
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at ACM Symposium on Cloud Computing
2017 (SoCC '17).

Citation for the original published paper:

Shahrad, M., Klein, C., Zheng, L., Chiang, M., Elmroth, E. et al. (2017)
Incentivizing Self-Capping to Increase Cloud Utilization.
In: Proceedings of the 2017 Symposium on Cloud Computing (SOCC '17) Association
for Computing Machinery (ACM)
https://doi.org/110.1145/3127479.3128611

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138268

Incentivizing Self-Capping to Increase Cloud Utilization

Mohammad Shahrad
Princeton University

mshahrad@princeton.edu

Cristian Klein
Umeå University
cklein@cs.umu.se

Liang Zheng
Princeton University
liangz@princeton.edu

Mung Chiang
Princeton University / Purdue University

chiangm@princeton.edu

Erik Elmroth
Umeå University

elmroth@cs.umu.se

David Wentzlaf
Princeton University

wentzlaf@princeton.edu

ABSTRACT

Cloud Infrastructure as a Service (IaaS) providers continually seek
higher resource utilization to better amortize capital costs. Higher
utilization not only can enable higher proit for IaaS providers but
also provides a mechanism to raise energy eiciency; therefore
creating greener cloud services. Unfortunately, achieving high uti-
lization is diicult mainly due to infrastructure providers needing
to maintain spare capacity to service demand luctuations.

Graceful degradation is a self-adaptation technique originally
designed for constructing robust services that survive resource
shortages. Previous work has shown that graceful degradation can
also be used to improve resource utilization in the cloud by absorb-
ing demand luctuations and reducing spare capacity. In this work,
we build a system and pricing model that enables infrastructure
providers to incentivize their tenants to use graceful degradation.
By using graceful degradation with an appropriate pricing model,
the infrastructure provider can realize higher resource utilization
while simultaneously, its tenants can increase their proit. Our pro-
posed solution is based on a hybrid model which guarantees both
reserved and peak on-demand capacities over lexible periods. It
also includes a global dynamic price pair for capacity which remains
uniform during each tenant’s Service Level Agreement (SLA) term.

We evaluate our scheme using simulations based on real-world
traces and also implement a prototype using RUBiS on the Xen
hypervisor as an end-to-end demonstration. Our analysis shows
that the proposed scheme never hurts a tenant’s net proit, but can
improve it by as much as 93%. Simultaneously, it can also improve
the efective utilization of contracts from 42% to as high as 99%.

CCS CONCEPTS

•Computer systems organization→Cloud computing; • Soft-
ware and its engineering → Cloud computing; • Social and
professional topics→Pricing and resource allocation; Infor-
mation system economics; •Theory of computation→Com-

putational pricing and auctions;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speciic permission
and/or a fee. Request permissions from permissions@acm.org.
SoCC’17, September 24ś27, 2017, Santa Clara, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5028-0/17/09. . . $15.00
https://doi.org/110.1145/3127479.3128611

KEYWORDS

cloud computing, pricing model, economic incentives, utilization,
resource management, dynamic pricing, SLA, IaaS

ACM Reference Format:

Mohammad Shahrad, Cristian Klein, Liang Zheng, Mung Chiang, Erik Elm-
roth, and David Wentzlaf. 2017. Incentivizing Self-Capping to Increase
Cloud Utilization. In Proceedings of ACM Symposium of Cloud Computing

conference, Santa Clara, CA, USA, September 24ś27, 2017 (SoCC’17), 14 pages.
https://doi.org/110.1145/3127479.3128611

1 INTRODUCTION

Cloud computing promises to deliver computing and storage ca-
pacity at a usage-based price lower than self-hosting. By taking
advantage of statistical multiplexing, cloud providers can host sev-
eral cloud users, utilizing a capacity which is just a fraction of
the sum of the cloud users’ peak demands. This leads to higher
infrastructure utilization and therefore lower costs [6].

Higher resource utilization can be a competitive advantage for
IaaS providers, since they can amortize their capital as well as oper-
ational costs better to ofer lower prices and/or achieve higher proit
margins. Increasing server utilization is not only the best way to
improve cost eiciency [9], but also an essential enabler of greener
cloud services through better energy eiciency [20, 40]. Pushing for
high infrastructure utilization, however, is rather arduous; mainly
because cloud providers need to preserve a large spare capacity to
manage demand luctuations [1].

Solutions to this issue either involve more eicient provisioning
of resources or new provisioning models that can ofer inherently
higher utilizations. Google’s Borg [66] is an example of the for-
mer approach which employs techniques such as careful resource
sharing and reclamation to improve utilization. In contrast, Ama-
zon EC2’s introduction of spot instances [4] was a successful new
provisioning model which allowed selling unused resources with
lower availability guarantees. Some other solutions include deploy-
ing long-term contracts [14], dynamic efective capacity modula-
tion [68], and dynamic availability provisioning [54].

Graceful Degradation (GD) is a resilience concept widely used to
enable IT services that can endure resource scarcity. One example
of GD is that video quality can be reduced automatically when
the network is slow so that the stream is not disrupted [61, 62].
Self-adaptation is also applied to cloud applications allowing them
to survive temporary capacity shortages by degrading or disabling
some of their features [33]. Researchers have already shown that
using graceful degradation can improve the cloud resource utiliza-
tion by 11 to 37 percentage points [63]. Moreover, it is easier to
meet latency requirements for less bursty tenants [78].

https://doi.org/110.1145/3127479.3128611
https://doi.org/110.1145/3127479.3128611

SoCC’17, September 24–27, 2017, Santa Clara, CA, USA M. Shahrad et al.

In this work, we explore how an Infrastructure Provider

(IP) can give economic incentives to its tenants, the Service

Providers (SPs), to use GD. Furthermore, we investigate how the
infrastructure provider can incentivize them to use GD in the

way it wants them to; allowing the IP to achieve speciic global
policies. Our system supports GD-compliance and enables a mu-
tually beneicial interaction by providing a pricing model for IPs
and proit optimization means to their users. This results in less
resource variation for IPs and more proit for users.

Our proposed solution is based on a hybrid model guaranteeing
both reserved and peak on-demand capacities over lexible periods.
It also includes a global dynamic price pair which remains uniform
during each user’s SLA term. Our paper supports making GD a
irst-class citizen in cloud-native applications and cloud provider
APIs through the following main contributions:

• We propose a pricing model to incentivize GD-compliant
SPs such that they can gain more proit by limiting their own
burstiness. We provide formulations for SPs to select optimal
reserved and peak on-demand capacity values assuming
diferent price and revenue functions.

• We demonstrate how an IP can change global capacity prices
to incentivize the same behavior among all its clients.

• Using simulations based on real-world service provider uti-
lization traces, we evaluate our scheme’s main promises
regarding increased proit for SPs, improved efective utiliza-
tion for IPs, and their ability to enforce global policies.

• We implement and test a prototype to validate the simulation
results using RUBiS on the Xen [8] hypervisor.

The extent of our system’s beneits depends on the revenue an SP
makes from unit capacity and its sensitivity to GD. Our conservative
analysis shows that while a tenant’s proit is never hurt, using our
pricing model can increase it by as much as 93%. It also can improve
the efective utilization of contracts from 42% to as high as 99%.

2 BACKGROUND ON GRACEFUL
DEGRADATION

Most cloud applications have rigid resource requirements, in the
sense that, given a certain workload intensity Ð e.g., characterized
by an arrival rate or a number of users Ð there is a ixed amount
of computing, storage, and network capacity that the application
requires to obtain a target performance Ð e.g., response time or
throughput. If the application is not allocated the required capacity,
it might overload or even thrash, afecting its delivered services.
Conversely, if the application is allocated more than the required
capacity, it cannot make efective use of it; hence capacity is efec-
tively wasted.

In contrast, an application supporting GD can make efective
use of a range of capacities. For each workload intensity and target
performance, the application features a minimum and a maximum
capacity. If the application is allocated less than the minimum
required capacity, it is unable to deliver any useful service. If the
application is allocated more than the minimum capacity, it can
deliver useful service to its users, with the quality of experience
increasing as more capacity is allocated to it. Beyond the maximum
capacity, the application can no longer increase the delivered quality
of experience, and the extra capacity is wasted.

0 1 2 3 4 5 6 7
Days (First week of Aug. 2013)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ag
gr

eg
at

e
CP

U
Ut

ili
za

tio
n

(T
Hz

)

Cmax

Cmin

Cb

Cd

Figure 1: Aggregate CPU utilization variations for a service

provider (Bitbrains [56]) serving 1,250 VMs.

Let us now examine two applications supporting GD, one for
computing (CPU) capacity and the other for network capacity (band-
width). Online shops generally ofer end-users recommendations
for similar products they might be interested in. No doubt, rec-
ommendation engines greatly increase the user experience, which
translates to higher revenue. In fact, research has shown that recom-
mendations may increase revenue by up to 50% [22]. However, due
to their sophistication, such engines demand signiicant computing
resources. By selectively activating or deactivating recommenda-
tions, an application’s capacity requirements can be controlled at
the expense of end-user experience. By applying a GD software
engineering methodology, called brownout [33], the developer only
needs to mark the recommendations as optional, and an external
controller decides when to enable optional code, so as to maintain
a given target response time (e.g. the 95th percentile response time
below 300ms). At the minimum capacity, the online shop serves no
recommendations, whereas at the maximum capacity it serves all
users with recommendations.

As for network capacity, Dynamic Adaptive Streaming over
HTTP [61, 62] is a technology to serve video streams at various
levels of quality as permitted by network bandwidth. The video
is divided into segments, usually 10 seconds, and each segment is
encoded at several video resolutions, e.g., 240p up to 1080p. The
video client continuously monitors the available bandwidth, by
measuring how quickly the current segment was downloaded and
decides the video quality of the next segment to download. From the
service provider’s perspective, if the minimum (network) capacity
is allocated to it, all clients are served with lowest video quality;
whereas if the maximum capacity is allocated to it, then all clients
are potentially served with the best video quality.

3 SYSTEM OVERVIEW

An SP which is served on top of an IP’s infrastructure can have
capacity demand that varies and has unexpectedly high luctua-
tions over time due to variations in query rate, content, popularity,
etc. As a result, SPs usually ask for more resources than their esti-
mated peak capacity requirements to mitigate the impact of such

Incentivizing Self-Capping to Increase Cloud Utilization SoCC’17, September 24–27, 2017, Santa Clara, CA, USA

Capacity
Controller

Price Controller Hypervisor

Service Provider

Infrastructure Provider

dynamic
price

capacity
request

capacities

capacity
demand

queries

Clients

GD-compliant
Application

Figure 2: An overview of our system’s architecture.

luctuations on end-users’ (clients’) Quality of Service (QoS). We
propose a new model for GD-compliant SPs, which includes a base
reserved capacity cb as well as total resource capacity cd , as shown
in Figure 1. The IP charges each SP a unit base price pb for the re-
served portion cb , regardless of how much of the reserved capacity
is going to be utilized. It also charges the SP a usage-based unit
price pd for any extra capacity usage between the base and the
total capacity Service Level Objectives (SLOs) in a pay-as-you-go
model. Any capacity request beyond cd will not be allocated under
the current SLA and requires re-negotiation.

An overview of our system is presented in Figure 2. Clients
access the SP’s application remotely. The application is assumed
to support GD already, i.e., it gracefully degrades the quality of
experience depending on the computing or networking capacity
available to it. The SP has a capacity controller that negotiates the
base capacity cb and total capacity cd with the IP, using algorithms
provided later in the paper. The capacity requirement for serving
all requests without GD is computed by the application itself, for
example, as c = αλ, where λ is a measure of load Ð such as number
of users Ð and α is a constant obtained through of-line or on-line
proiling representing the amount of load that a unit of capacity
can sustain.

On the IP side, a price controller fulills three roles. First, it
gathers all capacities from each SP and computes the on-demand
price (pd). Second, to enforce total capacity and ensure that no SP
uses more than what is allowed in the SLA, the price controller sets
a capacity constraint for each SP. These capacity constraints are
enforced by the underlying hypervisors running on the IP’s host
machines. Finally, the price controller meters the amount of base
capacity requested and total capacity consumed by each SP over
time for billing and planning purposes.

In Section 4, we present a pricing model which enables an SP to
select the optimal resource capacity values based on given prices
and enables an IP to control its overall utilization by setting the
capacity prices. Dynamic pricing and graceful degradation are the
two main elements that realize these objectives. The concept of
dynamic resource pricing, which forms a feedback loop to control
supply/demand mismatch as well as infrastructure under/over uti-
lization, is not new and has been proposed previously by other
researchers [29, 70, 74]. However, we provide SPs with GD as a

Negotiation timeout!
n. Capacity confirmed

Tim
e

SPIP

1. Enquire service options

2. Reveal options and
lock price for a while

3. Request capacity (Cb, Cd)

4. Capacity denied

SPIP

1. Enquire service options

2. Reveal options and
lock price for a while

3. Request capacity (Cb, Cd)

4. Capacity denied

(a) (b)

Figure 3: Negotiation process for a successful (a) and an

unsuccessful (b) negotiation. The SP is ofered guaranteed

prices (pb and pd) for a ixed time window.

tool to deal with this dynamic pricing environment more eiciently.
Moreover, we believe that in order for dynamic pricing to be practi-
cal and easy-to-comprehend, the resource price should stay con-

stant during a tenant’s termof contract. Meaning that although
the resource price might luctuate continuously, as soon as a tenant
conirms the SLA, it will be charged at a ixed price during its SLA
period. We chose this for practicality and ease of use, but such an
assumption is not fundamental in our proposed pricing model.

When service options are revealed to a tenant, prices are guaran-
teed for a short time window (e.g. an hour), within which the tenant
can inalize the SLA. The IP might not approve the requested capac-
ity due to limited available capacity or other reasons1. Therefore,
inalizing a negotiation might take multiple iterations. The negotia-
tion has to be restarted if the price freeze window is expired and
SLA is not yet concluded. Figure 3 shows two example negotiation
processes.

Defending against false-name bidding or collusion scenarios is an
open issue for existing cloud pricing models [46], partially because
performing large-scale collusion scenarios is rather infeasible and
defending against them entails signiicant revenue reduction for
cloud providers [69]. Similarly, we assume no such scenarios.

4 INCENTIVE-COMPATIBLE PRICING
MECHANISM

We consider a cloud system, where a monopolistic IP allocates its
resources of a total amountC to customers, including SPs who then
deliver various cloud-based applications, such as online shopping
and video streaming, to their end users. We suppose that some
SPs can run GD-compliant applications, i.e., their user experience
would be gracefully degraded if insuicient cloud resources are
allocated to them (see Section 2). To incentivize such kind of SP
self-adaption, we irst describe the IP’s pricing model in Section 4.1
and then discuss how SPs as well as the IP would beneit from
our proposed scheme in Sections 4.2 and 4.3, respectively. Finally
in Section 4.4 we discuss the statistical data required to use our
scheme. Table 1 lists all parameters we use in this paper.

1Amazon EC2, for instance, sets default limits on its resources on a per-region basis [3].

SoCC’17, September 24–27, 2017, Santa Clara, CA, USA M. Shahrad et al.

Parameter Description
β Exponent of c in revenue function
c An SP’s aggregate capacity demand
ĉ Delivered capacity to an SP
cb Reserved capacity portion
c⋆
b

Optimal cb
cd Total deliverable capacity
c⋆
d

Optimal cd
cmax Maximum capacity demand in a period
cmin Minimum capacity demand in a period
C Total capacity of an IP
δd Change in c⋆

d
δp Change in pd
f (c) Capacity distribution function in a period
γ Coeicient of power-law revenue function
k Degree of homogeneity for revenue function
P An SP’s proit
pb Reserved capacity unit price
pd On-demand capacity unit price
R(c,θ) An SP’s revenue function
θ Service degradation factor
ue Efective resource utilization of an SP
Y An SP’s payment

Table 1: List of all parameters used in the paper.

4.1 Pricing Model

We described our model which consists of reserved (cb) as well as
total (cd) capacity parameters in Section 3. While an SP is always
charged for the reserved part (with unit pricepb), any extra capacity
usage between the base and the total capacity SLOs is priced in a
pay-as-you-go fashion (with unit pricepd). An SP (or any other IaaS
customer in general) can trigger GD to deactivate or tune down
some optional features to reduce the capacity.

Provisioning resources in a reserved manner is generally more
favorable for IPs due to its lower risk. That is why such resources
are usually provided with a lower price:

pb < pd . (1)

It will be demonstrated later how these two pricing parameters
afect the amount of reserved and total capacity an SP purchases.
However, note that this simple equation works as a capacity valley
shaping tool which motivates SPs to request as much reserved
capacity as possible.

4.2 Service Provider: Trade-ofs between Proit
Maximization and Graceful Degradation

In Section 4.1, we mentioned that the SLA includes reserved (cb)
as well as total capacity (cd) SLOs. Suppose that real-time capacity
c for serving user demand of each SP follows a distribution with
probability density function (PDF) f (c), with a maximum capacity
cmax and a minimum capacity cmin . We note that both cb and
cd can be larger or less than cmax depending on an SPs’ strategic
decisions.

When c is larger than cd , the degradation ratio for an SP capable
of performing GD is

θ =
cd
c
, (cd < c), (2)

meaning that in a balanced degradation, each user’s delivered ser-
vice or QoS (depending on the application) is roughly proportional
to θ ∈ [0, 1]. Notice that θ = 1 always holds if cd ≥ cmax . For an
SP with no GD capability, cd must be at least cmax (no tolerance to
capacity shortage) and θ is always 1 (no degradation).

Each SP’s revenue function can be represented byR(c,θ), where c
is the required resource assigned to serve all users with the premium
service and θ is the percentage of c that is actually allocated to serve
users. We make the following two assumptions for R(c,θ):

(i) Monotonically increasing in terms of c and θ :
R(c,θ1) ≥ R(c,θ2) if θ1 ≥ θ2
R(c1,θ) ≥ R(c2,θ) if c1 ≥ c2.

(ii) Positive homogeneity2 of degree k in terms of θ :
R(c, λθ) = λkR(c,θ).

For the revenue function, the increasing monotonicity ensures
the increase in revenue when serving more users. The positive
homogeneous function has its well-known economic applications
to model production functions [11, 31, 38], capturing the return of
inputs (i.e. capacity) that scale up and down outputs (i.e. revenue). In
particular, when the degradation ratio of θ increases by proportion
λ, revenue increases by proportion λk .

For example, to model R(c,θ), we can use a general form of
power-law functions:

R(c,θ) = γθkcβ , (3)

where γ is a positive constant representing the scale of the revenue
to capacity demand, and k > 0 and β > 0 establish the revenue’s
power-law relation with θ and c . When γ = 1/(1 − α) and k =

β = 1 − α for α ∈ [0, 1), (3) is the commonly-used α-fair function
[48, 75].

Based on the Euler’s homogeneous function theorem (cf. Theo-
rem A.2, Appendix A), the degree of homogeneity k can be viewed
as the ratio of marginal revenue to cost. For example, if k ≥ 1, rev-
enue increases more rapidly than the cost of cloud capacity does;
thus, maximum proit for SPs happens when they claim a high
enough cd = cmax to always guarantee the highest QoS for users.
Conversely, the SPs with a diminishing marginal revenue (e.g., a
concave revenue function, which is a special case for an increasing
and positive homogeneous function of degree k ∈ (0, 1)) are more
likely to take advantage of GD by setting cd < cmax : whenever
c > cd , SPs would disable some of the client’s alternative services,
and the client’s QoS is lowered as θ < 1. This type of revenue
function can be summarized as the following necessary condition
(cf. Appendix A):

Proposition 4.1 (GD-profitable). An application can increase

its proit using GD if its revenue function R(c,θ) is positive homoge-

neous of degree k ∈ (0, 1) in terms of θ . We call such an application

GD-proitable.

Figure 4 illustrates an SP’s revenue and cost as a function of
capacity demand (c), given some cb and cd values. When c exceeds
cd , SPs have to trigger GD to restrict their resources to cd , leading
to a diminishing revenue increase. While both cost and revenue
increase with c , a GD-proitable SP can earn more proit by applying
GD as long as marginal cost could be higher than revenue increase

2Deinition and properties of positive homogeneity in Appendix A.

Incentivizing Self-Capping to Increase Cloud Utilization SoCC’17, September 24–27, 2017, Santa Clara, CA, USA

Capacity Demand (c)

0 10 20 30 40 50

R
e
v
e
n
u
e
 &

 C
o
s
t

0

5

10

15

c
b
=

1
0

c
d
=

1
6

Reveue for k = 0.85

Reveue for k = 0.75

Cost for pd = 0.065

Cost for pd = 0.08

Cost for pd = 0.1

Figure 4: Illustration of revenue and cost for GD-proitable

SPs. The revenue function is parametrizedwithγ = 0.8, β = 1.

We suppose cb = 10 and cd = 16 and set pb = 0.025. Gray area

represents GD operation mode and colored markers show

the proit maximization operating points for diferent k val-

ues and various cost functions.

when c > cd : the markers on the revenue curves in Figure 4 show
when maximum proit is achieved. However, under various revenue
functions and pricing policies, cb and cd may not always maximize
the SPs’ proit for some capacity demands beyond cd ; for example,
the marker on c = cd means that the maximum proit happens
without GD. Thus, for SPs, cb and cd need to be carefully chosen
based on pb , pd , and R(c,θ), and for the IP, it also needs to set pb
and pd carefully to incentivize GD-proitable SPs.

We now mathematically formalize a GD-proitable SP’s decision
on its optimal capacity requests, c⋆

b
and c⋆

d
.

Proposition 4.2. If pb < pd and the following two conditions are

also satisied: ∫ cmax

cb

k

cb
R

(
c,
cb
c

)
f (c)dc > pb , (4)

k

cmax
R(cmax , 1) < pd , (5)

then a GD-proitable SP maximizes its expected proit by choosing cb
and cd such that cmax > cd > cb > cmin .

As a remark, we observe: the condition in (4) implies that re-
served price is less than the expected unit revenue above cb , while
the condition in (5) ensures that the on-demand price is higher than
the unit revenue at the peak capacity demand, i.e., SPs would not
allow cmax < cd . We thus ind out that the GD-proitable SP is
incentivized to reduce their peak capacity if conditions in (4) and
(5) are satisied.

Figure 1 illustrates the case in Proposition 4.2. If cmax > cd >

cb > cmin , the expected payment for an SP can be calculated by

E(Y) = pbcb +

∫ cd

cb

pd (c − cb)f (c)dc

+

∫ cmax

cd

pd (cd − cb)f (c)dc,
(6)

and its expected revenue can be calculated by

E(R) =

∫ cd

cmin

R(c, 1)f (c)dc +

∫ cmax

cd

R(c, cd/c)f (c)dc, (7)

leading to the expected proit of

E(P) = E(R) − E(Y). (8)

1 2 3 4 5

p
d
/p

b

0

0.2

0.4

0.6

0.8

1

O
p
ti
m

a
l
R

e
s
e
rv

e
d
 C

a
p
a
c
it
y
 (

c
b
*)

Uniform Distribution

C
min

 = 0.5

C
min

 = 0

1 2 3 4 5

p
d
/p

b

0

0.2

0.4

0.6

0.8

1

O
p
ti
m

a
l
R

e
s
e
rv

e
d
 C

a
p
a
c
it
y
 (

c
b
*)

Normal Distribution

=0.7, =0.05
=0.7, =0.2

=0.5, =0.05
=0.5, =0.2

Figure 5: The optimal reserved capacity (c∗
b
) based on Corol-

lary 4.3 for diferent demand distribution (f (c)) functions.

cmax is normalized to one for all of them.

 /p
d
 = 1.5

0.11

0.11

0.1
1

0.11
0.11

0.22

0.22

0.
22

0.22

0.33

0.33

0.3
3

0.33

0.44

0.44

0.44

0.44

0.55

0.55

0.55

0.66

0.66

0.66

0.77
0.77

0.77

0.88 0.88

0.88

0.99 0.99

0.99

0 0.5 1 1.5 2

0.5

1

k

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6: The optimal total capacity (c∗
d
) based on (10) for

a power-law (Eq. (3)) revenue function under a uniform de-

mand distribution. Cmax is normalized to one.

Corollary 4.3. In order to maximize the expected proit given in

(8), the optimal c⋆
b
for any SP and the optimal c⋆

d
for a GD-proitable

SP satisfy ∫ cmax

c⋆
b

f (c)dc =
pb
pd
, (9)

c⋆
d
=

∫ cmax

c⋆
d

kR(c, c⋆
d
/c)f (c)dc

∫ cmax

c⋆
d

pd f (c)dc

. (10)

This corollary, the proof of which is provided in the Ap-

pendix B, allows SPs to ind the optimal base and total ca-

pacities to maximize their proit. Note that all SPs can choose
c⋆
b
satisfying (9) regardless of their GD-proitability. GD-proitable

SPs set c⋆
d
based on (10) and if c⋆

b
was larger than c⋆

d
, limit it by c⋆

d
.

In contrast, GD-unproitable SPs must set c⋆
d
to cmax , since they

cannot tolerate any capacity shortage.
We can observe from (9) that c⋆

b
is inversely related to

pb
pd

, i.e., a

smaller pb encourages SPs to reserve more cloud resources. Mean-

while, (10) implies pd is greater than
∫ cmax

c⋆
d

k
c⋆
d

R(c, c⋆
d
/c)f (c)dc ,

verifying the intuition of the relationship between marginal cost
and marginal revenue. Figure 5 shows c⋆

b
as a function of the price

ratio and for some diferent demand distribution (f (c)) functions.
Figure 6 depicts c⋆

d
for diferent revenue function variables.

SoCC’17, September 24–27, 2017, Santa Clara, CA, USA M. Shahrad et al.

4.3 Infrastructure Provider: Controlling
Resource Utilization with Price

Let us deine the efective utilization of each SP to be the ratio of
utilized resources (ĉ) to the requested total capacity (cd):

ue (t) =
ĉ(t)

cd
=

min(c(t), cd)

cd
. (11)

Here, ĉ(t) is the provisioned capacity which is bounded by cd ,
whereas c(t) is the capacity demand which might not be fully
granted. When GD-proitable SPs are incentivized to degrade ser-
vice (limit c(t) by cd), their efective utilization rate is improved.
This is achieved essentially by lowering the peak-to-average ratio
of the capacity usage. Improved efective utilization beneits the IP
by decreasing spare capacity that was required to provision infre-
quent luctuations. Such reclaimed resources can either be re-sold
to increase revenue, or put into the low-energy mode to decrease
cost for the IP.

From (9) and (10), recall that the optimal amounts of reserved
(c⋆
b
) and total capacity (c⋆

d
) requested by SPs are functions of their

price, pb and pd . This enables the IP to control the resource utiliza-
tion by shaping SPs’ behavior on resource requests. Therefore, we
characterize c⋆

b
and c⋆

d
in (9) and (10) with regard to pb and pd :

Proposition 4.4. The optimal reserved capacity c⋆
b
, as given in

(9), has a direct relationship with
pd
pb

, while the optimal total capacity

c⋆
d
, as given in (10), has a inverse relationship with pd .

As we can observe from (11), the key to the IP’s utilization rate
lies in the value of c⋆

d
. Leveraging Proposition 4.4, we further quan-

tify this monotonic dependency between c⋆
d
andpd in the following.

Corollary 4.5. Suppose k ∈ (0, 1). When pd changes by δp ∈

(0, 1), i.e., p̃d = (1 ± δp)pd , then the optimal total capacity c⋆
d

decreases/increases by δd ∈ (0, 1), i.e., c̃⋆
d
= (1 ∓ δd)c

⋆
d
, where

δd ≥

���1 − (1 ± δp)
− 1

1−k

���.
The above proposition and corollary, proof of which can be found

in Appendix C, address the monotonic dependence of controlled
variables (optimal capacities) on system inputs (capacity price).
Although how k afects SPs’ revenue remains unknown to the IP,

we ind that the lower bounds 1− (1+δp)
− 1

1−k and (1−δp)
− 1

1−k − 1

of the changes in the total capacity c⋆
d
due to both positive and

negative changes in pd are increasing functions of k ∈ (0, 1). Thus,
Corollay 4.5 can be further relaxed: an increasing/decreasing change
of the price pd by δp must lead to a decreasing/increasing change of
δd in c⋆

d
that satisies δd ≥ δp/(1 ± δp). Such a dependence is ideal

for control loops and can empower a robust feedback mechanism.
The signiicance of this proposition is that it holds for all GD-

proitable SPs simultaneously. Therefore, changing the global

capacity price will incentivize the same degradation behav-

ior among all GD-proitable SPs. At the same time, for GD-
unproitable SPs, price variations translate into a supply demand
control mechanism existing in current dynamic markets that do not
support GD (e.g. spot instances [4]). Table 2 presents how global re-
served and on-demand prices should change to accomplish certain
objectives.

Desired objective Required capacity Global price

Increase utilization (cb ↑,cd ↑) (
pd
pb

↑,pd ↓)

Increase efective utilization
(cb ↑,cd ↓) (

pd
pb

↑,pd ↑)
(Decrease Footprint [30])

Table 2: Proposed monolithic incentive mechanism enables

the IP to accomplish its objectives through global pricing.

7/2013

0 500 1000

CPU Util. (GHz)

P
D

F

Bitbrains

8/2013

0 500 1000

CPU Util. (GHz)

9/2013

0 500 1000

CPU Util. (GHz)

11/2015

0 100 200 300

CPU Util. (GHz)

P
D

F

Materna

12/2015

0 100 200 300

CPU Util. (GHz)

1/2016

0 100 200 300

CPU Util. (GHz)

Figure 7: Varying probability density function (PDF) for ag-

gregate CPU utilization of two service providers over three

months.

Deinition 4.6 (GD-compliant). If a GD-proitable SP is capable
of performing GD to achieve c < cmax , it is GD-compliant. A GD-
noncompliant SP is a GD-proitable SP that is not GD-compliant.

GD-compliance means that the SP has technically implemented
resilience to capacity shortage, e.g. by serving some product pages
without recommendations, and it makes inancial sense for the SP to
trim its peak demand, e.g., deactivate recommendations during peak
hours to reduce infrastructure cost. In what follows, we focus on
GD-proitable SPs and discuss the beneits that the GD-compliance
brings.

4.4 Determining Resource Distribution

Knowing the resource distribution function (f (c)) is required to
determine the optimal capacities using relations (9) and (10). The
more knowledge an SP has on its future resource distribution, the
more precisely it can decide cb and cd values. In this section, we
discuss how an SP’s distribution might vary and how it can predict
its future distribution. Later in Section 5, we evaluate the impact of
imperfect predictions on the beneits of our proposed scheme.

Analyzing real world traces, we observed that resource dis-
tributions could vary considerably depending on workloads and
might not follow typically known trends (e.g. a normal distribu-
tion). For instance, Figure 7 shows how such monthly distribution
functions changed for two service providers, Bitbrains [56] and
Materna [34, 35], during three consecutive months. Although both

Incentivizing Self-Capping to Increase Cloud Utilization SoCC’17, September 24–27, 2017, Santa Clara, CA, USA

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8
Bitbrains Traces

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t Last Period

Full History

0 5 10 15 20 25 30

SLA Period (Days)

-0.5

0

0.5

1
Materna Traces

C
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
t

Last Period

Full History

Figure 8: Prediction accuracy for capacity distribution based

on last period and full history as a function of period length

for diferent traces.

providers serve business-critical applications for enterprise cus-
tomers, distributions of their CPU utilization are quite diferent.
However, the resource distribution of each SLA period has some
observable similarity with the previous periods. Such similarity can
be used for predicting future distributions.

These two workload traces are speciically interesting for our
study since they have inherently distinct characteristics whichmake
their predictability very diferent. Figure 8 shows the correlation
coeicient, a measure of similarity [50], of resource distributions
between each period with either its previous period or the entire
observed history. While for the Bitbrains traces, using a longer pe-
riod and considering full history generally leads to a more precise
prediction measure, having shorter periods and only considering
the most recent period can work better for Materna traces. Fur-
thermore, a service provider can use its resource usage history to
determine the optimal SLA period which maximizes its resource
predictability.

5 NUMERICAL EVALUATION OF INCENTIVES

In this section, we use numerical simulations to better characterize
our proposed scheme. These numerical analyses allow fast design
space exploration and are complementary to the actual evaluation
of the implemented prototype in Section 6.We use the Bitbrains [56]
performance traces in this section. Results are attained under ixed
resource price (pb = $0.05 and pd = $0.07 per VM-Hour [2])
throughout the simulation unless otherwise speciied.

Figure 9 shows submitted capacities from two service providers,
one of which is GD-compliant. Both SPs have weekly SLA periods
and have the same revenue function of

R(c,θ) = 0.08 × θ0.7c ($ per VM-Hour), (12)

where c is the total CPU capacity demand in VM unit (assumed
2926MHz for a VM) and θ is the degradation factor (see Section 4.2
for details). Both SPs use a period’s capacity demand distribution
as the predictor for the next period. While both SPs can select the

0 10 20 30 40 50 60 70 80 90
0

500

1000

A
g
g
re

g
a
te

 C
P

U
 U

ti
l.
 (

G
H

z
)

GD-noncompliant

Demand C
d

C
b

0 10 20 30 40 50 60 70 80 90

Time (Days)

0

500

1000

A
g
g
re

g
a
te

 C
P

U
 U

ti
l.
 (

G
H

z
)

GD-compliant

Demand C
d

C
b

Figure 9: Requested capacities for a GD-noncompliant and a

GD-complaint SP. They have similar price and revenue func-

tions and run under weekly SLA periods.

optimal reserved capacity, c⋆
b
, using (9), the GD-compliant SP can

also select optimal total capacity (c⋆
d
) values less than cmax . In

contrast, the GD-noncompliant SP needs to avoid capacity shortage
(c⋆
d
is set to cmax from the previous period), implying higher costs,

but observes no degradation (θ = 1), implying higher revenue. In
the rest of this section, we will show how such GD can improve an
SP’s proit while enhancing the efective utilization of resources.

5.1 Increased Service Provider Proit

GD-compliance can improve proit of SPs by two inherently similar
mechanisms. First, by diminishing the negative inluence of unex-
pected bursts on the revenue; and second, by deliberately neglecting
known occasional bursts that are costly to serve.

Figure 10 depicts the proit of two service providers in a 3-month
window as a function of their SLA period length. While one of the
SPs is GD-compliant and optimizes both capacity parameters, the
GD-noncompliant SP can only optimize the reserved capacity (cb).
Their revenue functions are the same as (12). We consider cases
where the future demand distribution is either predicted simply
by only observing the previous period (see Section 4.4) or is fully
known (oracle). The latter is used as the upper limit for prediction
quality. Here are our observations from Figure 10:

• GD-compliance with the simple prediction mechanism can
improve proit by 15.8% on average (28.5% maximum). Like-
wise, GD-compliance with the perfect prediction provides
an average proit improvement of 11.2% (18.6% maximum).
A better prediction of f (c) can help all SPs, regardless of
their GD-compliance, gain more proit by choosing c⋆

b
more

precisely.
• Better prediction quality can improve the proit signiicantly.
A perfect prediction can ofer, on average, 7.1% and 11.5%
higher proit for GD-compliant and GD-noncompliant SPs,
respectively.

SoCC’17, September 24–27, 2017, Santa Clara, CA, USA M. Shahrad et al.

0 5 10 15 20 25 30
4000

4500

5000

5500

6000

6500

N
e

t
P

ro
fi
t

($
)

Simple Prediction

GD-compliant GD-noncompliant

0 5 10 15 20 25 30

SLA Period (Days)

4000

4500

5000

5500

6000

6500

N
e

t
P

ro
fi
t

($
)

Oracle (Perfect Prediction)

GD-compliant GD-noncompliant

Figure 10: GD-compliance increases proit regardless of the

SLA period length.

• Proit increase is generally higher for shorter SLA periods.
The demand distribution function (f (c)) used by our opti-
mizers varies over time. The shorter the period, the more it
the optimized capacities would be to all demand values over
the period.

5.2 Increased Efective Utilization

We introduced the efective utilization, ue , in (11), which is a metric
indicating how much a user has utilized its requested capacity. One
of the main promises of our proposed scheme is to improve the
efective utilization via pricing incentives for GD-compliant service
providers. Figure 11 shows the average efective utilization of the
two service providers discussed in the previous subsection, using
previously mentioned capacity distribution prediction methods.
Some of our main observations in this igure are as follow:

• As seen in Figure 11, GD-compliance can improve the ef-
fective utilization noticeably; on average from 41% to more
than 73% for simple prediction and from 43% to 78% for the
oracle run.

• GD-compliance with a primary predictor can achieve 88.9%
efective utilization with a two-day period length. Such 1.8x
improvement is accompanied with a 26.4% proit increase
for GD-compatible SP (Figure 10).

• Efective utilization is generally better (higher mean and less
variance) for shorter period lengths. As mentioned earlier,
using longer period usually translates into a broader demand
variation range, which makes simultaneous optimization of
proit and efective utilization less eicient.

The degree of improvement in efective utilization depends on
how motivated an SP is to perform GD. Motivation to use GD
depends on two factors; the Revenue

Cost ratio and sensitivity to degra-

dation. While the
γ
pd

ratio is a good representative for the former,

parameter k models the latter (lower k means less sensitivity). Fig-
ure 12 shows how these two impact the average ue improvement.
We use a weekly SLA period and other parameters are similar to

0 5 10 15 20 25 30
0.25

0.4

0.55

0.7

0.85

1

E
ff
e
c
ti
v
e
 U

ti
liz

a
ti
o
n
 (

u
e
)

Simple Prediction

GD-compliant

GD-noncompliant

0 5 10 15 20 25 30

SLA Period (Days)

0.25

0.4

0.55

0.7

0.85

1

E
ff
e
c
ti
v
e
 U

ti
liz

a
ti
o
n
 (

u
e
)

Oracle (Perfect Prediction)

GD-compliant

GD-noncompliant

Figure 11: The average efective utilization of GD-compliant

customers increases signiicantly regardless of their period

length.

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

 /p
d

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ff
e
c
ti
v
e
 U

ti
liz

a
ti
o
n
 (

u
e
)

GD-compliant (k=k
0
=0.7)

GD-compliant (k=0.9k
0
)

GD-compliant (k=1.1k
0
)

GD-noncompliant

Figure 12: Efective utilization improvement for an SP de-

pends on howmotivated it is to practice GD. Proitability of

GD is modeled by the
γ
pd

ratio as well as the k parameter

(sensitivity to degradation).

the previous analysis. High efective utilization is achieved through
GD if pd is high compared to the revenue. However, if revenue is
much larger than the highest capacity price, pd , SP has no incentive
to apply GD and ue remains unchanged. At the same time, less
sensitivity to degradation hurts an SP’s revenue less, efectively
leading to the same trade of.

5.3 Multi-SP Dynamics

To show a more complex dynamic when serving multiple SPs, we
have selected three subsets of the Bitbrains performance traces and
treated them as separate SPs. The number three is for the sake of
easy presentation in this paper. All SPs have 3-day SLA periods with
their period initiation one day apart from each other. They update
their optimal cb and cd at the start of each period with respect to
current IP prices. While pb is constant, the IP dynamically sets pd
on a daily basis to encourage/discourage GD. Figure 13 shows the
resource consumption of those SPs as well as variations of

γ
pd

due

Incentivizing Self-Capping to Increase Cloud Utilization SoCC’17, September 24–27, 2017, Santa Clara, CA, USA
0

1
0
0

2
0
0

S
P

 #
1

C
P

U
 U

ti
l.
 (

G
H

z
)

0
5
0

1
0
0

S
P

 #
2

C
P

U
 U

ti
l.
 (

G
H

z
)

0
1
0

2
0

S
P

 #
3

C
P

U
 U

ti
l.
 (

G
H

z
)

0 2 4 6 8 10 12 14

Time (Days)

1.2

1.4

1.6

 /
 p

d

Dynamic P
d
 is updated every day.

Figure 13: Resource consumption of threeGD-compliant SPs

over two weeks. While pb is constant, the IP dynamically

sets pd on a daily basis to encourage/discourage GD. Degra-

dation occurrences are highlighted by green vertical bars.

pd
pb

GD-noncom. GD-comp. Proit Increase (%) Avg. Efective. Util
k γ/pd k γ/pd Predict Oracle Predict Oracle

1

0.5 1.14 0.5 1.14 93.3 92.5 (42,85) (43,86)
0.7 1.14 0.7 1.14 29.2 32.7 (42,87) (43,88)
1 1.14 1 1.14 0.0 0.0 (42,42) (43,43)
0.5 1.5 0.5 1.5 7.2 7.0 (42,80) (43,81)
0.7 1.5 0.7 1.5 0.0 0.0 (42,43) (43,43)
1 1.5 1 1.5 0.0 0.0 (42,43) (43,43)

1.4

0.5 1.14 0.5 1.14 54.4 45.9 (42,85) (43,86)
0.7 1.14 0.7 1.14 24.3 17.1 (42,87) (43,88)
1 1.14 1 1.14 0.0 0.0 (42,43) (43,43)
0.5 1.5 0.5 1.5 7.2 7.0 (42,80) (43,81)
0.7 1.5 0.7 1.5 0.0 0.0 (42,42) (43,43)
1 1.5 1 1.5 0.0 0.0 (42,42) (43,43)

Table 3: The impact of change in the capacity price and rev-

enue function parameters on proit gains. (SLA period = 1

week, β = 1).

to pd changes. Degradation occurrences are highlighted by green
vertical bars. Although these SPs utilize diferent capacity ranges,
they all experience GD at sudden burst periods, especially after
price increase (

γ
pd

decrease). As discussed in Section 4.3, an IP can

use the pricing parameters to control resource utilization. While
we have introduced strong guarantees such as Corollary 4.5, we
leave designing control mechanisms atop of them for future work.

5.4 Sensitivity Study

Our pricing scheme consists of several parameters. In this section,
we describe their relationship intuitively, discuss what are reason-
able ranges for them, and evaluate how sensitive the results are to
changes in those parameters. Instead of presenting the multidimen-
sional search space to readers, we include some limited cases in
Table 3.

We irst elaborate that certain price and revenue ratios determine
the requested capacities. As seen in Section 4, the

pd
pb

ratio afects

the selection of optimal reserved capacity (c⋆
b
) and the ratio of

γ
pd

inluences the optimal total capacity (c⋆
d
). This means that if pb , pb ,

and γ (which corresponds to the revenue function) are all scaled
by the same factor, optimal capacity values are unchanged, leading
to a proit scaled by the same factor. Therefore, none of the proit
improvement or efective utilization enhancement results vary with
such a scaling. That is why we included only the ratios in Table 3.

A major takeaway from Table 3 is that if an SP is making too
much revenue from the unit capacity compared to the price it pays
for it (high

γ
pd

ratio), it does not make any economic sense to

consider going into the GD mode to save money. However, the
closer revenue becomes to the capacity price and the less sensitive
the delivered service is to degradation (lower k), the higher is the
incentive for an SP to employ GD. While the table shows that proit
gain can be as high as 93.3% for these parameters, we would rather
emphasize the fact that SPs never lose money using GD. Also, a
smaller

pd
pb

ratio leads to smaller reserved capacity. So the other

takeaway from this table is that the lower the optimal reserved
capacity, the more our scheme has to ofer.

6 PROTOTYPE EVALUATION

To demonstrate the feasibility of our approach in a practical sys-
tem and validate the results obtained through numerical analysis,
we report results obtained using our implementation of economic
incentives for graceful degradation. In what follows, we irst de-
scribe our experimental setup and then show how the experiments
validate results obtained numerically. Eventually, we test the scala-
bility of our implementation by stressing the contention point our
system.

6.1 Experimental Setup

Experiments were conducted on a single physical machine equipped
with two AMD Opteron™ 6272 processors3 and 56GB of memory.
We use Xen [8] as the hypervisor since, to the best of our knowledge,
it is the only hypervisor that supports vertical CPU scaling for
Virtual Machines (VMs) [39]. For example, allocating 800% CPU
means that the application had exclusive access to 8 cores of the
physical machine, while 50% signiies accessing a single core of
the physical machine, for half of the time. Combined multiplexing
of the physical cores, both in space and in time, is common in
today’s virtualized data-centers [25]. Furthermore, the fact that
Amazon, the front-runner in spot instances and micro instances,
runs a modiied version of Xen is also an indication of its versatility
and CPU scheduling capabilities.

Our SP deploys a single VM, which runs RUBiS, an eBay-like
e-commerce prototype, that is widely-used for cloud benchmark-
ing [16, 24, 57, 59, 60, 65, 77]. RUBiS already supports graceful
degradation, thanks to a previous contribution [33]. The number
of requests served with recommendations is modulated so as to
maintain a 95th percentile response time of 1 second.

We made sure that the results are reliable and unbiased as fol-
lows: We used the vmtouch utility [26] to hold the database iles
in-memory, thus avoiding variance due to hard disk latency; to

32100MHz, 16 cores per processor, no hyper-threading.

SoCC’17, September 24–27, 2017, Santa Clara, CA, USA M. Shahrad et al.

ensure the load is generated in the same way during each experi-
ment, we used the httpmon [32] workload generator in open sys-
tem model [51] and the same sequence of exponentially distributed
inter-arrival times; no non-essential processes or cron scripts were
running at the time of experiments.

To foster replication of our results [21, 67] and make our contri-
bution more useful to other researchers, we published our experi-
mental setup, which includes łinfrastructure as codež as Ansible
scripts, under an open-source license.4

6.2 Validation of Numerical Results

To test the behavior of our implementation, we ran the following
experiment. We took ten consecutive days of the BitBrains traces
and scaled them down in two dimensions: First, time-wise, we
compressed the traces by a factor of 60, i.e., the ive-minute mea-
surement period in the original trace became ive seconds in our
experiment. This allowed us to get useful results within 4 hours
while giving the application enough time to adapt to the neces-
sary degradation level between consecutive load levels. Second,
magnitude-wise, we scaled the capacity demands by a factor of
2× 10−5, so that the load its within the 30 cores of our testbed. The
resulting load trace was used as an input for time-varying average
arrival rate to our workload generator. The workload generator
uses a Poisson process to generate the actual arrival time of each
request; hence the observed arrival rate features a large variance
around the average given as input. Note, however, that the de-

mand generated by the workload generator is unavailable to

the GD application, which, instead, must measure it.

The implementation was conigured as follows. We used the
same pb and pd as in Section 5, and a revenue function R′(c,θ) =

2 × 10−5 × R(c,θ) (cf. Eq. (12)). The SLA terms are 24 hours long,
i.e., 24 minutes experiment time. To ensure that VMs can gather
correct measurements, the SP enforces cd ≥ cb ≥ 1.

Figure 14 presents the experimental results. During the irst
SLA term, the SP had no previous knowledge on its distribution of
demand, so it requested cb = cd = 1. This was enough capacity for it
to cope with the incoming arrival rate, albeit degraded between 75%
and 100%, and learn the demand distribution for future predictions.

During the second term, the previously learned demand distribu-
tion was used to compute suitable cb and cd values. The requested
capacities were enough to cope with the load with negligible degra-
dation. Next, during the third term, cd was slightly reduced since
the peaks in the second term were smaller than those encountered
in the irst term. At the same time, cb was slightly increased, since
the load rarely went too low, hence cost saving could be achieved
by increasing the base reserved capacity, which is cheaper than dy-
namically requested capacity. Some peaks were encountered, which
were coped with using GD. Indeed, thanks to our contribution, the
SP is incentivized to activate GD when encountering a peak instead
of over-provisioning.

Similar observations can be drawn for the other SLA terms. The
chosen cb and cd seem delayed by one SLA term when compared to
the demand. This is due to the fact that our implementation cannot
use an oracle to know future demand and must instead rely on
predictions based on the demand in the previous SLA term.

4https://github.com/cristiklein/gdinc-experiment

0

10

20

30

0

25

50

75

100

0 24 48 72 96 120 144 168 192 216 240

Experiment time (minutes)

C
a
p
a
c
it
y
 (

#
 c

o
re

s
)

D
e
g
ra

d
a
ti
o
n
 (

%
)

cb

cd

demand

Figure 14: Validation of numerical results through a real

implementation using a GD-compliant SP. The x-axis rep-

resents experiment time after compressing the Bitbrains

trace. SLA renegotiations are highlighted with vertical grids.

Degradation represents the fraction of requests that the SP

had to serve without recommendations tomaintain the 95th

percentile response time below 1 second. The requested cb
and cd closely follow the demand, with one SLA term lag,

but trim the peaks, as the SP is incentivized to activate GD.

6.3 Scalability

For testing the scalability of our approach, we focus on the price
controller (see Fig. 2), which is the contention point of our approach;
the other components feature one instance either per physical ma-
chine (hypervisor) or virtual machine (capacity controller). Given
our limited experimental testbed, we used łstub SPsž which are
only composed of the capacity controller with simulated application
load, but have no actual application to run.

We tested the scalability of the price controller up to 10,000 SPs,
which showed a linear increase of the duration of its control loop as
a function of the number of SPs in the system. Even with 10,000 SPs
the duration was only 0.457 seconds, which means that the IP can
quickly adjust the prices in case data-center utilization is getting
too low or too high levels. In case the data-center needs to support
more SPs, scalability can be increased by partitioning the data-
center and assigning one price controller per partition, with SPs
being assigned a partition as they enter the system.

On the SP’s side, the instantaneous capacity requirement for
serving all requests without GD is computed based on a method
that is previously developed [36, 37]. The whole implementation
has constant complexity and only requires a few loating-point
computations every time a new value for capacity is computed.

7 RELATED WORK

1) Increasing Resource Utilization. High infrastructure utiliza-
tion is critical to maximize the return of investment [9] and energy
eiciency [10]. Within a single application, this can be achieved
by careful resource provisioning to reach a given performance

https://github.com/cristiklein/gdinc-experiment

Incentivizing Self-Capping to Increase Cloud Utilization SoCC’17, September 24–27, 2017, Santa Clara, CA, USA

goal [17, 49, 71] or reducing the required headroom [41, 44]. At
the infrastructure level, mapping algorithms are used to co-locate
applications with antagonist resource requirements [13, 43, 66].
Since most IaaS tenants tend to overprovision their VM demands,
resource overbooking (over-commit) [23, 63, 64] was used to accept
more tenants if the resource usage is predicted to allow so without
SLA violations. Performance-based service diferentiation [36] may
be used to ensure łgoldž applications always maintain their target
performance, while łbronzež ones are degraded if actual usage was
mispredicted.

Several other provisioning models have been proposed to im-
prove resource utilization. Capacity modulation [68] can further
increase utilization bymaking both pricing and performance of VMs
volatile. Providing long-term SLOs [14] is another way to enhance
the value of reclaimed resources. Availability Knob [54] has been
proposed to provide a variety of availability guarantees, improving
utilization of reliability-heterogeneous infrastructures. Similar to
our work, Morpheus [30] has exploited lowered performance vari-
ance to improve cluster utilization, but through automated SLOs as
opposed to market incentives. Finally, many solutions have been
proposed at the architecture-level to enable better utilization of
underlying cloud processors [7, 47].
2) Self-Adaptation and Graceful Degradation. Self-adaptation
is a software engineering method to reduce runtime uncertainty,
by allowing an application to adapt to internal or external dynam-
ics [18]. GD can be seen as a self-adaptation feature to maintain a
given QoS goal Ð e.g., no video lag, low response time Ð despite
uncertainty in the available amount of computing or networking
capacity. Such adaptation is particularly important in multi-tenant
environments, such as cloud computing, which feature the łnoisy
neighborž phenomenon [12].

Cloud applications can support GD through brownout [33]: parts
of the response are marked as optional, and a controller decides
when to enable the optional code. With proper coordination be-
tween an SP and its IP, brownout can be used to compensate for
overbooking [63]. In this work, we tackle the real deployment of
such methods by incentivizing tenants to adopt them.
3) Pricing to Shape Demand and Behavior. Dynamic pricing is
an efective mechanism to stabilize demands for networking, com-
puting, and utility resources [28, 52, 53]. Auction-based pricing [55,
76] has been introduced in IaaS cloud markets to encourage SPs’
consuming spare resources, where they bid against dynamically-set
cheaper spot prices with no or little availability guarantees, e.g.,
Amazon EC2’s spot instances [4, 42].

Manyworks considered the incentivizing problem from an opera-
tional perspective, but their primary objectives are either job sched-
uling [27, 72] or IP revenue maximization [58, 70]. Game theory
principles can be applied to build incentive compatible pricing mod-
els that enforce mutually truthful behaviors in cloud markets [54].
Although Chaisiri et al. [15] suggested leveraging on-demand and
reserved prices to cope with demand uncertainty, cloud resource
provisioning is modeled as a dynamic program without considering
interactions between the IP and SPs.
4) Workload Prediction.Workloads are generally predicted with
short horizon for predictive auto-scalers [45] or with long horizon
for dimensioning of physical infrastructure [19]. For our setting,

predicting PDF of demand is suicient, as opposed to the exact de-
mand function. We did not introduce new prediction mechanisms
as we believe current solutions (e.g. Cyclic Window Learning Al-
gorithm [73]) are suicient for our scheme. On the contrary, we
demonstrated substantial beneits of our scheme using a simple
predictor and compared the result against the perfect prediction.

8 CONCLUSION

Achieving high resource utilization is diicult due to IPs needing to
maintain spare capacity to service demand luctuations. Previous
work has shown that graceful degradation, a technique originally
designed for constructing robust services, can be used to improve
resource utilization in the cloud by absorbing such demand luctua-
tions. In this work, we proposed a scheme that enables IPs to give
economic incentives to their tenants to use graceful degradation.
We evaluated our scheme using both simulations and implementing
a prototype and showed that while it never hurts a tenant’s net
proit, it can improve it by as much as 93%. Simultaneously, it can
also improve the efective utilization of contracts from 42% to as
high as 99%. We tie proit maximization of tenants to higher uti-
lization of claimed resources, through which we create a mutually
beneicial model that can lead to greener cloud services.

ACKNOWLEDGMENTS

We thank Jiasi Chen, Carlee Joe-Wong, Alexey Lavrov, Fariborz
Salehi, anonymous reviewers, and our paper’s shepherd, Siddhartha
Sen for their feedback on this work. This work was partially sup-
ported by the NSF under Grants No. CCF-1453112, CCF-1438980,
CNS-1347234, CNS-1456847, AFOSR under Grant No. FA9550-14-1-
0148, DARPA under Grant No. N66001-14-1-4040, ARO under Grant
No. W911NF14-1-0190, and the Swedish Wallenberg Autonomous
Systems and Software Program (WASP). Any opinions, indings,
conclusions, or recommendations expressed in this material are
those of the authors and do not necessarily relect the views of our
sponsors.

APPENDIX

A POSITIVE HOMOGENEOUS FUNCTION

Deinition A.1. A continuously diferentiable function h: R+ →

R is positive homogeneous of degree k if

h(λx) = λkh(x). (13)

We point out a useful property of positive homogeneous func-
tions. Although they can also be found in many textbooks, we state
them here for mathematical completion.

Theorem A.2 (Euler’s homogeneous function theorem [5]).

A continuously diferentiable function h is positive homogeneous of

degree k if and only if

x
∂h(x)

∂x
= kh(x). (14)

B PROFIT MAXIMIZATION FOR SPS

In the following, we prove the results in Section 4.2.
We irst list down all possible cases for an SP’s expected pay-

ment and expected revenue when cb and cd fall in [0, cmax] and

SoCC’17, September 24–27, 2017, Santa Clara, CA, USA M. Shahrad et al.

[cmax ,+∞), respectively:

E(Y)=




pbcb , cd ≥ cb > cmax (15a)

pbcb +

∫ cmax

cb

pd (c − cb)f (c)dc, cd ≥ cmax ≥ cb (15b)

pbcb +

∫ cd

cb

pd (c − cb)f (c)dc

+

∫ cmax

cd

pd (cd − cb)f (c)dc, cmax > cd ≥ cb (15c)

E(R)=




∫ cmax

cmin

R(c, 1)f (c)dc, cd ≥cmax (16a)

∫ cd

cmin

R(c, 1)f (c)dc+

∫ cmax

cd

R(c,
cd
c
)f (c)dc, cd <cmax (16b)

Thus, the expected proit given by E(P) = E(R)−E(Y) also has three
diferent cases for cd ≥ cb > cmax , cd ≥ cmax ≥ cb , and cmax >

cd ≥ cb , respectively. To prove the statements in Section 4.2, we
show that the maximum expected proit for the third case is more
than those for the irst and second cases if SPs are GD-proitable.

When cd ≥ cb > cmax , the expected proit E1(P) is (16a) mi-
nus (15a). It is straightforward to observe that c⋆

d
= c⋆

b
= cmax

maximizes E(P).
When cd ≥ cmax ≥ cb , the expected proit E2(P) is (16a) minus

(15b). In this case, we still determine cb as c⋆
d
= cmax . We apply

the Leibniz’s rule to take partial derivative of E2(P) with regard to
cb :

∂E2(P)

∂cb
= −pb +

∫ cmax

cb

pd f (c)dc . (17)

We further take partial second-order derivative of E2(P)with regard
to cb : ∂

2
E2(P)/∂c

2
b
= −pd f (cd) ≤ 0, and ind out that E2(P) is

concave of cb . To maximize E2(P), we set (17) to zero and obtain∫ cmax

c⋆
b

f (c)dc =
pb
pd
. (18)

Note that c⋆
b
> cmin since pb < pd and

∫ cmax

cmin
f (c)dc = 1, we can

compare E⋆1 (P) and E
⋆
2 (P):

E
⋆
2 (P) − E

⋆
1 (P)

(a)
= pbcmax −

∫ cmax

c⋆
b

pdc f (c)dc

(b)
≥ pdcmax

(
pb
pd

−

∫ cmax

c⋆
b

f (c)dc

)
= 0,

(19)

where (a) is by substituting (18), and (b) is due to cmax ≥ c for
c ∈ [c⋆

b
, cmax]. Thus, E⋆2 (P) ≥ E

⋆
1 (P).

When cmax > cd ≥ cb , the expected proit E3(P) is calculated by
(16b) minus (15c). We again apply the Leibniz’s rule to take partial
derivative of E3(P) with respect to cb and cd , respectively:

∂E3(P)

∂cb
= −pb +

∫ cd

cb

pd f (c)dc +

∫ cmax

cd

pd f (c)dc, (20)

∂E3(P)

∂cd
=

∫ cmax

cd

∂R(c, cd/c)

∂cd
f (c)dc −

∫ cmax

cd

pd f (c)dc

=

∫ cmax

cd

k

cd
R

(
c,
cd
c

)
f (c)dc −

∫ cmax

cd

pd f (c)dc,
(21)

where Theorem A.2 enables the equality in (21). Note that the
expression in (20) is the same as (17) and thus E3(P) is also concave
of cb . We can then obtain (9).

For cd ∈ [cb , cmax], the conditions in (4) and (5) guarantee
∂E3(P)
∂cd

��
cd=cb

> 0 and ∂E3(P)
∂cd

��
cd=cmax

< 0, respectively. Thus, by

setting (21) to zero, there exists at least one critical point that maxi-
mizes E3(P) and is just (10):∫ cmax

c⋆
d

pd f (c)dc =

∫ cmax

c⋆
d

k

c⋆
d

R

(
c,
c⋆
d

c

)
f (c)dc . (22)

Note that (9) for cmax > cd ≥ cb is the same as (18) for cd ≥

cmax ≥ cb . We next prove E⋆3 (P) is larger than E
⋆
2 (P) if R(c,θ) is

positive homogeneous of degree k ∈ (0, 1) in terms of θ :

E
⋆
3 (P) − E

⋆
2 (P)

=

∫ cmax

c⋆
d

(
1 −

c⋆
d

c

) ©­«
pdc −

R(c, 1) − R
(
c,

c⋆
d
c

)
1 −

c⋆
d
c

ª®¬
f (c)dc

(c)
≥

∫ cmax

c⋆
d

(c − c⋆
d
)

(
pd −

k

c⋆
d

R
(
c,
c⋆
d

c

))
f (c)dc

(d)
≥ 0,

(23)

where (c) is due to R(c, 1) =
(c
c⋆
d

)k
R
(
c,

c⋆
d
c

)
and

(c/c⋆
d
)k−1

1−c⋆
d
/c

≤ k c
c⋆
d

for k ∈ (0, 1), and (d) is due to pd ≥
∫ cmax

c⋆
d

(k
c⋆
d

)
R
(
c,

c⋆
d
c

)
f (c)dc

inferred from (10).
To summarize the above discussion, with the conditions in Propo-

sition 4.2 satisied, we have E⋆3 (P) ≥ E⋆2 (P) ≥ E⋆1 (P), i.e., GD-
proitable SPs’ maximum expected proit can be achieved when
cmax > cd > db > cmin with the optimal c⋆

b
and c⋆

d
that satisfy (9)

and (10).

C IMPACT OF PRICE ON REQUESTED
CAPACITY

In this section, we prove the results in Section 4.3.
We irst prove Proposition 4.4. Since the left-hand side of (10)

monotonically decreases of c⋆
b
, it is easy to observe that c⋆

b
decreases

with pb and increases with pd .
To prove the monotonic decrease of c⋆

d
with pd , we rewrite (10)

as

pd =

(∫ cmax

c⋆
d

k

c⋆
d

R(c, c⋆
d
/c)f (c)dc

) (∫ cmax

c⋆
d

f (c)dc

)−1
. (24)

We let the right-hand side of (24) be д(c⋆
d
). By taking the irst-order

derivative of д(c⋆
d
) in terms of c⋆

d
, we have

∂д(c⋆
d
)/∂c⋆

d

=

[(∫ cmax

c⋆
d

k(k − 1)c⋆
d
−2
R
(
c,
c⋆
d

c

)
f (c)dc

) ∫ cmax

c⋆
d

f (c)dc

+

k

c⋆
d

f (c⋆
d
)

∫ cmax

c⋆
d

(
R
(
c, f racc⋆

d
c
)
− R(c⋆

d
, 1)

)
f (c)dc

]

×

(∫ cmax

c⋆
d

f (c)dc

)−2
.

(25)

Since k < 1 and
∂R(c,c⋆

d
/c)

∂c
= −

c⋆
d

c2
∂R(c,c⋆

d
/c)

∂(c⋆
d
/c)

≤ 0, we have

∂д(c⋆
d
)

∂c⋆
d

< 0. Therefore, the decrease of the right-hand side of (24)

implies that larger pd leads to smaller c⋆
d
.

Incentivizing Self-Capping to Increase Cloud Utilization SoCC’17, September 24–27, 2017, Santa Clara, CA, USA

Next, we prove Corollary 4.5. Suppose when pd increases by δp
(p̃d = (1 + δp)pd), the optimal total capacity c⋆

d
decreases by δd

(c̃⋆
d
= (1 − δd)c

⋆
d
). Thus, the following two equalities hold:∫ cmax

c⋆
d

k

c⋆
d

R

(
c,
c⋆
d

c

)
f (c)dc =

∫ cmax

c⋆
d

pd f (c)dc, (26)

∫ cmax

(1−δd)c
⋆

d

k

(1 − δd)c
⋆
d

R

(
c,
(1 − δd)c

⋆
d

c

)
f (c)dc

=

∫ cmax

(1−δd)c
⋆

d

(1 + δp)pd f (c)dc .

(27)

Since R(c,θ) is positive homogeneous of degree k in terms of θ , we
can derive from (27) that

(1 − δd)
k−1

(1 + δp)

∫ cmax

(1−δd)c
⋆

d

k

c⋆
d

R

(
c,
c⋆
d

c

)
f (c)dc

=

∫ cmax

(1−δd)c
⋆

d

pd f (c)dc .

(28)

Due to the integral inequality
∫ b

a
h(x)dx ≥

∫ b

c
h(x)dx for a < c ,

the diference between the left-hand sides of the equalities in (28)
and (26) is larger than:(

(1 − δd)
k−1

(1 + δp)
− 1

) ∫ cmax

c⋆
d

k

c⋆
d

R

(
c,
c⋆
d

c

)
f (c)dc . (29)

We see that the diference between the right-hand sides of the
equalities in (28) and (26) is positive, in order for which to hold,

(29) must also be positive, leading to (1−δd)
k−1

(1+δp)
≥ 1, i.e., δd ≥

1 − (1 + δp)
− 1

1−k , for k ∈ (0, 1).
Applying similar approach, we can also prove that: when pd

decreases by δp ∈ (0, 1) (p̃d = (1−δp)pd), the optimal total capacity
c⋆
d
increases by δd ∈ (0, 1) (c̃⋆

d
= (1 + δd)c

⋆
d
), where δd ≥ (1 −

δp)
− 1

1−k − 1.

REFERENCES
[1] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.

2014. The Rise of RaaS: The Resource-as-a-service Cloud. Commun. ACM 57, 7
(July 2014), 76ś84.

[2] Amazon Web Services. 2017. Amazon EC2 Pricing. https://aws.amazon.com/ec2/
pricing/on-demand/. (2017). Accessed: 2017-4-15.

[3] AmazonWeb Services. 2017. Amazon EC2 Service Limits. http://docs.aws.amazon.
com/AWSEC2/latest/UserGuide/ec2-resource-limits.html. (2017). Accessed: 2017-
4-13.

[4] Amazon Web Services. 2017. Amazon EC2 Spot Instances. https://aws.amazon.
com/ec2/spot/. (2017). Accessed: 2017-5-1.

[5] TomM. Apostol. 1967. Calculus, 2nd. ed. Waltham, Massachusetts: Blaisdel (1967).
[6] Michael Armbrust, Armando Fox, Rean Griith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4 (April
2010), 50ś58.

[7] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
MatthewMatl, and DavidWentzlaf. 2016. OpenPiton: An Open Source Manycore
Research Framework. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’16). ACM, New York, NY, USA, 217ś232.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warield. 2003. Xen and the art of
virtualization. In SOSP. ACM.

[9] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The Datacenter as
a Computer: An Introduction to the Design of Warehouse-Scale Machines, Second
Edition. Vol. 8. 1ś154 pages.

[10] Luiz André Barroso and Urs Hölzle. 2007. The case for energy-proportional
computing. Computer 40, 12 (2007).

[11] Bruce R Beattie, Charles Robert Taylor, and Myles James Watts. 1985. The
economics of production. Wiley New York.

[12] Mathias Björkqvist, Sebastiano Spicuglia, Lydia Chen, and Walter Binder. 2013.
QoS-aware service VM provisioning in clouds: Experiences, models, and cost
analysis. In International Conference on Service-Oriented Computing. Springer,
69ś83.

[13] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. Commun. ACM 59, 5 (April 2016), 50ś57.

[14] Marcus Carvalho, Walfredo Cirne, Francisco Brasileiro, and John Wilkes. 2014.
Long-term SLOs for Reclaimed Cloud Computing Resources. In Proceedings of
the ACM Symposium on Cloud Computing (SoCC ’14). ACM, New York, NY, USA,
Article 20, 13 pages.

[15] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. 2012. Optimization of resource
provisioning cost in cloud computing. IEEE Transactions on Services Computing
5, 2 (2012), 164ś177.

[16] Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic, and Akhil Sahai. 2007. SLA
Decomposition: Translating Service Level Objectives to System Level Thresholds.
In ICAC. IEEE.

[17] Mehiar Dabbagh, Bechir Hamdaoui, Mohsen Guizani, and Ammar Rayes. 2015.
Energy-Eicient Resource Allocation and Provisioning Framework for Cloud
Data Centers. IEEE Transactions on Network and Service Management 12, 3 (Sept
2015), 377ś391.

[18] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas
Vogel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, Ron Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs,
Karl M. Göschka, Alessandra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor
Karsai, Jef Kramer, Antónia Lopes, Jef Magee, Sam Malek, Serge Mankovskii,
Rafaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian
Prehofer, Wilhelm Schäfer, Rick Schlichting, Dennis B. Smith, João Pedro Sousa,
Ladan Tahvildari, Kenny Wong, and Jochen Wuttke. 2013. Software Engineering
for Self-Adaptive Systems: A Second Research Roadmap. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1ś32.

[19] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. 2015. IaaS re-
served contract procurement optimisation with load prediction. Future Generation
Computer Systems 53 (2015), 13 ś 24.

[20] Fahimeh Farahnakian, Tapio Pahikkala, Pasi Liljeberg, Juha Plosila, and Hannu
Tenhunen. 2015. Utilization Prediction Aware VM Consolidation Approach for
Green Cloud Computing. In 2015 IEEE 8th International Conference on Cloud
Computing. 381ś388.

[21] Dror G. Feitelson. 2015. From Repeatability to Reproducibility and Corroboration.
SIGOPS Oper. Syst. Rev. 49, 1 (Jan. 2015), 3ś11.

[22] Daniel Fleder, Kartik Hosanagar, and Andreas Buja. 2010. Recommender Systems
and Their Efects on Consumers: The Fragmentation Debate. In Proceedings of
the 11th ACM Conference on Electronic Commerce (EC ’10). ACM, New York, NY,
USA, 229ś230.

[23] Rahul Ghosh and Vijay K. Naik. 2012. Biting Of Safely More Than You Can
Chew: Predictive Analytics for Resource Over-Commit in IaaS Cloud. In 2012
IEEE Fifth International Conference on Cloud Computing. 25ś32.

[24] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. 2010. PRESS: PRedictive Elastic
ReSource Scaling for cloud systems. In 2010 International Conference on Network
and Service Management. 9ś16.

[25] Ajay Gulati, Ganesha Shanmuganathan, Anne Holler, and Irfan Ahmad. 2011.
Cloud-scale Resource Management: Challenges and Techniques. In Proceedings
of the 3rd USENIX Conference on Hot Topics in Cloud Computing (HotCloud ’11).
USENIX Association, 3ś3.

[26] Doug Hoyte and contributors. [n. d.]. vmtouch - the Virtual Memory Toucher.
https://github.com/hoytech/vmtouch. ([n. d.]). Accessed: 2017-05-04.

[27] Zhe Huang, S. Matthew Weinberg, Liang Zheng, Mung Chiang, and Carlee-Joe
Wong. 2017. Discovering Valuations and Enforcing Truthfulness in a Deadline-
Aware Scheduler. In Proceedings of IEEE INFOCOM.

[28] Juncheng Jia, Qian Zhang, Qin Zhang, and Mingyan Liu. 2009. Revenue Genera-
tion for Truthful Spectrum Auction in Dynamic Spectrum Access. In Proceedings
of the Tenth ACM International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc ’09). ACM, New York, NY, USA, 3ś12.

[29] Hai Jin, Xinhou Wang, Song Wu, Sheng Di, and Xuanhua Shi. 2015. Towards
Optimized Fine-Grained Pricing of IaaS Cloud Platform. IEEE Transactions on
Cloud Computing 3, 4 (Oct 2015), 436ś448.

[30] Sangeetha Abdu Jyothi, Carlo Curino, Ishai Menache, ShravanMatthur Narayana-
murthy, Alexey Tumanov, Jonathan Yaniv, Ruslan Mavlyutov, Inigo Goiri, Subru
Krishnan, Janardhan Kulkarni, and Sriram Rao. 2016. Morpheus: Towards Au-
tomated SLOs for Enterprise Clusters. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16). USENIX, GA, 117ś134.

[31] H Youn Kim. 1992. The translog production function and variable returns to
scale. The Review of Economics and Statistics (1992), 546ś552.

[32] Cristian Klein. [n. d.]. Closed and open HTTP traic generator. https://github.
com/cloud-control/httpmon. ([n. d.]). Accessed: 2017-05-04.

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-resource-limits.html
https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/ec2/spot/
https://github.com/hoytech/vmtouch
https://github.com/cloud-control/httpmon
https://github.com/cloud-control/httpmon

SoCC’17, September 24–27, 2017, Santa Clara, CA, USA M. Shahrad et al.

[33] Cristian Klein, Martina Maggio, Karl-Erik Årzén, and Francisco Hernández-
Rodriguez. 2014. Brownout: Building More Robust Cloud Applications. In Pro-
ceedings of the 36th International Conference on Software Engineering (ICSE 2014).
ACM, New York, NY, USA, 700ś711.

[34] Andreas Kohne, Damian Pasternak, Lars Nagel, and Olaf Spinczyk. 2016. Evalua-
tion of SLA-based Decision Strategies for VM Scheduling in Cloud Data Centers.
In Proceedings of the 3rd Workshop on CrossCloud Infrastructures & Platforms
(CrossCloud ’16). ACM, New York, NY, USA, Article 6, 5 pages.

[35] Andreas Kohne, Marc Spohr, Lars Nagel, and Olaf Spinczyk. 2014. Federated-
CloudSim: A SLA-aware Federated Cloud Simulation Framework. In Proceedings
of the 2nd International Workshop on CrossCloud Systems (CCB ’14). ACM, New
York, NY, USA, Article 3, 5 pages.

[36] Ewnetu Bayuh Lakew, Cristian Klein, Francisco Hernandez-Rodriguez, and Erik
Elmroth. 2015. Performance-based service diferentiation in clouds. In Proceedings
of IEEE/ACM Cluster, Cloud and Grid Computing (CCGrid). IEEE, 505ś514.

[37] Ewnetu Bayuh Lakew, Alessandro Vittorio Papadopoulos, Martina Maggio, Cris-
tian Klein, and Erik Elmroth. 2017. KPI-agnostic Control for Fine-Grained Vertical
Elasticity. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. IEEE Press, 589ś598.

[38] Lawrence J Lau. 1972. Proit functions of technologies with multiple inputs and
outputs. The Review of Economics and Statistics (1972), 281ś289.

[39] Min Lee, A. S. Krishnakumar, P. Krishnan, Navjot Singh, and Shalini Yajnik.
2010. Supporting Soft Real-time Tasks in the Xen Hypervisor. In Proceedings
of the 6th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’10). ACM, New York, NY, USA, 97ś108.

[40] Young Choon Lee and Albert Y. Zomaya. 2012. Energy eicient utilization of
resources in cloud computing systems. The Journal of Supercomputing 60, 2
(2012), 268ś280.

[41] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling High Server Utilization
and Sub-millisecond Quality-of-service. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys ’14). ACM, New York, NY, USA, Article
4, 14 pages.

[42] Zheng Li, He Zhang, Liam O’Brien, Shu Jiang, You Zhou, Maria Kihl, and Rajiv
Ranjan. 2016. Spot pricing in the Cloud ecosystem: A comparative investigation.
Journal of Systems and Software 114 (2016), 1 ś 19.

[43] Xiao-Fang Liu, Zhi-Hui Zhan, Ke-Jing Du, and Wei-Neng Chen. 2014. Energy
Aware Virtual Machine Placement Scheduling in Cloud Computing Based on Ant
Colony Optimization Approach. In Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation (GECCO ’14). ACM, New York, NY, USA,
41ś48.

[44] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. 2015. Heracles: Improving Resource Eiciency at Scale. In
Proceedings of the 42nd Annual International Symposium on Computer Architecture
(ISCA ’15). ACM, New York, NY, USA, 450ś462.

[45] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A. Lozano. 2014. A Review of
Auto-scaling Techniques for Elastic Applications in Cloud Environments. Journal
of Grid Computing 12, 4 (2014), 559ś592.

[46] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Yonggang Wen, and Zhu Han.
2017. Resource Management in Cloud Networking Using Economic Analysis
and Pricing Models: A Survey. IEEE Communications Surveys and Tutorials 19, 2
(2017), 954ś1001.

[47] Michael McKeown, Yaosheng Fu, Tri M. Nguyen, Yanqi Zhou, Jonathan Balkind,
Alexey Lavrov, Mohammad Shahrad, Samuel Payne, and David Wentzlaf. 2017.
Piton: A Manycore Processor for Multitenant Clouds. IEEE Micro 37, 2 (Mar 2017),
70ś80.

[48] JeonghoonMo and JeanWalrand. 2000. Fair end-to-endwindow-based congestion
control. IEEE/ACM Transactions on Networking 8, 5 (2000), 556ś567.

[49] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.
2013. AGILE: Elastic Distributed Resource Scaling for Infrastructure-as-a-Service.
In Proceedings of the 10th International Conference on Autonomic Computing (ICAC
’13). USENIX, San Jose, CA, 69ś82.

[50] Joseph Lee Rodgers and W. Alan Nicewander. 1988. Thirteen Ways to Look at
the Correlation Coeicient. The American Statistician 42, 1 (1988), 59ś66.

[51] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. 2006. Open Versus
Closed: A Cautionary Tale. In NSDI. USENIX.

[52] Fred C Schweppe, Michael C Caramanis, Richard D Tabors, and Roger E Bohn.
2013. Spot pricing of electricity. Springer Science & Business Media.

[53] Soumya Sen, Carlee Joe-Wong, Sangtae Ha, and Mung Chiang. 2013. A survey
of smart data pricing: Past proposals, current plans, and future trends. ACM
Computing Surveys (CSUR) 46, 2 (2013), 15.

[54] Mohammad Shahrad and David Wentzlaf. 2016. Availability Knob: Flexible User-
Deined Availability in the Cloud. In Proceedings of the Seventh ACM Symposium
on Cloud Computing (SoCC ’16). ACM, New York, NY, USA, 42ś56.

[55] Supreeth Shastri, Amr Rizk, and David Irwin. 2016. Transient Guarantees: Max-
imizing the Value of Idle Cloud Capacity. In SC16: International Conference for
High Performance Computing, Networking, Storage and Analysis. 992ś1002.

[56] Siqi Shen, Vincent van Beek, and Alexandru Iosup. 2015. Statistical Character-
ization of Business-Critical Workloads Hosted in Cloud Datacenters. In 2015

15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.
465ś474.

[57] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011. Cloud-
Scale: Elastic Resource Scaling for Multi-tenant Cloud Systems. In Proceedings of
the 2nd ACM Symposium on Cloud Computing (SoCC ’11). ACM, New York, NY,
USA, Article 5, 14 pages.

[58] Weijie Shi, Linquan Zhang, Chuan Wu, Zongpeng Li, and Francis Lau. 2014. An
online auction framework for dynamic resource provisioning in cloud computing.
Proceedings of ACM SIGMETRICS (2014).

[59] Christopher Stewart, Terence Kelly, and Alex Zhang. 2007. Exploiting Nonstation-
arity for Performance Prediction. In Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007 (EuroSys ’07). ACM, New York,
NY, USA, 31ś44.

[60] Christopher Stewart and Kai Shen. 2005. Performance modeling and system
management for multi-component online services. In NSDI. USENIX, 71ś84.

[61] Thomas Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP ś: Stan-
dards and Design Principles. In Proceedings of the Second Annual ACM Conference
on Multimedia Systems (MMSys ’11). ACM, New York, NY, USA, 133ś144.

[62] Guibin Tian and Yong Liu. 2012. Towards Agile and Smooth Video Adaptation
in Dynamic HTTP Streaming. In Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies (CoNEXT ’12). ACM, New
York, NY, USA, 109ś120.

[63] Luis Tomás, Cristian Klein, Johan Tordsson, and Francisco Hernández-Rodríguez.
2014. The Straw that Broke the Camel’s Back: Safe Cloud Overbooking with
Application Brownout. In 2014 International Conference on Cloud and Autonomic
Computing. 151ś160.

[64] Luis Tomás and Johan Tordsson. 2013. Improving Cloud Infrastructure Utilization
Through Overbooking. In Proceedings of the 2013 ACM Cloud and Autonomic
Computing Conference (CAC ’13). ACM, New York, NY, USA, Article 5, 10 pages.

[65] Nedeljko Vasić, Dejan Novaković, Svetozar Miučin, Dejan Kostić, and Ricardo
Bianchini. 2012. DejaVu: Accelerating Resource Allocation in Virtualized Environ-
ments. In Proceedings of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS XVII). ACM,
New York, NY, USA, 423ś436.

[66] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale Cluster Management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems
(EuroSys ’15). ACM, New York, NY, USA, Article 18, 17 pages.

[67] Jan Vitek. 2014. The Case for the Three R’s of Systems Research: Repeatability,
Reproducibility and Rigor. In Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE ’14). ACM, New
York, NY, USA, 115ś116.

[68] Cheng Wang, Bhuvan Urgaonkar, Aayush Gupta, Lydia Y. Chen, Robert Birke,
and George Kesidis. 2016. Efective Capacity Modulation as an Explicit Control
Knob for Public Cloud Proitability. In 2016 IEEE International Conference on
Autonomic Computing (ICAC). 95ś104.

[69] QianWang, Kui Ren, and Xiaoqiao Meng. 2012. When cloud meets eBay: Towards
efective pricing for cloud computing. In 2012 Proceedings IEEE INFOCOM. 936ś
944.

[70] Hong Xu and Baochun Li. 2013. Dynamic Cloud Pricing for Revenue Maximiza-
tion. IEEE Transactions on Cloud Computing 1, 2 (July 2013), 158ś171.

[71] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-Flux:
Precise Online QoS Management for Increased Utilization in Warehouse Scale
Computers. In Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (ISCA ’13). ACM, New York, NY, USA, 607ś618.

[72] Xiaomeng Yi, Fangming Liu, Zongpeng Li, and Hai Jin. 2016. Flexible Instance:
Meeting Deadlines of Delay Tolerant Jobs in The Cloud with Dynamic Pricing.
In Proceedings of IEEE ICDCS.

[73] Min Sang Yoon, Ahmed E. Kamal, and Zhengyuan Zhu. 2016. Requests Prediction
in Cloud with a Cyclic Window Learning Algorithm. In 2016 IEEE Globecom
Workshops (GC Wkshps). 1ś6.

[74] Jian Zhao, Hongxing Li, Chuan Wu, Zongpeng Li, Zhizhong Zhang, and Francis
C. M. Lau. 2014. Dynamic pricing and proit maximization for the cloud with geo-
distributed data centers. In IEEE INFOCOM 2014 - IEEE Conference on Computer
Communications. 118ś126.

[75] Liang Zheng, Carlee Joe-Wong, Jiasi Chen, Christopher G. Brinton, Chee Wei
Tan, and Mung Chiang. 2017. Economic Viability of a Virtual ISP. In Proceedings
of IEEE INFOCOM.

[76] Liang Zheng, Carlee Joe-Wong, Chee Wei Tan, Mung Chiang, and Xinyu Wang.
2015. How to bid the cloud. Proceedings of ACM SIGCOMM (2015).

[77] Wei Zheng, Ricardo Bianchini, G. John Janakiraman, Jose Renato Santos, and
Yoshio Turner. 2009. JustRunIt: experiment-based management of virtualized
data centers. In USENIX Annual Technical Conference. 18ś28.

[78] Timothy Zhu, Daniel S. Berger, and Mor Harchol-Balter. 2016. SNC-Meister:
Admitting More Tenants with Tail Latency SLOs. In Proceedings of the Seventh
ACM Symposium on Cloud Computing (SoCC ’16). ACM, New York, NY, USA,
374ś387.

	Abstract
	1 Introduction
	2 Background on Graceful Degradation
	3 System Overview
	4 Incentive-compatible Pricing Mechanism
	4.1 Pricing Model
	4.2 Service Provider: Trade-offs between Profit Maximization and Graceful Degradation
	4.3 Infrastructure Provider: Controlling Resource Utilization with Price
	4.4 Determining Resource Distribution

	5 Numerical Evaluation of Incentives
	5.1 Increased Service Provider Profit
	5.2 Increased Effective Utilization
	5.3 Multi-SP Dynamics
	5.4 Sensitivity Study

	6 Prototype Evaluation
	6.1 Experimental Setup
	6.2 Validation of Numerical Results
	6.3 Scalability

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Positive Homogeneous Function
	B Profit Maximization for SPs
	C Impact of Price on Requested Capacity
	References

