
SOFTWARE Open Access

InCHlib – interactive cluster heatmap for web
applications
Ctibor Škuta1,2, Petr Bartůněk2 and Daniel Svozil1,2*

Abstract

Background: Hierarchical clustering is an exploratory data analysis method that reveals the groups (clusters) of

similar objects. The result of the hierarchical clustering is a tree structure called dendrogram that shows the

arrangement of individual clusters. To investigate the row/column hierarchical cluster structure of a data matrix, a

visualization tool called ‘cluster heatmap’ is commonly employed. In the cluster heatmap, the data matrix is

displayed as a heatmap, a 2-dimensional array in which the colour of each element corresponds to its value. The

rows/columns of the matrix are ordered such that similar rows/columns are near each other. The ordering is given

by the dendrogram which is displayed on the side of the heatmap.

Results: We developed InCHlib (Interactive Cluster Heatmap Library), a highly interactive and lightweight JavaScript

library for cluster heatmap visualization and exploration. InCHlib enables the user to select individual or clustered

heatmap rows, to zoom in and out of clusters or to flexibly modify heatmap appearance. The cluster heatmap can

be augmented with additional metadata displayed in a different colour scale. In addition, to further enhance the

visualization, the cluster heatmap can be interconnected with external data sources or analysis tools. Data clustering

and the preparation of the input file for InCHlib is facilitated by the Python utility script inchlib_clust.

Conclusions: The cluster heatmap is one of the most popular visualizations of large chemical and biomedical data

sets originating, e.g., in high-throughput screening, genomics or transcriptomics experiments. The presented JavaScript

library InCHlib is a client-side solution for cluster heatmap exploration. InCHlib can be easily deployed into any modern

web application and configured to cooperate with external tools and data sources. Though InCHlib is primarily intended

for the analysis of chemical or biological data, it is a versatile tool which application domain is not limited to the

life sciences only.

Keywords: Data clustering, Cluster heatmap, Scientific visualization, Web integration, Client-side scripting,

JavaScript library, Big data, Exploration

Background
Clustering is a data exploration technique that identifies

groups of objects that are similar to each other but dif-

ferent from objects in other groups [1]. Cluster analysis

is widely applied in cheminformatics for the analysis of

databases of chemical structures [2,3]. Its main use is to

find representative subsets from high throughput screen-

ing (HTS) [4-6], to design chemical libraries of diverse

structures pertinent to pharmaceutical discovery [7-9] and

to increase the diversity of these libraries through the

selection of additional compounds from other data sets

[10,11]. The most popular approach of cluster analysis

is hierarchical clustering [12] in which data are merged

together based on a tree structure called dendrogram.

The input to a clustering algorithm is a data matrix that

contains individual data points in rows and data fea-

tures in columns. Data can be clustered either by rows

or by columns. The data matrix can be visualized as a

‘data heatmap’, a rectangular array that uses colour to

represent numerical values of individual matrix cells.

The data heatmap augmented with row and/or column

dendrograms is known as a ‘cluster heatmap’ [13,14].

Owing to the wide application of the cluster heatmap

in biomedical sciences [15], many software tools for its

* Correspondence: svozild@vscht.cz
1Laboratory of Informatics and Chemistry, Faculty of Chemical Technology,

Institute of Chemical Technology Prague, Technická 5, CZ-166 28 Prague,

Czech Republic
2CZ-OPENSCREEN, Institute of Molecular Genetics of the ASCR, v. v. i,

Vídeňská 1083, CZ-142 20 Prague, Czech Republic

© 2014 Skuta et al.; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

Škuta et al. Journal of Cheminformatics 2014, 6:44

http://www.jcheminf.com/content/6/1/44

mailto:svozild@vscht.cz
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


visualization and exploration are available. Several of

them, such as the R programming environment [16] with

Bioconductor package [17], CIMminer [18] or Cluster/

TreeView [19,20], generate only static images with fixed

appearance and no interactivity. Higher level of interactiv-

ity offer standalone programs typically implemented in

Java programming language that are, however, usually

tailored towards the analysis of specific data [21,22].

For example, the following packages enable the analysis

of gene expression experiments: Java Treeview [23],

High-Throughput GoMiner [24], TM4 [25], Genesis [26]

or PageMan [27]. Similarly, genomics data can be ex-

plored by geWorkbench [28], StratomeX [29], GENE-E

[30], Qcanvas [31] or Gitools [32]. The main disadvan-

tage of desktop solutions is their limited set of features

that cannot be easily enhanced by the user. In addition,

desktop applications cannot be readily deployed in mod-

ern web-based systems.

In recent years, client-side scripting became very popular

for the development of interactive web solutions. The cli-

ent is the system on which the web browser runs. Client-

side scripts are interpreted by the browser and they work

in the following steps: (1) the user requests the web page

from the server, (2) the server finds the page and sends it

to the user, (3) the page is displayed in the browser with

any scripts run during or after display. Because all data

processing is performed by the client, the speed of the

script execution depends on the user’s hardware. Two

types of clients exist: thick (fat) and thin clients. The thick

clients are written in full-blown programming languages,

such as Java or C#. To be executed, thick clients require

additional software (e.g., Java Virtual Machine or .NET

framework) to be installed on the user machine. On the

other hand, the thin client is executed by an engine embed-

ded directly in the web browser. The main scripting

language for the thin client programming is JavaScript.

JavaScript is a powerful, easy to learn and use language

which became an integral part of many existing web

technologies. Compared to the thick client, the thin client

typically requires less performing user devices equipped

with lower amounts of memory.

If the deployment of the cluster heatmap into a web

application is required, possibilities are rather limited.

Though several web solutions for the analysis of genomics

data exist, such as The UCSC Cancer Genomics Browser

[33,34], Expression Profiler [35], Babelomics [36], Next-

Generation Clustered Heatmaps [37] or INVEX [38], they

work as standalone web applications. It means that they

can be used only from their hosting websites and their

interface reflects the nature of the data they are designed

to work with. The use of such applications for the analysis

of, often sensitive, user’s data requires the data to be

uploaded to the web server of the application provider.

Though a few thick clients exist (e.g., Gitools [32]), the

availability of JavaScript solutions for cluster heatmap

exploration is rather limited. While jHeatmap [39] and

the BioJS HeatmapViewer component [40] can display

only the data heatmap without its underlying cluster

structure, the Heatmap viewer from the JavaScript library

canvasXpress [41] offers only limited functionality. Thus,

we developed InCHlib, a free browser independent Java-

Script library that facilitates the visualization, exploration

and web integration of the cluster heatmap. Though

InCHlib is primarily intended for the analysis of chemical

or biological data, its application domain is not limited to

the life sciences only.

Implementation
InCHlib is a free browser independent JavaScript library

which HTML5 canvas-based rendering is handled by the

KineticJS [42] framework (version 5.0.0) and HTML ele-

ments are processed using the jQuery framework [43]

(version 2.0.3). InCHlib enables to interact in real time

with other elements on the page or with external data

sources. This is achieved by handling the events that

occur during the user interaction with the cluster heat-

map, such as clicking on a heatmap row or dendrogram

node. For each event, a callback function can be defined

and invoked if the event is triggered. The interconnec-

tion between the visualization and external data sources

is realized by the exchange of the IDs of passed objects.

The tutorial with commented examples demonstrating

all steps of InCHlib deployment is available at http://

openscreen.cz/software/inchlib/examples/18.

Input format

InCHlib is a visualization library and is, thus, not re-

sponsible for data clustering. Instead, data must be

clustered by an external program, such as inchlib_clust

(see the ‘inchlib_clust’ paragraph) and then passed into

InCHlib either as a JavaScript variable or as a file stored in

the InCHlib input format. The InCHlib input conforms

the JSON (JavaScript Object Notation) standard [44]. Key

elements of the InCHlib input format are demonstrated by

the code snippets in this section and the complete ex-

ample of the input file is given in Additional file 1.

The input format describes three parts cluster heatmap

visualization consists of: data, metadata and column

dendrogram (Figure 1). The data block contains the data

matrix and describes the structure of the row dendrogram.

The row dendrogram consists of inner and terminal (usu-

ally referred to as leaves) nodes connected by branches.

Each leaf is associated with one ‘data item’, i.e., with one

heatmap row. Each data item corresponds either to one

data point or, if the row reduction is used (see further), to

several data points merged into one. Each data item is an-

notated with the IDs of data points it comprises of. The

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 2 of 9

http://www.jcheminf.com/content/6/1/44

http://openscreen.cz/software/inchlib/examples/18
http://openscreen.cz/software/inchlib/examples/18


following code snippet demonstrates how the leaf is

described in the InCHlib format.

"leaf_1": { //ID of the node (leaf )

"count": 1, //number of objects (heatmap rows) which

lie in the dendrogram hierarchy below the given node

"distance": 0, //distance in dendrogram measured from

leaves to the root node given by the distance measure

used for the clustering

"features": [1.4, 3.5, 5.1], //values of individual features

forming a data item

"parent": "node_1", //the ID of a parent node

"objects": ["object_1", “object_2”] // IDs of data points

represented by the given row

},

Each node is identified by a unique ID string. While

each inner node has two children, no child exists for the

leaf. Children of a node are given as the left_child and

right_child parameters. ID of the parent’s node is given

as the parent parameter. The only node without the

parent is the root node of the dendrogram. The following

code snippet demonstrates how the node is described in

the InCHlib format.

"node_1": { //ID of the node

"count": 3, //number of objects (heatmap rows) which lie

in the dendrogram hierarchy below the given node

"distance": 3.32, //distance from the zero base of the

dendrogram, given by the distance measure used for

clustering

"parent": "node_1", //the ID of a parent node

"left_child": "leaf_1", //ID of a left child

"right_child": "leaf_2" //ID of a right child

},

The metadata block (Figure 1) describes additional in-

formation associated with individual data items, such as

class membership. The metadata, displayed as additional

column(s) in the heatmap, have no influence on the order

of data items because they are not subjected to the cluster-

ing. The following code snippet shows how the metadata

are described in the InCHlib format.

"metadata": { //contains nodes and feature_names sec-

tion of metadata

"feature_names": ["Numeric", "Categoric"], //names of

metadata features

"nodes": { //contains object IDs with metadata features

"leaf_1": [0.03, "positive"], // metadata features

"leaf_2": [0.02, "negative"]

}

},

The column dendrogram block (Figure 1) of the InCHlib

input format describes the vertical dendrogram and has

the same structure as the row dendrogram. The only dif-

ference is that leaves don't have the features and objects

parameters inchlib_clust.

To facilitate the preparation of data in the InCHlib for-

mat, we developed a utility script inchlib_clust. inchlib_clust

is written in Python 2.7 programming language. It performs

both data preprocessing, such as data normalization or

compression, and hierarchical clustering. Hierarchical clus-

tering in inchlib_clust is accomplished by the fastcluster

[45] library that implements several common hierarchical

clustering schemes. List of available fastcluster linkages and

distances is given in Additional file 2. Clustering results are

saved in the InCHlib input file that can be readily passed

into InCHlib. inchlib_clust can be easily extended by other

hierarchical clustering approaches, such as by the popular

Super Paramagnetic Clustering (SPC) [46,47] which scales

more favourably (as O(N)) than the O(N2) implementation

of hierarchical clustering in fastcluster.

Figure 1 An example cluster heatmap. The visualization consists of three blocks described in the InCHlib input format. The data block (green)

contains feature names and the data for the rendering of the row dendrogram and heatmap. The metadata block (red) contains the additional

data that are appended to the original data after clustering. The column dendrogram block (blue) contains the data for the rendering of column

dendrogram.

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 3 of 9

http://www.jcheminf.com/content/6/1/44



Data normalization is a preprocessing step used to

balance the influence of features measured at different

scales. inchlib_clust enables features to be scaled to the

range between 0 and 1 using the MinMax scaler. MinMax

scaler transforms the original feature x into its normalized

version x ' according to the formula

x0 ¼
x−min xð Þ

max xð Þ−min xð Þ

where min(x) and max(x) are minimum and maximum

values of the feature x. If the data normalization is used,

the order of the heatmap rows (i.e., the row dendrogram)

is always given by the clustering of the normalized data.

However, the user can choose whether the normalized or

original data will be displayed in the heatmap.

Because the speed of rendering decreases as the num-

ber of rows increases (see the ‘Performance assessment’

paragraph), inchlib_clust also enables to reduce the size of

the data matrix. To increase the speed of visualization, as

well as to reveal new data motifs by noise suppression, the

number of the data matrix rows can be reduced. In row

reduction, similar rows are aggregated into a single vector.

Elements of this vector are calculated as the mean or me-

dian values of the elements of original rows. The extent of

the compression is given as the number of reduced data

matrix rows.

Another possibility how to speed up the visualization

is to completely hide the data heatmap. In such case,

only the dendrogram and metadata are displayed. This

option comes in handy when the number of dimensions

(columns) is too high, such as in the case of hashed

chemical fingerprints.

Results and discussion
In this section, a typical InCHlib use consisting of data

preparation and web page deployment is described. In

addition, advanced InCHlib capabilities are demonstrated

on the clustering of the ligands of estrogen receptor α (ERα).

Finally, the speed of both data clustering by inchlib_clust

and data visualization by InCHlib is evaluated.

The deployment of InCHlib consists of several steps

(Figure 2): data preparation, data clustering, web page

integration and cluster heatmap visualization.

Though data can be clustered by inchlib_clust, any

clustering software can be used provided that the valid

InCHlib input file is generated. Typically, the data matrix

is supplied to inchlib_clust in a comma-separated values

(csv) file, though other delimiters, such as tab or semi-

colon, are also possible. The data matrix consists of data

points in rows and their features in columns. The first col-

umn always contains the IDs of individual rows. Option-

ally, feature names are given in the first row. The example

of the data file is given in Additional file 3. Similarly,

metadata are supplemented as a separate file using the

same format. More metadata columns can be specified,

and the metadata can be both numerical (e.g., EC50) or

categorical (e.g., class membership). The metadata are as-

sociated with the corresponding data through their re-

spective IDs. The example of the metadata file is given in

Additional file 4.

Clustering

The only mandatory input to inchlib_clust is the data

matrix stored in the csv file. If default parameters are

used, no data scaling or row compression is applied and

the data are clustered by rows using Ward’s clustering

with the Euclidean distance. For example, to cluster the

data stored in the example_data.csv file using the Ward’s

clustering with the Euclidean distance, the following

command line is used:

python inchlib_clust.py example_data.csv –m example_

metadata.csv -dh –mh –a both -o example.json

In this case, the metadata are supplied (option -m) as

the example_metadata.csv file, and both data and meta-

data contain column headers (−dh and -mh options). The

data are clustered both by rows and columns (−a both

option). The output file example.json (Additional file 1)

contains the cluster heatmap in the InCHlib input for-

mat. Besides the command line interface, inchlib_clust

also offers the application programming interface (API)

and can, thus, be invoked from the user code. The use of

inchlib_clust API from the Python script is demonstrated

in Additional file 5.

Once the InCHlib input file is created, it is read by

InCHlib and the cluster heatmap is visualized. Prior call-

ing InCHlib functions, KineticJS and jQuery libraries must

be imported. Then, the InCHlib object is instantiated with

the settings parameter (given as the JavaScript object), the

JSON file is read using the read_data_from_file() method

and the cluster heatmap is rendered by calling the draw()

method. The only obligatory attribute of the settings par-

ameter is the target attribute that defines the id of the

HTML element the cluster heatmap is inserted in. Other

optional attributes of the settings parameter influence the

appearance of the visualization (e.g., colors or size attri-

butes) or of its individual parts (e.g., row dendrogram,

column dendrogram, heatmap or metadata attributes).

The example of the HTML/JavaScript code demonstrating

InCHlib web page integration is given in Additional file 6.

The resulting web page with commented HTML/JavaScript

code is shown in Additional file 2.

Use case

In this section, the use of InCHlib for the exploration of

the estrogen receptor α (ERα) ligand binding will be dem-

onstrated. ERα belongs to the family of steroid hormone

receptors [48], ligand-inducible transcription factors that

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 4 of 9

http://www.jcheminf.com/content/6/1/44



control essential physiological, developmental, reproduct-

ive and metabolic processes [49,50]. ERs are overexpressed

in around 70% of breast cancer cases [51] and have also

been implicated in ovarian, colon and prostate cancers.

Thus, ERs represent an important target for therapeutic

intervention [52].

The analysed data consist of 8 physico-chemical and

structural properties of 195 ERα ligands obtained from

the ChEMBL database [53]. The ligand properties were

calculated by the RDKit cheminformatics toolkit [54]

and they include the logarithm of the octanol-water par-

tition coefficient (logP), molar refractivity (SMR), topo-

logical polar surface area (TPSA), molecular weight, and

number of rotatable bonds, hydrogen-bond donors,

hydrogen-bond acceptors and aromatic rings. To each

ligand, its metadata represented by the Ki value (equilibrium

Figure 2 The InCHlib deployment pipeline. It consists of three steps: data preparation, clustering and rendering. In the data preparation step,

the data matrix consisting of data points and their IDs in rows and their features in columns is stored in the text file. Similarly, metadata are saved

in a separate text file. In the clustering step, these files are supplied to the software that performs hierarchical clustering and stores the results in

the InCHlib input file. Though any clustering software can be used, a utility script inchlib_clust that uses fastcluster library for clustering and outputs data

directly in the InCHlib format was developed. In the third step, the InCHlib input file is read in by InCHlib which renders the cluster heatmap visualization.

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 5 of 9

http://www.jcheminf.com/content/6/1/44



dissociation constant determined in inhibition studies)

is also assigned.

The results of the hierarchical Ward’s clustering with the

Euclidean distance performed by inchlib_clust are shown

in the left panel of Figure 3. In this heatmap, physico-

chemical properties and Ki show no clear relationship.

However, the clustering is biased by the wide range of mo-

lecular weight (250 – 600 Da). Because the values of other

features are from narrower intervals (e.g., logP has values

between 3 and 6), molecular weight prevails and the data

are clustered mainly by this descriptor. To remove this

artefact, data were normalized to the scale between 0 and

1. After the normalization, the data became more ordered

(Figure 3, right panel) and correlated with Ki values. Such

patterns indicate potential relationships between physico-

chemical descriptors and biological activity.

To facilitate the discovery of the structure-activity

relationships, depictions of ligand structures are shown

right of the cluster heatmap (Figure 4, left panel). This

is achieved by handling the row_onmouseover event.

This event is triggered upon hovering the mouse over

the row and displays the ligand image. The ligand image,

which is pre-generated by the chemoinformatics toolkit

RDKit [54], is stored in the file CHEMBLID.png. For

example, CHEMBL1276308.png contains the structure of

mifepristone, the compound with the CHEMBL1276308 ID.

The structure depiction is hyperlinked with the CHEMBL

database and, upon clicking the structure image, the corre-

sponding CHEMBL record opens in a new tab.

Though the depiction of molecular structures is useful,

the next step in the discovery of structure-activity rela-

tionships is the so-called scaffold analysis. Molecular

scaffold is the graph representation of a molecular core

structure [55]. Molecular scaffolds were successfully ap-

plied, among other, to the diversity analysis [56,57] of

bioactive compounds [58-64]. In the ERα use case, mo-

lecular scaffolds are revealed when the cluster is selected

(Figure 4, right panel). This is achieved by handling the

dendrogram_node_onclick event. When the scaffold image

is clicked, compounds with the given scaffold are highlighted

(Figure 4, right panel). The colour of highlighted rows is set

as a highlight_colors settings attribute on InCHlib instanti-

ation; the default colour scheme is Reds. In the presented

use case, scaffolds of all 195 ligands are extracted and their

images are generated by the RDKit [54] toolkit. A unique ID

is assigned to each scaffold and scaffold image is stored in

the ID.png file. To display the scaffold images upon node

clicking, we implemented the server-side Python function

that accepts the list of compound IDs (CHEMBL IDs),

extracts the molecular scaffold of each compound and

groups the compounds with the identical scaffolds.

The function returns an array of scaffold IDs with

attached compound IDs. For example, the array [1,

["CHEMBL234638", "CHEMBL278703", "CHEMBL234633"]]

contains 3 compounds that share a common scaffold with

ID 1.

The ERα use case, as well other examples demonstrat-

ing the use of InCHlib for the exploration of protein

structures, identification of gene expression patterns or

classification of whiskies based on their taste characteris-

tics, are available from http://openscreen.cz/software/

inchlib/use_cases/13. In addition, their short description

is given in Additional file 2.

Performance assessment

To assess the performance of inchlib_clust and InCHlib,

the dependence of the speed of clustering (inchlib_clust)

and rendering (InCHlib) on the data size was investigated.

The data, consisting of randomly generated integers be-

tween 0 and 1 000, were clustered using the Euclidean

Figure 3 The comparison of ERα ligand clusterings performed with original (left panel) and normalized (right panel) values. The data

were clustered by Ward’s clustering with the Euclidean distance. In the case of the clustering of normalized data (right panel), original data values

are depicted in the heatmap (parameter –write_original of inchlib_clust).

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 6 of 9

http://www.jcheminf.com/content/6/1/44

http://openscreen.cz/software/inchlib/use_cases/13
http://openscreen.cz/software/inchlib/use_cases/13


distance and Ward’s linkage. Experiments were performed

using the following computer configuration: Kubuntu 13.10,

Chrome 33.0.1750.146, Intel Core i5-2400 CPU 3.10 GHz,

8 GB RAM, 120 GB solid-state drive (SSD).

Clustering time increases quadratically with the num-

ber of data points (Figure 5, top left panel) which corre-

sponds to the O(N2) complexity of the implementation

of the Ward linkage hierarchical clustering in the fastcluster

library [45]. Similarly, memory requirements increase with

the number of data points; while clustering of 10,000 data

points required 0.5 GB of RAM, memory consumption

grew up to 2 GB for clustering of 20,000 data points. Con-

trary to the quadratic increase in clustering time with the

increase of the number of data points (i.e., rows of the data

matrix), the dependence of the clustering speed on the

number of features (i.e., columns of the data matrix) is lin-

ear (Figure 5, top right panel).

In addition to the performance of inchlib_clust, speed

of InCHlib rendering was also investigated. InCHlib

rendering time depends linearly on the number of data

Figure 4 The cluster heatmap of ERα ligands enhanced by the structure visualization. On the left panel, the row_onmousover event is

used for the visualization of molecular structure. On the right panel, the scaffold composition of the selected cluster is shown by handling the

dendrogram_node_onclick event. If the scaffold image is clicked, the heatmap rows representing compounds with the selected scaffold are

highlighted in red.

Figure 5 The speed of clustering and heatmap rendering. Top panel: the dependence of the speed of clustering by inchlib_clust on the

number of data points (i.e., the number of data matrix rows) and on the number of features (i.e., the number of data matrix columns). Bottom

panel: the dependence of the speed of rendering by InCHlib on the data size.

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 7 of 9

http://www.jcheminf.com/content/6/1/44



points (Figure 5, bottom panel). While the linear de-

pendence is the feature of the InCHlib implementation,

absolute rendering times are greatly influenced by the

PC hardware and web browser in which the primary

limiting factor is the speed of the JavaScript engine.

Conclusions
InCHlib is a browser independent JavaScript library that

facilitates the uncluttered visualization, powerful explor-

ation and easy web integration of the cluster heatmap.

InCHlib is an interactive tool that enables the user to se-

lect individual or clustered heatmap rows, to zoom in

and out of clusters or to flexibly modify heatmap appear-

ance. The InCHlib application programming interface

defines a rich set of events through which the visualization

can be interconnected with external data sources and ana-

lysis tools. The cluster heatmap can be augmented with

additional metadata displayed in a different colour scale.

To reduce the size of the heatmap and to reveal unique

motifs in the data, number of rows can be limited by using

several averaging methods. The clustered data are passed

into InCHlib in a JSON compliant input data format. To

facilitate data clustering and InCHlib input preparation,

the Python utility script inchlib_clust can be employed.

Though InCHlib is primarily intended for the analysis of

chemical or biological data, its application domain is not

limited to the life sciences only. InCHlib has already been

successfully deployed at the Institute of Molecular Genetics

AS CR as the part of an high-throughput screening infor-

mation management system used at CZ-OPENSCREEN:

National Infrastructure for Chemical Biology. InCHlib and

inchlib_clust are provided free for download, and InCHlib

is also available as the BioJS [65] component.

Availability and requirements
Project name: InCHlib

Project home page: http://openscreen.cz/software/inchlib/

home/, https://www.ebi.ac.uk/Tools/biojs/registry/Biojs.

InCHlib.html

Operating system(s): platform independent

Programming language: JavaScript

Other requirements: Python 2.7 to run inchlib_clust

License: MIT

Any restrictions to use by non-academics: None

Additional files

Additional file 1: Commented JSON InCHlib input file.

Additional file 2: Supplementary information with inchlib_clust

clustering options and use cases.

Additional file 3: Example data file.

Additional file 4: Example metadata file.

Additional file 5: Commented example of the use of the

inchlib_clust application programming interface.

Additional file 6: Example of the integration of InCHlib into a web

page.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DS and PB instigated the project, participated in the development of the

software, collected data sets, proposed the use cases and drafted the

manuscript. CŠ is the lead developer of InCHlib. He designed and

implemented the application and all use cases, prepared the web pages,

performed all tests and calculations and helped to draft the manuscript.

All authors read and approved the final manuscript.

Acknowledgements

The authors would like to thank Dr. M. Kolář and Dr. David Sedlák for their

valuable and constructive suggestions during the design and development

of the InCHlib library. This work was supported by the research grant LO1220

of the Ministry of Education, Youth and Sports of the Czech Republic.

Received: 15 July 2014 Accepted: 8 September 2014

References

1. Xu R, Wunsch D 2nd: Survey of clustering algorithms. IEEE Trans Neural

Netw 2005, 16(3):645–678.

2. MacCuish JD, MacCuish NE: Chemoinformatics applications of cluster

analysis. Wiley Interdiscip Rev Comput Mol Sci 2013, 4(1):34–48.

3. Downs GM, Barnard JM: Clustering methods and their uses in

computational chemistry. In Reviews in Computational Chemistry, Volume

Volume 18. Edited by Lipkowitz KB, Boyd DB. New York: VCH; 2002:1–40.

4. Gagarin A, Makarenkov V, Zentilli P: Using clustering techniques to

improve hit selection in high-throughput screening. J Biomol Screen 2006,

11(8):903–914.

5. Pu M, Hayashi T, Cottam H, Mulvaney J, Arkin M, Corr M, Carson D, Messer K:

Analysis of high-throughput screening assays using cluster enrichment.

Stat Med 2012, 31(30):4175–4189.

6. Stanton DT, Morris TW, Roychoudhury S, Parker CN: Application of

nearest-neighbor and cluster analyses in pharmaceutical lead discovery.

J Chem Inf Comput Sci 1999, 39(1):21–27.

7. Bender A, Glen RC: Molecular similarity: a key technique in molecular

informatics. Org Biomol Chem 2004, 2(22):3204–3218.

8. Perez JJ: Managing molecular diversity. Chem Soc Rev 2005, 34(2):143–152.

9. Petrone PM, Wassermann AM, Lounkine E, Kutchukian P, Simms B, Jenkins J,

Selzer P, Glick M: Biodiversity of small molecules–a new perspective in

screening set selection. Drug Discov Today 2013, 18(13–14):674–680.

10. Schuffenhauer A, Popov M, Schopfer U, Acklin P, Stanek J, Jacoby E:

Molecular diversity management strategies for building and enhancement

of diverse and focused lead discovery compound screening collections.

Comb Chem High Throughput Screen 2004, 7(8):771–781.

11. Olah MM, Bologa CG, Oprea TI: Strategies for compound selection.

Curr Drug Discov Technol 2004, 1(3):211–220.

12. Xu R, Wunsch DC 2nd: Clustering algorithms in biomedical research: a

review. IEEE Rev Biomed Eng 2010, 3:120–154.

13. Weinstein JN, Myers TG, O'Connor PM, Friend SH, Fornace AJ Jr, Kohn KW,

Fojo T, Bates SE, Rubinstein LV, Anderson NL, Buolamwini JK, van Osdol

WW, Monks AP, Scudiero DA, Sausville EA, Zaharevitz DW, Bunow B,

Viswanadhan VN, Johnson GS, Wittes RE, Paull KD: An information-

intensive approach to the molecular pharmacology of cancer. Science

1997, 275(5298):343–349.

14. Wilkinson L, Friendly M: The history of the cluster heat map. Am Stat 2009,

63(2):179–184.

15. Weinstein JN: Biochemistry. A postgenomic visual icon Science 2008,

319(5871):1772–1773.

16. Team. RDC: R: a language and environment for statistical computing. Vienna,

Austria: R Foundation for statistical computing; 2010. http://www.gbif.org/

resources/2585.

17. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B,

Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,

Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 8 of 9

http://www.jcheminf.com/content/6/1/44

http://openscreen.cz/software/inchlib/home/
http://openscreen.cz/software/inchlib/home/
https://www.ebi.ac.uk/Tools/biojs/registry/Biojs.InCHlib.html
https://www.ebi.ac.uk/Tools/biojs/registry/Biojs.InCHlib.html
http://www.jcheminf.com/content/supplementary/s13321-014-0044-4-s1.zip
http://www.jcheminf.com/content/supplementary/s13321-014-0044-4-s2.pdf
http://www.jcheminf.com/content/supplementary/s13321-014-0044-4-s3.csv
http://www.jcheminf.com/content/supplementary/s13321-014-0044-4-s4.csv
http://www.jcheminf.com/content/supplementary/s13321-014-0044-4-s5.zip
http://www.jcheminf.com/content/supplementary/s13321-014-0044-4-s6.zip
http://www.gbif.org/resources/2585
http://www.gbif.org/resources/2585


L, Yang JY, Zhang J: Bioconductor: open software development for

computational biology and bioinformatics. Genome Biol 2004, 5(10):R80.

18. CIMminer. http://discover.nci.nih.gov/cimminer/home.do.

19. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display

of genome-wide expression patterns. Proc Natl Acad Sci U S A 1998,

95(25):14863–14868.

20. TreeView. http://rana.lbl.gov/EisenSoftware.htm.

21. Schroeder MP, Gonzalez-Perez A, Lopez-Bigas N: Visualizing multidimensional

cancer genomics data. Genome Med 2013, 5(1):9.

22. Dudoit S, Gentleman RC, Quackenbush J: Open source software for the

analysis of microarray data. Biotechniques 2003, 34(Supp):45–51. http://

www.biotechniques.com/multimedia/archive/00072/Mar03Dudoit_72037a.pdf.

23. Saldanha AJ: Java Treeview-extensible visualization of microarray data.

Bioinformatics 2004, 20(17):3246–3248.

24. Zeeberg BR, Qin H, Narasimhan S, Sunshine M, Cao H, Kane DW, Reimers M,

Stephens RM, Bryant D, Burt SK, Elnekave E, Hari DM, Wynn TA,

Cunningham-Rundles C, Stewart DM, Nelson D, Weinstein JN: High-Throughput

GoMiner, an 'industrial-strength' integrative gene ontology tool for

interpretation of multiple-microarray experiments, with application to

studies of Common Variable Immune Deficiency (CVID). BMC Bioinformatics

2005, 6:168.

25. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M,

Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov

A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J:

TM4: a free, open-source system for microarray data management and

analysis. Biotechniques 2003, 34(2):374–378.

26. Sturn A, Quackenbush J, Trajanoski Z: Genesis: cluster analysis of microarray

data. Bioinformatics 2002, 18(1):207–208.

27. Usadel B, Nagel A, Steinhauser D, Gibon Y, Blasing OE, Redestig H,

Sreenivasulu N, Krall L, Hannah MA, Poree F, Fernie AR, Stitt M: PageMan:

an interactive ontology tool to generate, display, and annotate overview

graphs for profiling experiments. BMC Bioinformatics 2006, 7:535.

28. Floratos A, Smith K, Ji Z, Watkinson J, Califano A: geWorkbench: an open

source platform for integrative genomics. Bioinformatics 2010,

26(14):1779–1780.

29. Lex A, Streit M, Schulz HJ, Partl C, Schmalstieg D, Park PJ, Gehlenborg N:

StratomeX: visual analysis of large-scale heterogeneous genomics data

for cancer subtype characterization. Comput Graph Forum 2012,

31(3):1175–1184.

30. GENE-E. http://www.broadinstitute.org/cancer/software/GENE-E/.

31. Kim N, Park H, He N, Lee HY, Yoon S: QCanvas: an advanced tool for data

clustering and visualization of genomics data. Genomics Inform 2012,

10(4):263–265.

32. Perez-Llamas C, Lopez-Bigas N: Gitools: analysis and visualisation of

genomic data using interactive heat-maps. PLoS One 2011, 6(5):e19541.

33. Zhu J, Sanborn JZ, Benz S, Szeto C, Hsu F, Kuhn RM, Karolchik D, Archie J,

Lenburg ME, Esserman LJ, Kent WJ, Haussler D, Wang T: The UCSC cancer

genomics browser. Nat Methods 2009, 6(4):239–240.

34. Goldman M, Craft B, Swatloski T, Ellrott K, Cline M, Diekhans M, Ma S, Wilks C,

Stuart J, Haussler D, Zhu J: The UCSC cancer genomics browser: update

2013. Nucleic Acids Res 2013, 41(Database issue):D949–D954.

35. Kapushesky M, Kemmeren P, Culhane AC, Durinck S, Ihmels J, Korner C, Kull M,

Torrente A, Sarkans U, Vilo J, Brazma A: Expression Profiler: next generation–an

online platform for analysis of microarray data. Nucleic Acids Res 2004,

32(Web Server issue):W465–W470.

36. Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J,

Pascual-Montano A, Nogales-Cadenas R, Santoyo J, García F, Marbà M,

Montaner D, Dopazo J: Babelomics: an integrative platform for the analysis

of transcriptomics, proteomics and genomic data with advanced functional

profiling. Nucleic Acids Res 2010, 38(Web Server issue):W210–W213.

37. Next-generation clustered heatmaps. http://bioinformatics.mdanderson.

org/main/NG-CHM:Overview.

38. Xia J, Lyle NH, Mayer ML, Pena OM, Hancock RE: INVEX–a web-based tool

for integrative visualization of expression data. Bioinformatics 2013,

29(24):3232–3234.

39. Deu-Pons J, Schroeder MP, Lopez-Bigas N: jHeatmap: an interactive heatmap

viewer for the web. Bioinformatics 2014, 30(12):2.

40. Yachdav G, Hecht M, Pasmanik-Chor M, Yeheskel A, Rost B: HeatMapViewer:

interactive display of 2D data in biology. F1000Res 2014, 3:48.

41. CanvasXpress. http://www.canvasxpress.org/.

42. KineticJS. http://kineticjs.com/.

43. jQuery. http://jquery.com.

44. JSON (JavaScript Object Notation). http://json.org/.

45. Müllner D: Fastcluster: fast hierarchical, agglomerative clustering routines

for r and python. J Stat Softw 2013, 53(9):1–18.

46. Blatt M, Wiseman S, Domany E: Superparamagnetic clustering of data.

Phys Rev Lett 1996, 76(18):3251–3254.

47. Tetko IV, Facius A, Ruepp A, Mewes HW: Super paramagnetic clustering of

protein sequences. BMC Bioinformatics 2005, 6:82.

48. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K,

Blumberg B, Kastner P, Mark M, Chambon P, Evans RM: The nuclear

receptor superfamily: the second decade. Cell 1995, 83(6):835–839.

49. Katzenellenbogen JA, Katzenellenbogen BS: Nuclear hormone receptors:

ligand-activated regulators of transcription and diverse cell responses.

Chem Biol 1996, 3(7):529–536.

50. Whitfield GK, Jurutka PW, Haussler CA, Haussler MR: Steroid hormone

receptors: evolution, ligands, and molecular basis of biologic function.

J Cell Biochem 1999, 33(Suppl 32):110–122.

51. Ali S, Coombes RC: Estrogen receptor alpha in human breast cancer:

occurrence and significance. J Mammary Gland Biol Neoplasia 2000,

5(3):271–281.

52. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague

M, Strom A, Treuter E, Warner M, Gustafsson JA: Estrogen receptors: how

do they signal and what are their targets. Physiol Rev 2007, 87(3):905–931.

53. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y,

McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP: ChEMBL: a

large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012,

40(Database issue):D1100–D1107.

54. RDKit: cheminformatics and machine learning software. http://www.rdkit.org/.

55. Bemis GW, Murcko MA: The properties of known drugs. 1. Molecular

frameworks. J Med Chem 1996, 39(15):2887–2893.

56. Krier M, Bret G, Rognan D: Assessing the scaffold diversity of screening

libraries. J Chem Inf Model 2006, 46(2):512–524.

57. Medina-Franco JL, Martinez-Mayorga K, Bender A, Scior T: Scaffold diversity

analysis of compound daft sets using an entropy-based measure.

Qsar Comb Sci 2009, 28(11–12):1551–1560.

58. Hu Y, Bajorath J: Scaffold distributions in bioactive molecules, clinical

trials compounds, and drugs. ChemMedChem 2010, 5(2):187–190.

59. Varin T, Schuffenhauer A, Ertl P, Renner S: Mining for bioactive scaffolds

with scaffold networks: improved compound set enrichment from

primary screening data. J Chem Inf Model 2011, 51(7):1528–1538.

60. Grabowski K, Baringhaus KH, Schneider G: Scaffold diversity of natural

products: inspiration for combinatorial library design. Nat Prod Rep 2008,

25(5):892–904.

61. Lee ML, Schneider G: Scaffold architecture and pharmacophoric

properties of natural products and trade drugs: application in the design

of natural product-based combinatorial libraries. J Comb Chem 2001,

3(3):284–289.

62. Hu Y, Bajorath J: Structural and potency relationships between scaffolds

of compounds active against human targets. ChemMedChem 2010,

5(10):1681–1685.

63. Hu Y, Bajorath J: Systematic identification of scaffolds representing

compounds active against individual targets and single or multiple

target families. J Chem Inf Model 2013, 53(2):312–326.

64. Hu Y, Bajorath J: Many drugs contain unique scaffolds with varying

structural relationships to scaffolds of currently available bioactive

compounds. Eur J Med Chem 2014, 76:427–434.

65. Gomez J, Garcia LJ, Salazar GA, Villaveces J, Gore S, Garcia A, Martin MJ,

Launay G, Alcantara R, Del-Toro N, Dumousseau M, Orchard S, Velankar S,

Hermjakob H, Zong C, Ping P, Corpas M, Jiménez RC: BioJS: an open source

JavaScript framework for biological data visualization. Bioinformatics 2013,

29(8):1103–1104.

doi:10.1186/s13321-014-0044-4
Cite this article as: Škuta et al.: InCHlib – interactive cluster heatmap for
web applications. Journal of Cheminformatics 2014 6:44.

Škuta et al. Journal of Cheminformatics 2014, 6:44 Page 9 of 9

http://www.jcheminf.com/content/6/1/44

http://discover.nci.nih.gov/cimminer/home.do
http://rana.lbl.gov/EisenSoftware.htm
http://www.biotechniques.com/multimedia/archive/00072/Mar03Dudoit_72037a.pdf
http://www.biotechniques.com/multimedia/archive/00072/Mar03Dudoit_72037a.pdf
http://www.broadinstitute.org/cancer/software/GENE-E/
http://bioinformatics.mdanderson.org/main/NG-CHM:Overview
http://bioinformatics.mdanderson.org/main/NG-CHM:Overview
http://www.canvasxpress.org/
http://kineticjs.com/
http://jquery.com/
http://json.org/
http://www.rdkit.org/

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Input format

	Results and discussion
	Clustering
	Use case
	Performance assessment

	Conclusions
	Availability and requirements
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

