to be �(D
1
) = �(D

2
) = �(D

3
) = 0.6 and �(E) = − 0.8 , then the resulting 

mechanism will not be incentive compatible, since the revealed second-best alterna-

tive (y) is now paid with a higher probability than the revealed first-best alternative 

(x). Thus, some restrictions must be placed on � in order for incentive compatibility 

to hold in the resulting mechanism. Theorem 2 shows that, in any experiment, any 

7 For simplicity we assume here that the subject’s choices are consistent with some strict ordering of the 

elements. In our formal treatment we also deal with the issue of ‘non-rationalizable’ message vectors, 

such as (x, y, z).
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IC mechanism can be represented by a particular � as above, and precisely describes 

the restrictions on � that guarantee incentive compatibility.

It is illuminating to compare this characterization to the one obtained in our pre-

vious paper (Azrieli et  al. 2018). In that work we characterize incentive compat-

ibility of experiments under monotonicity, but when mechanisms map choices to 

acts instead of objective lotteries.8 Monotonicity in that framework means that if 

f is preferred to g in every possible state of the world, then f is preferred to g; oth-

erwise their ranking is not restricted. The acts framework allows for more general 

extensions of preferences: Subjects may have their own subjective beliefs about the 

likelihood of different outcomes of the randomization device, or they may even have 

preferences which are not probabilistically sophisticated (Machina and Schmei-

dler 1992); e.g., they may be uncertainty averse. This might apply when subjects 

view the experimenter’s randomization as ambiguous. The assumption of the cur-

rent paper that subjects view payments as lotteries can be thought of as an addi-

tional restriction on the set of admissible extensions in the acts framework. Since 

the experimenter can use this additional knowledge about extensions to construct IC 

mechanisms, one would expect that the class of IC mechanisms will be larger in the 

case of lotteries. In Sect. 5 we show that this is indeed the case: If a mechanism is IC 

in the acts framework, and one puts some (full-support) distribution over the state 

space of the randomization device, then the resulting lottery mechanism is IC. How-

ever, there are IC mechanisms in the lotteries environment that cannot be generated 

by any IC acts mechanism; in fact, these are exactly the mechanisms whose distribu-

tion � uses negative weights.

Although the set of IC mechanisms grows when we restrict attention to objective 

lotteries, the new mechanisms all require the existence of surely identified sets, such 

as E = {x, y, z} in the example above. But most experiments do not have surely iden-

tified sets, because most experiments have no overlap between decision problems. 

In that case the only incentive compatible mechanism (assuming all preferences that 

respect stochastic dominance) is the RPS mechanism.9 Thus, we view our result as 

confirming the conclusion of Azrieli et al. (2018): under our stochastic dominance 

assumption, in practice, the RPS mechanism is the only incentive compatible mech-

anism. Nothing is gained by assuming objective probabilities.

Behaviorally, we speculate that mechanisms that pay based on surely-identified 

sets or that use negative weights are excessively complicated and may lead to more 

confusion and mistakes by subjects.10 Thus, even if an experiment does have surely 

identified sets, we see no particular reason to use anything other than the simple 

RPS mechanism. Indeed, we believe the practical implication of our characterization 

is that the RPS mechanism is the only IC mechanism any experimenter would want 

8 Acts map states into outcomes but do not specify objective probabilities for the states.
9 The RPS mechanism can be modified to allow for fixed payments without damaging incentive compat-

ibility; see Corollary 1.
10 Our theory assumes a deterministic preference relation and does not allow for mistakes or stochastic 

choice. Though this would be an important direction to study, even the definition of incentive compatibil-

ity becomes unclear when random behavior is permitted.
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to use, assuming monotonicity. Any other mechanism is either not incentive compat-

ible or adds unnecessary complications.

In Sect.  6 we consider the particular case of experiments in which the choice 

objects are themselves lotteries over money. In this set-up an RPS mechanism gen-

erates a compound lottery, where in the first ‘upper’ stage a decision problem is 

randomly chosen for payment, and in the second ‘lower’ stage a dollar amount is 

randomly chosen according to the lottery that the subject chose in the realized deci-

sion problem of the first stage. Examples in the literature (Holt 1986, e.g.) show 

that if the subject reduces compound lotteries according to the laws of probability 

and has Rank-Dependent Utility (RDU) preferences over lotteries over money, then 

the RPS may not be IC. Our framework and results make it easy to see the source 

of the failure: Reduction of compound lotteries together with monotonicity imply 

the independence axiom. Since RDU preferences typically violate independence, if 

one assumes reduction then it must be the case that monotonicity does not hold. Our 

Theorem 1 cannot be applied then, and the RPS may not be IC. In fact, we show 

that if subjects reduce compound lotteries and if all RDU preferences are admissible 

then no IC mechanism exists. Fortunately, empirical evidence suggests that it is rare 

for subjects to satisfy reduction but violate expected utility (Halevy 2007), so such 

violations of monotonicity may not be a large concern.

The issue of complementarities (paying both the left shoe and the right shoe) was 

addressed in Azrieli et  al. (2018). There we showed that an incentive compatible 

mechanism can never pay in ‘bundles’ unless the researcher is willing to assume 

that subjects’ preferences exhibit no complementarities. But that conclusion holds 

whether we allow for subjective beliefs or objective probabilities, so the result is 

exactly the same in the current framework of objective lotteries. If the experimenter 

is going to pay for multiple decision problems (thus forming a bundle) then com-

plementarities must be assumed away. We therefore restrict attention to non-bundle 

payments in this paper.11

We do find that experimenters have lacked a convention for which payment mech-

anism to use. In our survey of papers published in 2011, we found that only 25% use 

the RPS mechanism, while 56% pay for every decision. Almost all of the remainder 

pay for some number of randomly-selected decisions (13%) or use a mechanism that 

is not incentive compatible under any standard assumptions (6%). Our goal is to pro-

vide a theoretical framework in which experimenters can understand exactly what 

assumptions justify one payment mechanism over another, and to understand exactly 

those conditions under which the RPS mechanism is incentive compatible.

We review empirical tests of monotonicity and the RPS mechanism in the con-

cluding section. Monotonicity violations appear to occur most frequently when 

multiple decisions are shown on one screen, or when a single decision problem is 

repeated multiple times. In other settings monotonicity appears to be satisfied.12

12 In Azrieli et  al. (2018) we discuss many other aspects of incentives in experiments, including the 

strength of the monotonicity assumption, how this theory extends to experiments where the subject 

makes choices sequentially with feedback, the use of the strategy method, plausible violations of mono-

11 See Azrieli et al. (2018) for exactly what assumptions on complementarities are needed for incentive 

compatibility in that case.
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From a theoretical perspective, our work is probably closest to the classic work 

of Gibbard (1977), who characterizes strategy-proof random mechanisms (using 

objective lotteries) when only ordinal preferences can be elicited. He characterizes 

these mechanisms as a kind of random-dictatorship, whereby a ‘dictator’ is an agent 

that solely determines the outcome. Our paper is comparable to the special case in 

which there is only one agent present. Gibbard does not, however, uncover the spe-

cial structure of these dictatorial mechanisms in the form that we uncover, presum-

ably because his interest was in understanding the implications of strategy-proofness 

across agents. Another important difference between the papers is that in Gibbard’s 

framework agents report their entire ranking over alternatives, while we consider the 

more general case in which the favorite alternatives in several subsets are reported. 

Finally, Gibbard requires only weak incentive compatibility, while we require that 

truth-telling be the unique optimum.

2  The framework

There is a finite set X of choice objects. The decision maker (also called the sub-

ject) has a strict preference relation ≻ over X which is asymmetric and negatively 

transitive.13 The relation ≻ is not complete because it is not reflexive (it is not true 

that x ≻ x ), so we use x ⪰ y to mean that either x ≻ y or x = y . For any x ∈ X , let 

L(x,≻) = {y ∈ X ∶ x ⪰ y} and U(x,≻) = {y ∈ X ∶ y ⪰ x} be the (weak) lower- and 

upper-contour sets of x according to ≻ , respectively. The ≻-dominant element of any 

set E ⊆ X is denoted by dom
≻
(E) . That is, dom

≻
(E) is the unique element of E satis-

fying dom
≻
(E) ⪰ y for all y ∈ E.

The researcher has an exogenously-given list of k decision problems, denoted 

D = (D1,… , D
k
) , where D

i
⊆ X for each i ∈ {1,… , k} . Let � = {D1,… , D

k
} rep-

resent the set of decision problems. We assume throughout that each D
i
∈ � is non-

trivial, meaning |D
i
| > 1 , and that the same decision problem does not appear more 

than once, meaning Di ≠ Dj whenever i ≠ j . These assumptions are made only to 

simplify notation and can easily be relaxed.

The subject is asked to choose an element from each D
i
 . The announced choice 

vector (or, the subject’s message) is denoted by m = (m1,… , m
k
) . The space of all 

possible messages is M = ×
i
D

i
 . For each i ∈ {1,… , k} , let �

i
(≻) = dom≻(Di

) be the 

≻-dominant element of D
i
 , and denote �(≻) = (�1(≻),… ,�

k
(≻)) . We refer to �(≻) 

as the truthful message for ≻.

13 We conjecture that the set of IC mechanism with weak preferences would still be larger than just the 

RPS mechanism, but we have not achieved a characterization. Regardless, we know three things: (1) 

With strict preferences the RPS mechanism is the only IC mechanism with broad applicability. (2) If we 

allow weak preferences then the set of IC mechanisms must shrink. (3) The RPS mechanism remains IC 

with weak preferences. From these, we can conclude that, even with weak preferences, the RPS mecha-

nism is the only IC mechanism with broad applicability.

tonicity (including hedging with ambiguity aversion), and the application of these results to game-theo-

retic (multi-player) experiments.

Footnote 12 (continued)
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We assume that an objective randomization device can be used to determine pay-

offs, so that payments are given by lotteries. Denote by Δ(X) the set of all probabil-

ity distributions over X. If f ∈ Δ(X) then f(x) is the probability with which x ∈ X is 

selected according to f. A (payment) mechanism � ∶ M → Δ(X) takes the announced 

choice m ∈ M and awards the subject with the lottery �(m) ∈ Δ(X) . Thus, �(m)(x) 

denotes the probability with which x is awarded when the decision maker announces 

m.

We refer to the pair (D,�) as an experiment; D completely specifies the choices 

the subject must face, and � describes how they are paid for those choices. Since D 

determines the domain of a mechanism, there is little distinction between an experi-

ment (D,�) and its associated mechanism � ; when it causes no confusion, we refer 

to experiments and mechanisms interchangeably.

We assume that the subject’s preferences ≻ extend to the space of lotteries Δ(X) . 

An extension of ≻ to Δ(X) is denoted by ⪰∗ , and we assume that any admissible 

extension is complete and transitive. Although ≻ is strict, ⪰∗ may not be. The asym-

metric part of ⪰∗ is denoted by ≻∗ . An extension ⪰∗ is assumed to agree with ≻ on 

the space of degenerate lotteries. We let ℰ(≻) denote the set of admissible exten-

sions of ≻ . Think of ℰ as capturing the assumptions the experimenter is willing to 

make about the subject’s preferences over lotteries. For example, if the experimenter 

assumes that the subject is a risk-averse expected utility maximizer, then ℰ(≻) is 

the set of extensions ⪰∗ that have an expected utility representation with a concave 

cardinal utility index u ∶ X → ℝ that ordinally agrees with ≻ (meaning, u(x) > u(y) 

if and only if x ≻ y).14

De�nition 1 (Incentive compatibility) A mechanism � is incentive compatible 

with respect to ℰ if, for every preference ≻ , every extension ⪰∗∈ ℰ(≻) , and every 

m ≠ �(≻) , we have that �(�(≻)) ≻∗ �(m).

In other words, incentive compatible experiments induce the subject to announce 

truthfully, treating each decision problem as though it were in isolation. Note that 

whether or not a mechanism (or experiment) is incentive compatible depends cru-

cially on ℰ . When there is no confusion, we drop the reference to ℰ and simply refer 

to � as incentive compatible.

In some experiments subjects are paid for all of their decisions, or for some ran-

domly-selected subset of decisions. In those cases, payment objects are ‘bundles’ 

of choice objects. Technically, they are subsets of 
⋃

i
D

i
 . Our framework already 

accommodates bundles; simply expand X to include all non-empty subsets of 
⋃

i
D

i
 

and allow � to select lotteries that put positive probability on these subsets. How-

ever, we will show that paying anything outside of 
⋃

i
D

i
 cannot be incentive com-

patible without making assumptions about how ≻ behaves outside of 
⋃

i
D

i
 . For the 

14 We assume implicitly that the experimenter has a set of admissible preferences over X in mind; when 

we say ‘for all ≻ ,’ we really mean ‘for all admissible ≻ .’ Our results hold for any set of admissible strict 

preferences, including the set of all strict preferences on X.
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case of bundles, one would need to assume no complementarities in ≻ . We explore 

this in our previous work.

3  Incentive compatibility of the RPS mechanism

Without making further assumptions on the correspondence ℰ , there do not exist 

incentive compatible mechanisms when the number of decision problems is k ≥ 2 ; 

see Proposition 0 in Azrieli et al. (2018) for the proof. Unless otherwise specified, 

we assume that extensions ⪰∗ respect first-order stochastic dominance with respect 

to the underlying preference ≻.

De�nition 2 (First-order stochastic dominance) Fix ≻ . The lottery f dominates the 

lottery g with respect to ≻ (denoted f ⊒ g ) if, for every x ∈ X,

If there is strict inequality for at least one x then we say f strictly dominates g with 

respect to ≻ ( f ⊐ g).15

De�nition 3 (Monotonic extension) An extension ⪰∗ of ≻ is monotonic if f ⊒ g 

implies f ⪰∗ g and f ⊐ g implies f ≻
∗ g . The collection of all monotonic extensions 

of ≻ is denoted by ℰmon(≻).

Monotonicity is satisfied by nearly every model in decision theory; indeed, many 

authors view it as normative.16

The following simple lemmas will be useful for some of the following results. 

The proofs are omitted.

Lemma 1 Assume ℰ(≻) ⊆ ℰmon(≻) for every ≻ . If for every ≻ and every m ≠ �(≻) 

we have that �(�(≻)) ⊐ �(m) , then � is incentive compatible with respect to ℰ.

Lemma 2 A mechanism � is incentive compatible with respect to ℰmon if and only if, 

for every preference ≻ and every m ≠ �(≻),�(�(≻)) ⊐ �(m).

Remark The conclusion of Lemma 2 continues to hold even if the set of admissible 

extensions ℰ(≻) does not contain all monotonic extensions, as long as this set is 

‘sufficiently rich’. For example, if any expected utility extension is admissible then 

the lemma is still true.

∑

{x�∈X∶x�⪰x}

f (x�) ≥
∑

{x�∈X∶x�⪰x}

g(x�).

15 Because it will always be obvious, we use a notation which suppresses the dependence of ⊒ and ⊐  

on ≻.
16 For example, Tversky and Kahneman (1992) (following Quiggin 1982 and others) developed cumula-

tive prospect theory precisely because their original prospect theory model violated monotonicity.
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A common payment mechanism is one in which a single decision problem is ran-

domly selected, and the subject is paid with her choice at that problem. We call such 

a mechanism a Random Problem-Selection (RPS) Mechanism. Formally,

De�nition 4 (Random problem-selection mechanism) A mechanism � is a random 

problem-selection mechanism (RPS) if there exists a full-support probability distri-

bution � over � such that for every alternative x ∈ X,

Theorem 1 If ℰ(≻) ⊆ ℰmon(≻) for every ≻ and � is an RPS mechanism, then � is 

incentive compatible with respect to ℰ.

Proof Follows immediately from Lemma 1, and from the obvious fact that lying 

in an RPS mechanism induces a lottery that is strictly dominated by the lottery 

obtained by truth-telling.   □

4  Characterization of incentive compatible mechanisms

In this section we provide a complete characterization of incentive compatible mech-

anisms when all monotonic extensions are admissible (or when the set of admissi-

ble extensions is sufficiently rich, see the Remark after Lemma 2). Recall that, by 

Lemma 2, incentive compatibility in this set-up is equivalent to the property that the 

lottery obtained by truth-telling strictly dominates any lottery that can be obtained 

by lying.

The example in the introduction illustrates how incentive compatibility can 

extend beyond the RPS mechanism. We now introduce notations and definitions 

required to formally state and prove the characterization result.

4.1  Surely identi�ed sets

Let M
R
= {m ∈ M ∶ (∃ ≻) m = �(≻)} be the set of rationalizable messages. 

M
NR

= M ⧵ M
R
 is then defined as the set of non-rationalizable messages.

De�nition 5 Fix any rationalizable message m = (m1,… , m
k
) ∈ M

R
 . For every 

x, y ∈ X , say that x is directly revealed preferred to y under m if there is 1 ≤ i ≤ k 

such that m
i
= x and y ∈ Di , or if x = y . Denote the transitive closure of this relation 

by R(m), and say that x is revealed preferred to y under choices m if xR(m)y.

The relation R(m) is reflexive, transitive and antisymmetric, but it need not be 

complete. Denote by L(x, m) = {y ∈ X ∶ xR(m)y} and U(x, m) = {y ∈ X ∶ yR(m)x} 

the sets of elements that are revealed to be worse than x and better than x under 

choices m, respectively. Clearly, L(x, m) ⊆ L(x,≻) and U(x, m) ⊆ U(x,≻) when 

m = �(≻) , with strict inclusions for some x when R(m) is not a complete relation.

(1)
�(m)(x) =

∑

{i∶m
i
=x}

�(D
i
).
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Let dom
m
(E) be the R(m)-dominant element of E, if one exists. Notice that if 

m = �(≻) , then either dom
m
(E) does not exist or else dom

m
(E) = dom

≻
(E).

De�nition 6 (Surely identified sets) A non-empty set E ⊆ X is surely identi-

fied (SI) if, for every m ∈ M
R
 , dom

m
(E) exists. In other words, E is SI if, for any 

order ≻ , the message m = �(≻) identifies the most-preferred element of E, so that 

dom
m
(E) = dom

≻
(E).

For example, if D1 = {x, y} , D2 = {y, z} , and D3 = {x, z} , then E = {x, y, z} is 

surely identified, since any rationalizable message identifies the entire (strict) rela-

tion ≻ over E, and therefore identifies the most-preferred element of E.

Let SI(�) be the collection of surely identified sets for the given set of decision 

problems �.17 Obviously, any D
i
 is in SI(�) . All singleton sets (of the form {x} ) are 

also surely identified. But there can be other sets in SI(�) , such as E above. A char-

acterization of surely identified is given by the following lemma, whose proof can 

be found in the “Appendix”.

Lemma 3 E ∈ SI(�) if and only if E is either a singleton, or for every pair 

{x, y} ⊆ E , there exists D ∈ � for which {x, y} ⊆ D ⊆ E.

4.2  Weighted set-selection mechanisms

We can now define a generalization of RPS mechanisms called weighted set-selec-

tion (WSS) mechanisms. These mechanisms randomly select from the surely identi-

fied sets and pay the revealed-most-preferred element from that set (assuming m is 

rationalizable). Thus, the probability that x is paid under message m is simply the 

probability that an SI set E is drawn such that dom
m
(E) = {x}.

De�nition 7 (Weighted set-selection mechanisms) A mechanism � ∶ M → Δ(X) is a 

weighted set-selection mechanism (WSS) if there exists some � ∶ SI(�) → ℝ such 

that for every rationalizable m ∈ M
R
 and every alternative x ∈ X,

The requirement that �(m) be a well-defined lottery places some restrictions on 

the weighting function � . For example, it cannot put negative weight on any single-

ton set: If �({x}) < 0 and there is no other E ∈ SI(�) for which dom
m
(E) = {x} , 

then �(m)(x) = �({x}) < 0 , which is forbidden. Furthermore, we have that

�(m)(x) =
∑

{E∶ dom
m
(E)={x}}

�(E).

17 Recall that � = {D1,… , D
k
} is the collection of decision problems, while D = (D1,… , D

k
) is the 

ordered list of decision problems.
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so it must be that 
∑

E∈SI(�) �(E) = 1 . These observations prove the following lemma.

Lemma 4 A weighted set-selection mechanism must be associated with a weighting 

function � that satisfies

(1) 
∑

E∈SI(�) �(E) = 1 , and

(2) �({x}) ≥ 0 for every x ∈ X.

Remark A weighted set-selection mechanism uniquely determines the vector � that 

represents it. That is, if � and �′ are two different weighting vectors then the cor-

responding mechanisms � and �′ differ on M
R
 . This can be seen by considering a 

minimal (with respect to inclusion) SI set E for which �(E) ≠ �(E�) , and an order 

≻ which ranks all elements of E below every other element of X. The top element 

of E according to ≻ is chosen with different probabilities under � and �′ when the 

choices are �(≻) . Thus, given the collection � , there is a one-to-one correspondence 

between WSS mechanisms and the vectors � that define them.

4.3  Switch positivity

We now formalize a condition on � called switch positivity that is precisely what’s 

needed to guarantee incentive compatibility of a WSS mechanism. To gain under-

standing for switch positivity, consider the example given in Table 1. The four deci-

sion problems are shown on the left, along with the set E
1
 , which is surely identified, 

and the set E
2
 , which is not. The � functions for four different WSS mechanisms 

are given, labeled �1 through �4 , with �2 being an RPS mechanism. Since E
2
 is not 

∑

x

�(m)(x) =
∑

x

[

∑

{E∈SI(�)∶ dom
m
(E)={x}}

�(E)

]

=
∑

E∈SI(�)

�(E),

Table 1  Examples to demonstrate the switch positivity condition

The left panel shows the � functions corresponding to four example mechanisms. The right panel shows 

four example preferences, with options listed from best (top) to worst (bottom)

�
1(⋅) �

2(⋅) �
3(⋅) �

4(⋅) ≻
x

≻
y

≻
a

≻
b

D1 = {x, y} 0 1/4 0 1/2 x y a b

D2 = {x, a} 1/3 1/4 1/4 1/4 y x b a

D3 = {y, a} 1/3 1/4 1/4 1/4 a a c c

D4 = {b, c} 1/3 1/4 1/4 1/4 b b x x

E1 = {x, y, a} 0 0 1/4 − 1/4 c c y y

E2 = {a, b} – – – – �(⋅) = (x, x, y, b) (y, x, y, b) (x, a, a, b) (x, a, a, b)
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surely identified, no WSS mechanism can put weight on E
2
 . On the right are four 

example preferences. The truthful announcement vector for each preference is listed 

at the bottom.

Comparing �(≻x) and �(≻y) , we see that these preferences are only distinguished 

in this experiment by their choice from D
1
 . Thus, to distinguish these two prefer-

ences, an incentive compatible WSS mechanism must provide incentives to answer 

D
1
 truthfully. The mechanism given by �1 (which has �1(D

1
) = 0 ) does not provide 

such incentives. This is because announcing �(≻x) and �(≻y) would both give the 

same lottery (which pays x, y, and b each with 1 / 3 chance). Thus, neither prefer-

ence has a strict incentive to tell the truth; deviating to the other preference’s truth-

ful announcement has no cost.

An easy way to restore incentive compatibility is to put strictly positive weight on 

D
1
 , which is exactly what the RPS mechanism �2 does.

But there is an alternative way to restore incentive compatibility in this 

example: put weight on E
1
 instead of D

1
 . This is done in �3 . Now announcing 

�(≻x) = (x, x, y, b) gives a 1 / 2 chance of receiving x (1 / 4 from D
2
 and 1 / 4 from 

E
1
 ), while announcing �(≻y) = (y, x, y, b) gives a 1 / 2 chance of receiving y (1 / 4 

from D
3
 and 1 / 4 from E

1
 ). Thus, each type has a strict incentive to tell the truth in 

D
1
 , even though �3(D

1
) = 0.

From this we see that both D
1
 and E

1
 could be used to distinguish between ≻x 

and ≻y . Since ≻x and ≻y differ only in that they switch the ordering of x and y, 

we refer to both D
1
 and E

1
 as switch test sets for x and y. And a natural condition 

for incentive compatibility is that at least one of these switch test sets must have 

positive weight.

In fact, we can derive a slightly weaker condition. Consider �4 , which has 

�
4(D

1
) > 0 but �4(E

1
) < 0 . Because �(E

1
) + �(D

1
) > 0 the mechanism will also 

distinguish between ≻x and ≻y , since announcing x ∈ D
1
 will, on net, increase 

the probability that x is paid by 1∕2 − 1∕4 = 1∕4 , while announcing y ∈ D
1
 will, 

on net, increase the probability of y by 1∕2 − 1∕4 = 1∕4 . Putting these cases 

together, we can say that incentive compatibility requires that �(D
1
) + �(E

1
) > 0 . 

In other words, the sum of weights on all switch test sets for x and y must be posi-

tive. We call this the switch positivity condition.

We do not need switch positivity to apply to all x and y because we do not 

need to distinguish all possible x and y pairs. Consider the preferences ≻a and ≻b . 

There are no decision problems containing both a and b. Thus, �(≻a) = �(≻b) . 

Furthermore, there are no surely identified sets containing both a and b (recall E
2
 

is not surely identified), so this particular experiment is simply not designed to 

distinguish between ≻a and ≻b . There is no need to put positive weight on switch 

test sets for a and b. Therefore, we can refine our switch positivity condition to 

apply only to those pairs x and y that have surely-identified switch test sets.

In the above example the switch in ordering between x and y occurred at the 

top of the preference ranking. But a similar example could be constructed where 

the switch between x and y happens in the middle of the ordering. As long as the 

decision problems contain none of the elements ranked above x and y, the result-

ing condition on � is the same, though we must specify that the switch test set 

does not contain any of those higher-ranked elements. Formally, if A is the set 
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of elements ranked below x and y, then the switch test set must be a subset of 

A ∪ {x, y} . In this case we call it a switch test set for x and y against A, and require 

that switch positivity hold for all A. For example, if A = � (meaning x and y are at 

the bottom) then the only surely identified switch test set for x and y against A = � 

is D1 = {x, y} , and so switch positivity would require that �(D
1
) > 0.

We now have our complete notion of switch test sets and the needed switch 

positivity condition.

De�nition 8 (Switch test set) Let x, y ∈ X and A ⊆ X ⧵ {x, y} . A set E ⊂ X is a switch 

test set for x and y against A if E ∈ SI(�) and {x, y} ⊆ E ⊆ A ∪ {x, y} . Let T(x, y, A) 

denote the collection of switch test sets for x and y against A.

De�nition 9 (Switch positivity) A weighted set-selection mechanism � (with asso-

ciated weighting vector � ) satisfies switch positivity if, for every x, y ∈ X and 

A ⊆ X ⧵ {x, y} such that T(x, y, A) ≠ � , it holds that

Remark If the collection T(x,  y,  A) is not empty, then it contains at least one of 

the decision problems in � . In the example above, D1 ∈ T(x, y, {x, y, a}) . Indeed, 

E ∈ T(x, y, A) means that {x, y} ⊆ E ⊆ A ∪ {x, y} . Since E is surely identified, 

Lemma 3 implies that there is D ∈ � such that {x, y} ⊆ D ⊆ E . It follows that 

D ∈ T(x, y, A) as well.

4.4  Dealing with non-rationalizable messages

Switch positivity is clearly necessary for incentive compatibility because it guar-

antees that a subject with preference ≻ will not “imitate” the preference ≻xy by 

announcing �(≻xy) (the optimal choices for ≻xy ) instead of �(≻) . But we also need 

to ensure that the subject has no incentive to announce any non-rationalizable mes-

sages. Because we allow for all monotonic extensions, the only way to accomplish 

this is to ensure that, for every ≻ and m�
∈ M

NR
 , �(m�) is dominated by �(�(≻)).

To visualize this requirement, return to the example of D1 = {x, y} , D2 = {y, z} , 

and D3 = {x, z} , and consider Fig.  1. Let � be any incentive compatible mecha-

nism. Start with the preference x ≻ y ≻ z for which truth-telling generates the lot-

tery �(�(≻)) . This point is denoted as xyz in the figure. If a lottery �(m�) is to be 

dominated by �(�(≻)) (for preference ≻ ) then it must put less weight on x and more 

weight on z. In the figure, �(m�) must be in the cone emanating to the northeast from 

the point xyz, as indicated by two dashed lines. Thus, every m�
∈ M

NR
 needs to map 

into some �(m�) in this cone.

But for preference y ≻
′

x ≻
′

z , we must have that every �(m�) maps into the cone 

emanating to the northwest from the truth-telling lottery yxz. In general, for any 

preference ≻ , we must have that every �(m�) be in the cone of dominated lotteries 

for that preference. There are six such cones (one for each ≻ ), and the intersection of 

those cones is the dark gray area labeled Φ
NR

 . Incentive compatibility requires that 

∑

{E∈T(x,y,A)}

�(E) > 0.
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�(m�) ∈ Φ
NR

 for each m�
∈ M

NR
 . Note that the six vertices must be excluded from 

Φ
NR

 because incentive compatibility requires that all non-rationalizable messages 

be strictly dominated; if one non-rationalizable maps into the same lottery as some 

truthful message, then an a subject with that preference will be indifferent between 

the truthful message and the equivalent non-rationalizable message. Strict incentive 

compatibility rules this out.

Formally, let �(M
R
) be the set of lotteries that can be obtained by announcing 

any rationalizable message and co(�(M
R
)) be the convex hull of that set. We denote 

Φ
NR

= co(�(M
R
)) ⧵ �(M

R
) . Incentive compatibility requires that if m�

∈ M
NR

 then 

�(m�) ∈ Φ
NR

.18

4.5  The characterization theorem

Theorem  2 A mechanism � ∶ M → Δ(X) is incentive compatible with respect to 

ℰmon if and only if it is a weighted set-selection mechanism such that

(1) � satisfies switch positivity; and

(2) if m ∈ M
NR

 then �(m) ∈ Φ
NR

.

The proof of this theorem—provided in the appendix—proceeds in three steps: 

First, we characterize a set of restrictions on the lotteries �(m) that are equivalent to 

Fig. 1  In Δ(X) , the lotteries 

stochastically dominated by the 

point �(�(≻)) when x ≻ y ≻ z 

(labeled xyz) are shown in light 

gray. The lotteries that are domi-

nated by the truthful announce-

ment for every ≻ are shown in 

dark gray ( Φ
NR

)

18 In the figure there are six preferences and six vertices for Φ
NR

 . In general, the number of vertices 

is equal to the cardinality of the range of �(M
R
) . This is less than the number of preferences if there is 

some pair ≻ and ≻′ such that �(≻) = �(≻�) . For example, if D = ({x, y}, {y, z}) then �(yxz) = �(yzx) and 

�(xzy) = �(zxy) , so �(M
R
) has only four vertices. In that case, Φ

NR
 is a rectangle.
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incentive compatibility. Second, we show how an incentive compatible � can be rep-

resented via a supermodular capacity, and how the restrictions on lotteries imposed 

by incentive compatibility translate into certain restrictions on that capacity. Third, 

we show that the capacity can be translated into a weighting vector �—so that � is in 

fact a weighted set-selection mechanism—and how the restrictions on the capacity 

imply that � must satisfy switch positivity. Finally, we ‘close the loop’ by proving 

that any weighted set-selection mechanism satisfying these two conditions is in fact 

incentive compatible.

In most experiments there are no surely identified sets beyond the original deci-

sion problems (except for the singletons sets {x}
x∈X

 , which are always surely identi-

fied). Assuming there are no other surely identified sets and that no D
i
 can be surely 

identified from the other decision problems, switch positivity implies that every 

decision problem must have positive weight, that singleton sets may have positive or 

zero weight, and that every other set must have zero weight. In other words, the only 

incentive compatible mechanisms are RPS mechanisms, but with the added possibil-

ity that some alternatives are paid with fixed probabilities that do not depend on the 

subject’s messages.

Corollary 1 If no sets outside of (D1,… , D
k
) are surely identified, and if no D

i
 is 

surely identified from the other decision problems, then � ∶ M → Δ(X) is incentive 

compatible if and only if it is an ‘extended’ RPS mechanism that may also put posi-

tive weight on singleton sets. Formally, � is incentive compatible if and only if it is 

associated with a probability distribution � over � ∪ {x}
x∈X

 such that �(D
i
) > 0 for 

each D
i
∈ � and �({x}) ≥ 0 for each x ∈ X.

Recall that our framework can handle the case of bundle payments (for exam-

ple, paying the subject all of their choices) by expanding X to include subsets of 
⋃

i
D

i
 . But incentive compatibility requires that one use a WSS mechanism, and 

WSS mechanisms can only put positive probability on items in SI(�) . And SI(�) 

cannot contain these bundles. Without explicit assumptions on complementarities, 

sets containing bundles will not be surely identified and therefore cannot be paid 

in any incentive compatible mechanism. See Azrieli et  al. (2018) for an assump-

tion on complementarities that does make paying for multiple decisions incentive 

compatible.

5  Lotteries versus acts: a comparison of characterizations

In this section we compare IC mechanisms in the objective lotteries framework of 

the current paper to IC mechanisms in the more general acts set-up of our previous 

paper (Azrieli et al. 2018). As explained in the introduction, we would like to show 

that there are more IC mechanisms when the subject views the randomization device 

as generating objective lotteries.

To formalize this idea, we must be able to compare directly a mechanism � in the 

acts framework to a mechanism � in the lotteries framework. In the acts framework 
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(ignoring bundle payments), a mechanism is a function � ∶ M → X
Ω , where Ω is a 

finite state space and XΩ is the set of all acts, i.e. mappings from Ω to X. To convert 

acts into lotteries, let � be a probability measure over Ω.19 We say that (Ω, �,�) gen-

erates � if, for each m ∈ M and x ∈ X,

If the above equality holds for every rationalizable message m ∈ M
R
 then we say 

that (Ω, �,�) generates � on rationalizable messages.

Proposition 1 If � is an incentive compatible act-mechanism (defined on some state 

space Ω), and � is a full-support probability distribution over Ω , then the lotteries-

mechanism � generated by (Ω, �,�) is incentive compatible.

The proof of this proposition follows from the discussion in the introduction and 

is therefore omitted.

We now consider the opposite direction, taking an IC lotteries-mechanism and 

studying the equivalent act-mechanism that generates it. But the following example 

shows that (1) there can be many act-mechanisms that generate a given IC lotteries-

mechanism, and (2) some of those act-mechanisms may not be IC. In other words, 

the converse of Proposition 1 does not hold generally.

Example 1 Let X = {x, y, z} . Suppose k = 3 with D1 = {x, y} , D2 = {y, z} , and 

D3 = {z, x}.20

In the lotteries framework, consider an RPS mechanism � with �(D
i
) = 1∕3 for 

each i. The subject receives their revealed-most-preferred element of X with prob-

ability 2 / 3 and their revealed-second-most-preferred element with probability 1 / 3. 

A non-rationalizable message results in the uniform lottery over X.

This mechanism can be generated by an RPS mechanism � in the acts framework, 

where Ω = {�1,�2,�3}—each corresponding to a decision problem—and a distri-

bution � with �(�
i
) = 1∕3 for each i. Here, both mechanisms are incentive compat-

ible in their respective frameworks.

But � can also be generated by the following non-incentive-compatible act-mech-

anism � and distribution � : Let Ω = {�1,�2,�3} and �(�
i
) = 1∕3 for each i. For 

rationalizable message m, set �(m)(�
1
) = �(m)(�

2
) = dom

m
(X) and �(m)(�

3
) equal 

to the revealed-second-most-preferred element of X. For non-rationalizable message 

m set �(m)(�1) = x,�(m)(�2) = y, and �(m)(�
3
) = z . This mechanism is not incen-

tive compatible in the acts framework because beliefs are subjective: A subject who 

believes �
3
 will occur with high enough probability will prefer to reveal their true 

favorite element as if it were their second-most-preferred.

�(m)(x) = �({� ∈ Ω ∶ �(m)(�) = x}).

19 The �-algebra for � is the power set of Ω.
20 Thus, the experimenter is eliciting the entire preference ordering over X. This also can be done by 

asking the subject to rank the three options in X and use that ranking to infer what m
1
 , m

2
 , and m

3
 would 

be. The RPS mechanism (or any IC mechanism) would then be used. The only difference is that a rank-

ing experiment prohibits the announcement of non-rationalizable messages. See Bateman et al. (2007) or 

Crockett and Oprea (2012) for examples of ranking experiments.
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The next example further demonstrates that there are incentive compatible lotter-

ies-mechanisms that cannot be generated by any incentive compatible acts-mecha-

nism (even when restricted to rationalizable messages). Thus, in this sense, the set of 

IC mechanisms is strictly larger in the lotteries framework.

Example 2 Let X = {x, y, z} . Suppose k = 4 with D1 = {x, y} , D2 = {y, z} , 

D3 = {z, x} , and D4 = {x, y, z}.

In the lotteries framework, consider a mechanism with �(D
i
) = 0.4 for each 

i ∈ {1, 2, 3} and �(D
4
) = −0.2 . This mechanism pays the revealed-most-preferred 

element of X with probability 0.6 and the revealed-second-most-preferred element 

with probability 0.4. Also, set �(m) to be the uniform distribution over X whenever 

m is non-rationalizable. By Theorem 2 this mechanism is incentive compatible.

However, this mechanism cannot be generated by any incentive compatible 

mechanism in the acts framework. To prove this, suppose that (Ω, �,�) generates � , 

where � is incentive compatible. By Theorem 1 in Azrieli et al. (2018), each � ∈ Ω 

corresponds to some decision problem (or to a singleton) and pays the selected item 

from that problem. Consider first ≻ with z ≻ x ≻ y . Since �(�(≻))(x) = 0.4 , the set 

of � ’s corresponding to D
1
 or to the singleton {x} must have �-probability of 0.4. 

But, by a symmetric argument, the same is true for D
2
 and {y} and to D

3
 and {z} . But 

then 
∑

�
�(�) ≥ 1.2 , a contradiction.

The difficulty in generating � from an incentive compatible � in Example 2 

comes from � assigning negative weights to certain SI sets. In fact, this exactly char-

acterizes the cases where � cannot be generated by an incentive compatible �.

Proposition 2 Assume that � is an incentive compatible lotteries-mechanism.

(1) If the associated weighting vector � of � is non-negative, then there exists an 

incentive compatible acts-mechanism � (on some Ω ) and a probability � on Ω 

such that (Ω, �,�) generates � on rationalizable messages.

(2) If the associated weighting vector � of � contains negative elements, then � 

cannot be generated by any incentive compatible acts-mechanism � (even when 

restricted to rationalizable messages).

For (1), the construction of the first mechanism in Example 1 can be generalized to 

any lotteries mechanism with non-negative � to get a generating incentive compatible 

acts-mechanism. The proof of (2) is similar to the proof that � cannot be generated by 

an incentive compatible acts-mechanism in Example 2. The details are omitted.

6  Choice from lotteries, reduction, and RDU preferences

Many experimental tests of decision-theoretic models ask the subject to make 

choices from menus of lotteries whose outcomes are dollar payments. In this case, 

payments in the RPS mechanism represent two-stage lotteries, where the ‘upper’ 
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stage refers to the random draw of a decision problem, and the ‘lower’ stage refers to 

the draw of a dollar amount according to the chosen lottery from that problem.

It is possible that the subject ‘reduces’ compound lotteries into one-stage lotteries 

according to the laws of probability, and thus that her preferences over the space of 

single stage lotteries (over money) completely determine her preferences over com-

pound lotteries. The following example—adapted from Holt (1986)—shows that 

incentive compatibility of the RPS mechanism can fail when non-expected utility 

models (in the lower stage) are combined with the reduction of compound lotteries.

De�nition 10 (Rank-dependent utility) A subject has rank-dependent utility 

(RDU) preferences if a simple lottery f = (x1, p1;x2, p2;… ;xn, pn) ∈ Δ(ℝ) (with 

x
1
< x

2
< ⋯ < x

n
 ) is evaluated according to the functional

where u ∶ ℝ → ℝ is increasing, q ∶ [0, 1] → [0, 1] is increasing, strictly concave 

over (0, 0.5) and strictly convex over (0.5, 1), q(0) = 0 , and q(1) = 1.

Example 3 Let l = ($0, 1∕2;$3, 1∕2) be an equiprobable lottery between $0 and 

$3 , and consider D1 = {l, $1} and D2 = {l, $2} . If a subject has rank-dependent 

utility with u(x) = x
3∕4 , q(1∕4) = 1∕3 , q(1∕2) = 1∕2 , and q(3∕4) = 2∕3 , then 

$2 ≻
∗

l ≻
∗ $1 . Thus, the truthful announcement is m

∗ = (l, $2) . Now consider an 

RPS mechanism for lotteries that puts equal probability on each D
i
 being chosen. 

Announcing m∗ gives the lottery �(m∗) = ($0, 1∕4;$2, 1∕2;$3, 1∕4) , assuming com-

pound lotteries are reduced to single-stage lotteries. Announcing m� = (1, 2) gives 

the lottery �(m�) = ($1, 1∕2;$2, 1∕2) . Plugging in the values of u and q, we find that 

U(�(m�)) > U(�(m∗)) , so incentive compatibility is violated.

The reason the RPS mechanism fails in this example stems from the well-known 

fact that reduction of compound lotteries, when combined with our monotonicity 

assumption, implies the Von Neumann-Morgenstern independence axiom on the 

space of single stage lotteries.21 Consequently, if a model of preferences violates 

independence (as the RDU model does), but the reduction of compound lotteries is 

assumed, then that model must violate monotonicity. Without monotonicity, Theo-

rem 1 cannot be applied and there is no guarantee that the RPS mechanism is incen-

tive compatible.

In fact, we now show that for the decision problems in Example 3 there is no 

incentive compatible payment mechanism if any RDU preference is admissible. We 

need to slightly modify our framework in order to accommodate this example. Let 

Uq(f ) =

n
∑

s=1

u(xs)

[

q(

s
∑

r=1

pr) − q(

s−1
∑

r=1

pr)

]

,

21 For a detailed discussion of this result and other related issues see Segal (1990). Segal’s axiom of 

‘compound independence’ is essentially the same as our monotonicity assumption. See also the discus-

sion in Section III of Azrieli et al. (2018).
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Δ(ℝ) be the set of all simple (finite support) lotteries on ℝ . A degenerate lottery that 

pays $x with probability 1 is denoted by �
x
 . The subject faces the two decision prob-

lems from Example 3, D1 = {l, �1} and D2 = {l, �2} , where l is the lottery that pays 

0 or 3 with equal probabilities.

We assume that the subject has RDU preferences over Δ(ℝ) , represented by a 

functional Uq (for some u and q) as in Definition 10. Notice that this allows the sub-

ject to be indifferent between some of the lotteries. We therefore need to modify 

the definition of incentive compatibility to allow for weak preferences. We do that 

by requiring that, whenever a message is truthful, the output of the mechanism is 

(weakly) preferred to any other possible outcome, with strict preference whenever 

the other message is not truthful.

Since we assume that the subject reduces compound lotteries, her preferences 

over the compound lotteries induced by the mechanism are already captured by her 

functional Uq . Thus, a mechanism can be described by a function � ∶ M → Δ(ℝ) . 

Notice that we allow the mechanism to pay with arbitrary (simple) lotteries, not nec-

essarily lotteries over {0, 1, 2, 3}.

Proposition 3 In the set-up described above, there exists no incentive compatible 

mechanism for the decision problems D1 = {l, �1} and D2 = {l, �2}.

The proof of this proposition appears in the “Appendix”. While the proposition 

is stated for a particular pair of decision problems, we believe that this impossibility 

result is typical, and that for most experiments there will be no incentive compatible 

mechanism. Thus, either reduction of compound lotteries or the domain of admis-

sible preferences must be relaxed in order to get positive results.

7  Empirical tests of the RPS mechanism

Consider the following simple test of the RPS mechanism. In treatment A, subjects 

face (D1,… , D
k
) and are paid via the RPS mechanism. In treatment B subjects see 

only one D
i
 (for some i ∈ {1,… , k} ) and are paid for that one choice. If there are 

differences in the choice frequencies in D
i
 between treatments then one might infer 

that the RPS mechanism (and, thus, monotonicity) failed. There are several papers 

that have taken this approach, including Beattie and Loomes (1997), Cubitt et  al. 

(1998, Experiment 2), Cox et al. (2014, 2015), Harrison and Swarthout (2014) and 

Freeman et al. (2016). Results among them are mixed.

There is a potential confound in the above design, however: subjects in treatment 

A see more choice objects than those in treatment B, and seeing these other options 

might alter their preferences over D
i
 . For example, the decoy effect or compromise 

effect might alter preferences. If this is the case then differences in D
i
 across treat-

ments may not necessarily indicate a monotonicity failure.

One possible way to fix the confound is to have the subjects in treatment B make 

choices from all k decision problems (just as in treatment A), but knowing that only 

their choice from D
i
 will be paid. To our knowledge, there are four papers that take this 
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approach: Starmer and Sugden (1991), Cubitt et al. (1998, Experiment 3), Cox et al. 

(2015) and Brown and Healy (2018). Results here are also mixed. Starmer and Sug-

den (1991) find that the RPS mechanism is incentive compatible in one test, but not 

the other.22 Cubitt et al. (1998) and Cox et al. (2015) find no significant violation of 

incentive compatibility.23 Finally, Brown and Healy (2018) find significant a difference 

when all decisions are shown as one list on a single computer screen, but no significant 

difference when decisions are shown on sperate screens and in a random order. Indeed, 

this organizes the past results: the Starmer and Sugden (1991) rejection occurs when 

choices are presented in a list, but the other two studies—which find no rejection—pre-

sent choices in a separated format. Thus, we conjecture that the list presentation causes 

monotonicity violations and recommend separating decisions wherever possible.

Camerer (1989) uses the RPS mechanism in his experiment, and then, once the 

payment state is realized, surprises subjects by asking if they’d like to change their 

decision in the paid decision problem. Less than three percent of subjects opt to 

change, suggesting that the RPS mechanism is incentive compatible.24 Hey and Lee 

(2005b) ask whether their data fit better a model where subjects treat each question 

in isolation, or treat all as one large lottery. They assume several functional forms of 

preferences over lotteries, but find the data fit better the hypothesis that each deci-

sion is treated in isolation.25

Loomes (1998) and Rubinstein (2002) document a violation of monotonicity 

caused by irrational diversification. Imagine a die with four red faces and two blue 

faces. If subjects are asked to bet six times on six different rolls of the die, many will 

bet on red four times and bet on blue two times. Assuming they truly prefer the bet 

on red, the two bets on blue give a lottery that is stochastically dominated.26

Similarly, consider a dictator who must give $1 to either Ann or Bob. Suppose 

he prefers to give to Ann, but if given the choice twice might choose to give to Ann 

in one problem and Bob in another. The random choice of which problem gets paid 

provides an ex-ante fair division between Ann and Bob. This was first suggested by 

Diamond (1967), and evidence of this kind of preference has been documented by 

Bolton and Ockenfels (2010) and Cappelen et al. (2013), for example. Both fairness 

concerns and a preference for mixing suggest that monotonicity is more likely to be 

violated when the same question is asked repeatedly.

22 They report p values of 0.223 and 0.052, though their tests pool together two groups that saw different 

decision problems. Breaking these apart, we find the p values are 0.356 and 0.043, respectively.
23 Cox et  al. (2015) avoid the framing confound when comparing their “ImpureOT” to “POR” treat-

ments (we thank the authors for sharing their data), but not when comparing “OT” to “POR.” They do 

find significant differences across various mechanisms, but we focus here only on the ImpureOT versus 

POR comparison of interest.
24 This procedure cannot be used regularly, since forward-looking subjects would realize that their initial 

choices are inconsequential.
25 Hey and Lee (2005a) find a similar conclusion when subjects are given problems sequentially and 

future problems are not known.
26 Matching the frequency of the underlying events is known as ‘probability matching.’ Rubinstein 

(2002) pays for all decisions, but even then the bets on blue generate a stochastically dominated lottery 

and thus a violation of monotonicity.
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In developing prospect theory (Kahneman and Tversky 1979), it was found that 

subjects remove common components of compound lotteries. This ‘isolation effect’ 

has often been used as a justification for incentive compatibility of the RPS mech-

anism (Cubitt et  al. 1998; Wakker et  al. 1994). Indeed, isolation is equivalent to 

monotonicity (assuming transitivity), so isolation can be an appropriate justification 

for using the RPS mechanism.

Recall that monotonicity and reduction together imply expected utility, so mono-

tonicity may be questionable if reduction holds. Reduction has found little empirical 

support, however (see Camerer 1995,  p. 656 for a survey). For example, Loomes 

et  al. (1991), Starmer and Sugden (1991), Cubitt et  al. (1998, Experiment 1) and 

Beattie and Loomes (1997) all run experiments using the RPS mechanism in which 

two different messages m and m
′ lead to the same simple lottery if reduction is 

assumed. In their data, subjects choose one message significantly more often than 

the other, clearly indicating that m and m′ are evaluated differently in many subjects’ 

preferences. Snowball and Brown (1979), Schoemaker (1989) and Bernasconi and 

Loomes (1992) also observe violations of reduction. Halevy (2007) finds that sub-

jects who respect reduction seem to be rare, and seem to be exactly those for whom 

independence (and, therefore, monotonicity) is a reasonable assumption.

Acknowledgements The authors thank audiences at several seminars and conferences for helpful com-

ments. Healy gratefully acknowledges financial support from NSF Grant #SES-0847406.

Appendix 1: Proof of Lemma 3

For all of the appendices, recall that x ⪰ y indicates that either x ≻ y or x = y.

Suppose that E ∈ SI(�) , and that E is not a singleton. Let {x, y} ⊆ E be arbitrary. 

Consider the following two linear orders, ⪰ and ⪰� , which are identical except in 

their ranking of x and y (which are adjacent): They rank all elements of X∖E above 

all elements of E, and they rank x and y above all elements of E�{x, y} . However, 

x ≻ y and y ≻
′

x . It is clear that if there is no D ∈ � such that {x, y} ⊆ D ⊆ E , then 

for all D ∈ � , we have dom
⪰

D = dom
⪰�D , yet dom

⪰
E = x ≠ y = dom

⪰�E , contra-

dicting sure identification.

Conversely, suppose that for every pair {x, y} ⊆ E , there exists D ∈ � for which 

{x, y} ⊆ D ⊆ E . Suppose by means of contradiction that there exist ⪰ and ⪰� for 

which for all D ∈ � , dom
⪰

D = dom
⪰�D , but dom

⪰
E ≠ dom

⪰�E . Let w = dom
⪰

E 

and z = dom
⪰�E . There exists D�

∈ � for which {w, z} ⊆ D� ⊆ E . As a consequence, 

w = dom
⪰

D
� and z = dom

⪰�D
� , contradicting the fact that dom

⪰
D = dom

⪰�D for all 

D ∈ �.



23

1 3

Incentives in experiments with objective lotteries  

Appendix 2: Proof of Theorem 2

Step 1: Restrictions on '

Recall that L(x,⪰) and U(x,⪰) are the lower- and upper-contour sets of x according 

to ⪰ , respectively. Let r(x,⪰) = |U(x,⪰)| be the rank of x in ⪰ . Two elements x, y are 

adjacent in ⪰ if |r(x,⪰) − r(y,⪰)| = 1. A switch of x, y in an order ⪰ is the replace-

ment of the order of x, y, where x, y are adjacent in ⪰ . Denote the obtained order by 

⪰xy.27

Lemma 5 � is incentive compatible with respect to ℰmon if and only if it has the fol-

lowing two properties:

(1) For every ⪰ and every x, y with r(x,⪰) = r(y,⪰) − 1,

(a) �(�(⪰))(z) = �(�(⪰xy))(z) for every z ≠ x, y.

(b) �(�(⪰))(x) > �(�(⪰xy))(x) and  �(�(⪰))(y) < �(�(⪰xy))(y) whenever 

�(⪰) ≠ �(⪰xy).

(2) �(m) ∈ Φ
NR

 whenever m ∈ M
NR

.

Proof Assume � is incentive compatible and fix some ⪰ and some x,  y with 

r(x,⪰) = r(y,⪰) − 1 . If �(⪰) = �(⪰xy) then the conditions are trivially true. 

Now assume that they differ. Let z ≠ x, y be some other element of X. Assume 

first that r(z,⪰) < r(x,⪰) , so z is ranked above x (and y) according to ⪰ . Incen-

tive compatibility implies that �(�(⪰))(U(z,⪰)) ≥ �(�(⪰xy))(U(z,⪰)) and that 

�(�(⪰xy))(U(z,⪰xy)) ≥ �(�(⪰))(U(z,⪰xy)) . But since U(z,⪰) = U(z,⪰xy) we get 

that they are equal, that is �(�(⪰))(U(z,⪰)) = �(�(⪰xy))(U(z,⪰)) . The same 

argument applies to any z ranked above x (according to ⪰ ), which proves that 

�(�(⪰))(z) = �(�(⪰xy))(z) for any such z. A similar argument proves the assertion for 

elements z ranked below y. It follows that we must have �(�(⪰))(x) > �(�(⪰xy))(x) 

(and therefore �(�(⪰))(y) < �(�(⪰xy))(y) ) in order for �(�(⪰)) ⊐ �(�(⪰xy)) to hold. 

This concludes the proof of property 1.

As for property 2, whenever m ∈ M
NR

 incentive compatibility implies that 

�(�(⪰)) ⊐ �(m) for every ⪰ . First, this implies that �(m) ≠ �(�(⪰)) for every ⪰ . 

Second, assume that �(m) is not in Φ
NR

 . Then by the separation theorem there is a 

vector u ∈ ℝ
X such that 

∑

x
u(x)�(m)(x) >

∑

x
u(x)�(�(⪰))(x) for every ⪰ . By bound-

edness of the set Φ
NR

 , we can choose u such that u(x) ≠ u(y) whenever x ≠ y . Let 

⪰
u
 be the order over X defined by u (formally, u(x) > u(y) implies x ≻ y ). Then an 

expected utility maximizer with utilities u(⋅) prefers to report the non-rationalizable 

27 Formally, x ⪰ y ⟺ y ⪰xy
x and, for all other w, z ∈ X , w ⪰ z ⟺ w ⪰xy

z . Note that ⪰xy is only 

well-defined if x and y are adjacent in ⪰.
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choices m over her true choices �(⪰
u
) . But this means �(⪰

u
) does not first-order sto-

chastically dominate �(m) according to ⪰
u
 , a contradiction.

Conversely, assume that properties 1 and 2 are satisfied. Fix some ⪰ and consider 

some rationalizable deviation m ∈ M
R
 , m ≠ �(⪰) . Let ⪰�∈ �

−1(m) . Consider a mini-

mal sequence of switches that starts at ⪰ and ends at ⪰� . This means that x and y are 

switched somewhere a long the path if and only if x ≻ y but y ≻
′

x . Then property 1 

implies that after any switch along the way we get a lottery that is dominated (rela-

tive to ⪰ ) by the previous one. This shows that �(�(⪰)) dominates �(�(⪰�)) = �(m) . 

Finally, if m ∈ M
NR

 then by property 2 and the above argument �(m) is a convex 

combination of lotteries that are dominated (relative to ⪰ ) by �(�(⪰)) , so it is domi-

nated as well. This proves the lemma.   □

Step 2: Capacity representation

A capacity is a set function v ∶ 2
X
→ ℝ such that v(�) = 0 . A capacity v is normal-

ized if v(X) = 1 and monotone if A ⊆ B implies v(A) ≤ v(B).

De�nition 11 A capacity v satisfies switch positivity if for every 

x, y ∈ X and A ⊆ X ⧵ {x, y} the following holds: If T(x, y, A) ≠ � then 

v(A ∪ {x, y}) + v(A) > v(A ∪ {x}) + v(A ∪ {y}) ; otherwise, v(A ∪ {x, y}) + v(A) =

v(A ∪ {x}) + v(A ∪ {y}).

If v satisfies switch positivity then it is supermodular, meaning 

v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B) for every A, B ⊆ X.

Lemma 6 If a mechanism � is incentive compatible with respect to ℰmon then there 

exists a normalized and monotone capacity v that satisfies switch positivity such that 

�(m)(x) = v(L(x, m)) − v(L(x, m) ⧵ {x}) for every m ∈ M
R
 and every x ∈ X.

Proof Given A ⊆ X , consider some order ⪰ which ranks A at the bottom. Define 

v(A) = �(�(⪰))(A) ∶=
∑

x∈A
�(�(⪰))(x) . Notice first that, under incentive compat-

ibility, v is well-defined in the sense that it does not depend on the particular order 

⪰ used. Indeed, this follows from property (1a) in Lemma 5. It is also clear that v is 

normalized and monotone.

We now claim that v satisfies switch positivity. To see this, take any 

x,  y and A ⊆ X ⧵ {x, y} . Consider some order ⪰ with L(x,⪰) = A ∪ {x} 

and L(y,⪰) = A ∪ {x, y} . We have v(A ∪ {x}) = �(�(⪰))(A ∪ {x}) and 

v(A ∪ {y}) = �(�(⪰xy))(A ∪ {y}) , so

Now, if T(x, y, A) ≠ � then �(⪰) ≠ �(⪰xy) (see Remark 4.3), so by property (1b) of 

Lemma 5 we have �(�(⪰xy))(y) < �(�(⪰))(y) . Thus,

v(A ∪ {x}) + v(A ∪ {y}) = �(�(⪰))(A ∪ {x}) + �(�(⪰xy))(A ∪ {y})

= v(A) + �(�(⪰))(A) + �(�(⪰))(x) + �(�(⪰xy))(y).
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as required. On the other hand, if T(x, y, A) = � then �(⪰) = �(⪰xy) , so we get

Finally, we need to show that �(m)(x) = v(L(x, m)) − v(L(x, m) ⧵ {x}) whenever 

m ∈ M
R
 . Fix m ∈ M

R
 and some x ∈ X . We claim that there is ⪰∈ �

−1(m) such that 

L(x, m) = L(x,⪰) . Since L(x, m) ⊆ L(x,⪰) for all ⪰∈ �
−1(m) , it is sufficient to show 

that the reverse inclusion holds for some ⪰∈ �
−1(m) . To see this, start with an arbi-

trary ⪰∈ �
−1(m) and consider the set L(x,⪰) ⧵ L(x, m) . If this set is empty we are 

done. Otherwise, take the highest ranked element (according to ⪰ ) in this set, say 

y. Then for any z ranked between y and x (including z = x ) it cannot be that zR(m)y, 

so by a sequence of switches we can put y above x without changing the resulting 

choices. By repeating this procedure for every element in L(x,⪰) ⧵ L(x, m) we get 

the desired order, say ⪰� . For this order we have

as needed.   □

Step 3: Weighting vector representation

Lemma 7 Given � , if there exists a normalized and monotone capacity v that sat-

isfies switch positivity such that �(m)(x) = v(L(x, m)) − v(L(x, m) ⧵ {x}) for every 

m ∈ M
R
 and every x ∈ X , then � is a weighted set-selection mechanism that satisfies 

switch positivity.

Proof Let v be a normalized and monotone capacity that satisfies switch positivity 

and represents � as in the assertion of the lemma. As is well known (see Gilboa and 

Schmeidler 1995, e.g.), any capacity can be uniquely represented as a linear combi-

nation of the ‘unanimity capacities’. That is, there is a unique vector {�(E)}
E⊆X,E≠� 

such that v(A) =
∑

E⊆A
�(E) for every A ⊆ X.

We first show that if B is not SI then �(B) = 0 . If B is not SI then by Lemma 3 

there are x, y ∈ B such that for no 1 ≤ i ≤ k it holds that {x, y} ⊆ Di ⊆ B . This in turn 

implies that T(x, y, B ⧵ {x, y}) is empty (see Remark 4.3). Since v satisfies switch 

positivity we get that

v(A ∪ {x}) + v(A ∪ {y}) < v(A) + �(�(⪰))(A) + �(�(⪰))(x) + �(�(⪰))(y)

= v(A) + v(A ∪ {x, y}),

v(A ∪ {x}) + v(A ∪ {y}) = v(A) + �(�(⪰))(A) + �(�(⪰))(x) + �(�(⪰))(y)

= v(A) + v(A ∪ {x, y}).

v(L(x, m)) − v(L(x, m) ⧵ {x}) = v(L(x,⪰�)) − v(L(x,⪰�) ⧵ {x})

= �(m)(L(x,⪰�)) − �(m)(L(x,⪰�) ⧵ {x})

= �(m)(x),
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But if {x, y} ⊆ Di ⊆ B for no i then for every set E in the sum on the left it is also 

true that {x, y} ⊆ Di ⊆ E for no i, which implies that every such E is not SI. By 

induction on the size of B we can therefore prove that �(B) = 0.

We next check that the vector � satisfies switch positivity. Take any x, y ∈ X and 

A ⊆ X ⧵ {x, y} . By the last paragraph,

If T(x, y, A) ≠ � then since v satisfies switch positivity we have that 

v(A ∪ {x, y}) − v(A ∪ {x}) − v(A ∪ {y}) + v(A) > 0 . Thus, � satisfies switch 

positivity.

The last thing to check is that � in fact represents the weighted set-selection 

mechanism � as in Definition 7. This follows from (for m ∈ M
R
)

  □

Step 4: Weighted set-selection mechanisms are incentive compatible

Lemma 8 If � is a weighted set-selection mechanism that satisfies switch positivity 

and satisfies �(m) ∈ Φ
NR

 whenever m ∈ M
NR

 then � is incentive compatible with 

respect to ℰmon.

Proof To check that � is incentive compatible we use Lemma 5. It follows imme-

diately from the definition of a weighted set-selection mechanism that in a switch 

of adjacent two elements x, y the probability of any other element z being selected 

is not affected. Further, we have just showed above that the probability of x goes 

strictly up after a switch that increases the rank of x and changes the truthful mes-

sage. This proves property 1 of Lemma 5. Property 2 of Lemma 5 is satisfied by 

assumption.   □

Appendix 3: Proof of Proposition 3

It will be convenient to think of any lottery f as a function f ∶ ℝ → ℝ , with f(x) 

being the probability assigned to x by f. For instance, the lottery l in the proposition 

is identified with the function l(0) = l(3) = 1∕2 and l(x) = 0 otherwise. Addition of 

lotteries and multiplication of lotteries by scalars are performed pointwise (yielding 

∑

{E∶ {x,y}⊆E⊆B}

�(E) = v(B) − v(B ⧵ {x}) − v(B ⧵ {y}) + v(B ⧵ {x, y}) = 0.

∑

{E∈T(x,y,A)}

�(E) = v(A ∪ {x, y}) − v(A ∪ {x}) − v(A ∪ {y}) + v(A).

�(m)(x) = v(L(x, m)) − v(L(x, m) ⧵ {x}) =
∑

{E∶ x∈E⊆L(x,m)}

�(E) =
∑

{E∶ dom
m
(E)=x}

�(E).
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functions which are not necessarily lotteries). The expected utility of a lottery f for a 

subject with utility function u (defined on dollar amounts) is denoted by u ⋅ f .

The proof is broken into two claims:

Claim 1 If � is incentive compatible then there is a ∈ (0, 1∕2] such that 

�(�1, �2) − �(l, �2) = −a�0 + 2a�1 − a�3.

Proof Consider some strictly increasing utility function u such that 

1∕2u(0) + 1∕2u(3) = u(1) . Then an expected utility maximizer (a special case of 

RDU preferences) with utility function u is indifferent between l and �
1
 , so both 

announcements (�1, �2) and (l, �2) are truthful. By incentive compatibility this 

decision maker must also be indifferent between �(�1, �2) and �(l, �2) , that is 

u ⋅ �(�1, �2) = u ⋅ �(l, �2).

First, it cannot be true that there is x ∈ ℝ ⧵ {0, 1, 3} such that 

�(�1, �2)(x) ≠ �(l, �2)(x) . Indeed, let u be as above, and change the values of u in 

a small neighborhood of x (small enough that it does not affect any other point in 

the support of the two lotteries) to get a new increasing function ũ that still sat-

isfies 1∕2ũ(0) + 1∕2ũ(3) = ũ(1) . Then it cannot be true that both equalities 

u ⋅ �(�1, �2) = u ⋅ �(l, �2) and ũ ⋅ �(�1, �2) = ũ ⋅ �(l, �2) hold simultaneously, a 

contradiction.

Thus, there are a, b, c ∈ ℝ such that �(�1, �2) − �(l, �2) = a�0 + b�1 + c�3 . Con-

sider a utility function u with u(0) = 1, u(1) = 2 and u(3) = 3 . By the same argu-

ment as above we get that u ⋅ �(�1, �2) = u ⋅ �(l, �2) , which implies a + 2b + 3c = 0 . 

By considering another function u with u(0) = 1, u(1) = 3 and u(3) = 5 gives 

a + 3b + 5c = 0 . Solving these two equations gives b = −2a and c = a.

To conclude, we showed that �(�1, �2) − �(l, �2) = −a�0 + 2a�1 − a�3 for some 

a ∈ ℝ . The fact that a > 0 follows by looking at an expected utility maximizer with 

the utility function u(x) = x (who strictly prefers the lottery l over �
1
 ). The fact that 

a ≤ 1∕2 is obvious.   □

The proof of the above claim only considered EU preferences. The following 

claim makes use of RDU preferences which do not satisfy independence.

Claim 2 If � is incentive compatible then �(�1, �2) = �1 and �(l, �2) = l.

Proof Let u be the function u(x) = 0 for x < 1 , u(1) = 1 , and u(x) = 3 for x > 1 . 

Consider an RDU decision maker with utility function u and a probability weight-

ing function q satisfying q(0) = 0, q(1∕2) = 1∕2, q(1) = 1 . Any such decision 

maker prefers the lottery l over �
1
 and prefers �

2
 over l. Thus, for incentive com-

patibility, any such decision maker must prefer �(l, �2) over �(�1, �2) , that is 

Uq(�(l, �2)) > Uq(�(�1, �2)).

By the definition of u we have that

Uq(h) = 1[q(H(1)) − q(H(1−))] + 3[1 − q(H(1))]



28 Y. Azrieli et al.

1 3

for every lottery h with cdf H. Denote by F the cdf of the lottery �(l, �2) and by G 

the cdf of �(�1, �2) . Then incentive compatibility requires that

for every q as above.

By the previous claim, there is 0 < a ≤ 1∕2 such that 

G(1) − F(1) = F(1−) − G(1−) = a . We claim now that incentive compatibility 

can only hold if a = 1∕2 ., i.e. if G(1) = 1, F(1) = F(1−) = 1∕2 and G(1−) = 0 . 

Indeed, in any other case it is possible to choose q (strictly increasing, q(0) = 0 , 

q(1) = 1 , q(1∕2) = 1∕2 ) such that q(G(1)) − q(F(1)) is much smaller than 

q(F(1−)) − q(G(1−)) , which violates (2). The precise construction of such q 

depends on which of the intervals [0,  1  /  2] or [1  /  2,  1] each one of these four 

numbers belongs to, but it is straightforward in all cases. For instance, assume that 

G(1−) ∈ [0, 1∕2] and F(1−), F(1), G(1) are all in (1 / 2, 1]. Then we can find q such 

that q(F(1−)), q(F(1)) and q(G(1)) are all close to 1, while q(G(1−)) is at most 1/2. 

Other cases are treated similarly.   □

To conclude the proof, notice that the same arguments can be applied to the 

choices in the second decision problem. That is, incentive compatibility requires that 

�(l, l) = l and �(l, �2) = �2 . Since we cannot have �(l, �2) = l and �(l, �2) = �2 at the 

same time, we conclude that an incentive compatible mechanism does not exist.
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