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Epilepsy is common in early childhood. In this age group it is associated with high rates of therapy-resistance, and with cognitive,

motor, and behavioural comorbidity. A large number of genes, with wide ranging functions, are implicated in its aetiology,

especially in those with therapy-resistant seizures. Identifying the more common single-gene epilepsies will aid in targeting re-

sources, the prioritization of diagnostic testing and development of precision therapy. Previous studies of genetic testing in epilepsy

have not been prospective and population-based. Therefore, the population-incidence of common genetic epilepsies remains un-

known. The objective of this study was to describe the incidence and phenotypic spectrum of the most common single-gene

epilepsies in young children, and to calculate what proportion are amenable to precision therapy. This was a prospective national

epidemiological cohort study. All children presenting with epilepsy before 36 months of age were eligible. Children presenting with

recurrent prolonged (410min) febrile seizures; febrile or afebrile status epilepticus (430min); or with clusters of two or more

febrile or afebrile seizures within a 24-h period were also eligible. Participants were recruited from all 20 regional paediatric

departments and four tertiary children’s hospitals in Scotland over a 3-year period. DNA samples were tested on a custom-designed

104-gene epilepsy panel. Detailed clinical information was systematically gathered at initial presentation and during follow-up.

Clinical and genetic data were reviewed by a multidisciplinary team of clinicians and genetic scientists. The pathogenic significance

of the genetic variants was assessed in accordance with the guidelines of UK Association of Clinical Genetic Science (ACGS).

Of the 343 patients who met inclusion criteria, 333 completed genetic testing, and 80/333 (24%) had a diagnostic genetic finding.

The overall estimated annual incidence of single-gene epilepsies in this well-defined population was 1 per 2120 live births (47.2/

100 000; 95% confidence interval 36.9–57.5). PRRT2 was the most common single-gene epilepsy with an incidence of 1 per 9970

live births (10.0/100 000; 95% confidence interval 5.26–14.8) followed by SCN1A: 1 per 12 200 (8.26/100 000; 95% confidence

interval 3.93–12.6); KCNQ2: 1 per 17 000 (5.89/100 000; 95% confidence interval 2.24–9.56) and SLC2A1: 1 per 24 300 (4.13/

100 000; 95% confidence interval 1.07–7.19). Presentation before the age of 6 months, and presentation with afebrile focal seizures

were significantly associated with genetic diagnosis. Single-gene disorders accounted for a quarter of the seizure disorders in this

cohort. Genetic testing is recommended to identify children who may benefit from precision treatment and should be mainstream

practice in early childhood onset epilepsy.
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Introduction
It is estimated that the lifetime prevalence of epilepsy is 7.60

per 1000 individuals (Fiest et al., 2017) and that 50–65 mil-

lion individuals are affected worldwide (Ngugi et al., 2010;

Fiest et al., 2017). Epilepsy incidence is age-dependent, with

the highest incidences (460 per 100000) found in those

under the age of 5 years and those over the age of 65

years (Hauser et al., 1993). Even in high resource health sys-

tems seizure control is not achieved for one-third of subjects

with epilepsy (Kwan and Brodie, 2000).
Children presenting with epilepsy before the age of 3

years experience a high burden of cognitive and behav-

ioural comorbidity (Berg et al., 2008). Comorbidities are

more prevalent among children who develop drug-resistant

seizures (Wirrell et al., 2012) and those with a high seizure

burden (Berg et al., 2012; Wilson et al., 2012). The concept

of the ‘developmental and epileptic encephalopathy’ (DEE)

recognizes that in children presenting with early-onset epi-

lepsy, neurodevelopmental comorbidity may be attributable

to both the underlying cause and to the detrimental effects

of uncontrolled epileptic activity (Scheffer et al., 2017).

Single-gene causes of childhood-onset epilepsy, such as

Dravet syndrome due to SCN1A mutations, typify this con-

cept. Families affected by, and clinicians treating, such epi-

lepsies strive for therapies that more precisely target the

syndrome and/or the underlying disease mechanisms, in

the hope that seizure control and developmental comorbid-

ity can be simultaneously addressed. Precision therapy

approaches have driven randomized therapeutic trials

including stiripentol (Chiron et al., 2000) and cannabidiol

(Devinsky et al., 2017) in Dravet syndrome, and quinidine

in KCNT1-associated epilepsy (Mullen et al., 2018).

The application of next generation sequencing (NGS)

technology has facilitated a fundamental change in aetiolo-

gical diagnosis of epilepsy. When cohorts of children with a

suspected genetic cause are tested using NGS, between 18%

and 48% receive a diagnosis. The variation in yield may be

explained by differences in case inclusion, testing method-

ology, and number of genes tested (Lemke et al., 2012;

Appenzeller et al., 2014; Helbig et al., 2016; Trump

et al., 2016; Lindy et al., 2018). Patients included in such

studies may have been selected on the basis of the nature of

the epilepsy and/or a suspected genetic aetiology. Therefore,

these studies may misrepresent the incidence and pheno-

typic spectrum of the single-gene epilepsies. To appreciate

the scope for genetically-guided precision medicine in child-

hood-onset epilepsy, and to prioritize therapy development,

we must understand the epidemiology. This demands a pro-

spective population-based approach to genetic testing.

Materials and methods

Cohort recruitment

Participants were recruited from all 20 regional paediatric de-
partments and four tertiary children’s hospitals in Scotland,
from 8 May 2014 to 7 May 2017. Only children who met
the inclusion criteria during this period, and who were under
36 months of age, were included.
Inclusion criteria were any of: (i) child receiving a new diag-

nosis of epilepsy (recurrent unprovoked seizures); (ii) child pre-
senting with an episode of febrile or afebrile status epilepticus
(seizure 430min); (iii) child presenting with two or more fe-
brile or afebrile epileptic seizures within a 24-h period; and
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D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

-a
b
s
tra

c
t/1

4
2
/8

/2
3
0
3
/5

5
3
2
1
9
5
 b

y
 g

u
e
s
t o

n
 3

0
 O

c
to

b
e
r 2

0
1
9



(iv) child presenting with a second prolonged (410min) fe-
brile seizure, over any time period.
Patients were excluded if an aetiology that would fully ex-

plain seizures was identified either prior to or at first presen-
tation with seizures. Examples of such aetiologies were
meningitis, hypoxic ischaemic encephalopathy in the neonate,
or focal seizures in an infant with a perinatal stroke.
Children presenting with prolonged and clustering febrile

seizures were included because in certain genetic epilepsies,
including those associated with SCN1A, PCDH19 and
PRRT2 variants, epilepsy can be preceded by febrile seizures
(Brunklaus et al., 2012; Higurashi et al., 2013; Ebrahimi-
Fakhari et al., 2015). Our aim was to optimize case identifi-
cation and avoid any delay in genetic diagnosis. Early genetic
diagnosis may inform treatment and potentially alter disease
course (Brunklaus et al., 2013; Lange et al., 2018).
Maximum case ascertainment was ensured by weekly e-mail

reminders throughout the study period to the eight paediatric
neurophysiology departments, a link clinician in each of the 24
centres and all 17 epilepsy specialist nurses in Scotland.
Research nurses throughout Scotland reviewed admissions to
intensive care and high dependency units; and a national con-
tinuing education program maintained the profile of the study.
We are not aware of any private medical services in Scotland

where young children would present with seizures, and given
the geographical location of hospitals in the border regions of
England and Scotland we would expect that children in
Scotland would access both paediatric and paediatric neur-
ology services from hospitals of the Scottish National Health
Service (NHS).
Denominator data for births over the study period were

taken from National Records of Scotland birth records
(National Records of Scotland, 2018). Incidence estimates
were rounded to three significant figures and 95% confidence
intervals (CIs) were calculated using the Poisson distribution.

Genetic testing

DNA was extracted from whole blood and tested on a
custom designed 104 gene epilepsy panel (Supplementary
material, part C) at the Scottish Genetic Epilepsy service
in Glasgow, unless a genetic diagnosis had already been
made through single-gene testing. Accelerated single-gene test-
ing [Sanger sequencing and multiplex ligation probe amplifica-
tion (MLPA)] of 10 genes (Supplementary material, part D)
was offered, with clinicians advised to request these prior to
panel testing if clinically indicated. The gene panel was de-
signed to include the early onset childhood genetic epilepsies
for which brain imaging was unlikely to give a diagnosis and
for which there is evidence for specific therapeutic approaches.
Genes to be included on the panel were selected by a team of
clinicians (J.D.S., S.M.Z., S.J., D.T.P.) who reviewed the litera-
ture extensively. All potentially causative variants identified
were validated through Sanger sequencing. Cases negative on
the 104 gene panel with typical phenotypes for epilepsy related
to SCN1A, KCNQ2, SLC2A1, PCDH19, CDKL5, or MECP2
underwent dosage analysis through MLPA of the relevant
gene. All variants of uncertain significance and likely patho-
genic/pathogenic variants were discussed in the context of the
clinical phenotype by a multidisciplinary team of paediatric
neurologists, clinical geneticists and molecular geneticists.
Variants were reported with reference to UK Association of

Clinical Genetic Science (ACGS) guidelines (Association for
Clinical Genetic Science, 2017). Pathogenic and likely patho-
genic results were considered diagnostic. Where DNA samples
and/or phenotype details from other family members were con-
sidered relevant to variant interpretation these were requested.
Chromosomal microarray studies were not routinely per-
formed because results were not thought likely to guide thera-
peutic management.

Clinical information

At the time of case recruitment, clinicians completed a struc-
tured proforma detailing clinical features and investigation
findings (Supplementary material, part E). A panel of three
paediatric neurologists reviewed clinical details of all cases to
ensure eligibility criteria were met. A minimum of 12 months
after initial presentation and 6 months after the recruiting clin-
ician had been informed of the final genetic test result, clin-
icians completed a structured clinical follow-up questionnaire
(Supplementary material, part F). For the purposes of this
study, therapy-resistant seizures were defined as ongoing epi-
leptic seizures (one or more seizure per 6 months) despite ad-
equate trials of two or more appropriately chosen,
appropriately dosed (or administered) and taken antiepileptic
therapies (including non-drug therapies such ketogenic diet
and vagus nerve stimulation). The study was approved by
the United Kingdom NHS National Research Ethics Service.

Statistical analysis

IBM� SPSS� Statistics Version 24 was used to determine
associations between clinical features and identification of
a genetic cause. Only patients who had completed genetic
testing were included in this analysis. Patients were defined
as having completed genetic testing if either a diagnostic
result was identified through accelerated single-gene testing,
or gene panel testing was completed. Age of seizure onset
was divided into four categorical groups: 56 months, 6–12
months, 12–24 months, and 24–36 months. Type of first seiz-
ure was divided into eight categories: febrile generalized
(excluding status, which was defined as a seizure lasting
430min), febrile focal (excluding status), febrile status (focal
or generalized), afebrile focal (excluding status), afebrile gen-
eralized (excluding status), afebrile status (focal or general-
ized), afebrile unclassified, and infantile spasms. Univariate
analysis was performed using Fisher’s exact equation and
multivariate analysis used a Hosmer-Lemeshow binomial re-
gression model. Statistical advice was from Cunyi Wang of
Glasgow University.

Data availability

The authors confirm that the data supporting the findings of
this study are available within the article and its
Supplementary material.

Results
The mean number of births per year in Scotland for the
years 2011 to 2016 inclusive was 56 490, making the esti-
mated denominator for this population 169 470. During
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the 3-year study period, 343 children under the age of 3
years were recruited to this study.

Phenotypes

Of 214 patients recruited because of a diagnosis of epi-
lepsy, 101 (47%) presented with focal seizures, 42 (20%)
with tonic-clonic seizures, 23 (11%) with myoclonic seiz-
ures, 22 (10%) with epileptic spasms, 11 (5%) with ab-

sence seizures, eight (4%) with generalized tonic seizures,
three (1%) with atonic seizures, and four with unclassified
seizures. Ninety-four patients were recruited because of fe-
brile seizures, of whom 45 presented with febrile status, 36

with a cluster of two or more febrile seizures within 24 h,
and 13 with recurrent prolonged febrile seizures (410-min
duration). Twenty-three patients were recruited because of
an episode of afebrile status epilepticus, and 12 were re-
cruited because of a single cluster of two or more afebrile

seizures within a 24-h period. At the time of recruitment,
129 patients did not have a diagnosis of epilepsy, but by
the end of the study period, 49 (38%) of these had
acquired an epilepsy diagnosis (Table 1). Seventeen differ-

ent epilepsy syndrome diagnoses were made. The numbers
for epilepsy syndrome diagnosis are shown in Table 2. Of
263 patients, 125 (47.5%) remained without an epilepsy
syndrome that could be fully classified. Seventy-six

(22.1%) patients in the cohort developed therapy-resistant
seizures. Finally, 106 (30.1%) had concerns about develop-
ment expressed at the time of recruitment, and 115
(33.5%) had developmental concerns raised at most

recent follow-up.

Genetic diagnoses

Three hundred and thirty-three patients completed genetic
testing. There was insufficient DNA to complete panel test-

ing for 10 patients. Genetic diagnoses were made for 80
children (24%) (Fig. 1). Supplementary material, part B
details all the genetic diagnoses made, along with the
phenotypic details for each patient. All but four of the gen-

etic diagnoses were in patients who had a diagnosis of
epilepsy by the end of the study period (Table 1). No

patient had more than one diagnostic finding. The incidence

of single-gene seizure disorders in this population is at least

1 per 2120 live births (47.2/100 000; 95% CI 36.9–57.5).

Twenty-six patients had a diagnostic result from accelerated

single-gene testing (Sanger and/or MLPA), therefore, these

did not undergo panel testing. Of the remaining 307 pa-

tients tested on the panel, 52 patients had a diagnostic

result. Finally, two patients, following multidisciplinary

team discussion, underwent KCNQ2 MLPA testing after a

negative panel result and were found to have pathogenic

copy number variants. The causative variant was de novo

in 34 patients, inherited from an affected parent in 15 pa-

tients, inherited from an unaffected parent in nine patients,

undetermined in 21 cases, and compound heterozygous in

one patient (with POLG-related seizures). Table 2 shows

the genetic diagnoses made in relation to phenotype at the

end of the study period. High yields from genetic testing

were observed in patients classified into the following

groups: Dravet syndrome; other developmental and epileptic

encephalopathies; self-limited infantile seizures.
The most common single-gene epilepsies were PRRT2

(17 patients), SCN1A (14 patients), KCNQ2 (10 patients)

and SLC2A1 (seven patients). Eighty-four per cent (67/80)

of genetic diagnoses were in the most frequently-implicated

10 genes. Through interrogating clinical data obtained at

presentation and follow-up, we were able to characterize

the phenotypic spectrum of several single-gene epilepsies

(Table 3 and Fig. 2) and define high yield groups for spe-

cific single-gene epilepsies (Table 5). In Table 6 we present

univariate and multivariate analysis for associations be-

tween presenting features and identification of a single-

gene cause. Genetic diagnosis was positively associated

with presentation before the age of six months, and with

presentation with afebrile focal seizures. These associations

remained significant in a multivariate model.

Gene-associated phenotypes

PRRT2: self-limited (familial) infantile seizures

We identified 17 patients and calculate the minimum inci-

dence as 1 per 9970 live births (10.0/100 000; 95% CI

Table 1 Diagnoses at recruitment and diagnoses at most recent follow-up

Diagnosis at recruitment Diagnosis at most recent follow-up % Progression

to epilepsy
Group n Epilepsy Not epilepsy

Recurrent unprovoked seizures (epilepsy) 214 214 0 N/A

Afebrile status 23 13 10 56.5

Afebrile cluster of seizures within 24 h 12 6 6 50.0

Febrile status 45 13 32 28.9

Febrile cluster of seizures within 24 h 36 12 24 33.3

Recurrent prolonged febrile seizures (410min) 13 5 8 38.5

Total 343 263 80

Total (%) with a genetic cause identified 80 (23.3) 76 (28.9) 4 (5.0)

N/A = not applicable.

2306 | BRAIN 2019: 142; 2303–2318 J. D. Symonds et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ra

in
/a

rtic
le

-a
b
s
tra

c
t/1

4
2
/8

/2
3
0
3
/5

5
3
2
1
9
5
 b

y
 g

u
e
s
t o

n
 3

0
 O

c
to

b
e
r 2

0
1
9



Table 2 Final phenotypes and genetic diagnoses made within each group

Phenotype at most recent follow up, n n (%) with a genetic

cause identified

Genes implicated (n)

Epilepsy, 263

DEE, 62

West syndrome, 27 3/27 (11.1) CDKL5 (2), DEPDC5

Dravet syndrome, 11 11/11 (100) SCN1A (11)

Other DEEs, 24 13/24 (54.1) PCDH19 (3), CDKL5 (2), KCNQ2 (2), GABRA1, KCNT1, MECP2, SCN2A,

SCN8A, STXBP1

Alper-Huttenlocher syndrome, 1 1/1 (100) POLG

Absences with eyelid myoclonia, 1 1/1 (100) CHD2

Early onset absence epilepsy, 5 0/5

Epilepsy with myoclonic-atonic seizures, 8 2/8 (25) STX1B, SLC6A1

Familial focal epilepsy, 1 1/1 (100) DEPDC5

Febrile seizures plus, 6 0/6

Genetic epilepsy with febrile seizures plus, 2 1/2 SCN1A

Glut1 deficiency syndrome, 7 7/7 (100) SLC2A1 (7)

Myoclonic epilepsy of infancy, 3 0/3

Panayioutopoulos syndrome, 1 0/1

Self-limited familial infantile epilepsy, 5 5/5 (100) PRRT2 (5)

Self-limited infantile epilepsy, 27 11/27 (40.7) PRRT2 (10), KCNQ2

Self-limited familial neonatal seizures, 7 7/7 (100) KCNQ2 (5), KCNQ3 (2)

Self-limited neonatal seizures, 1 1/1 (100) KCNQ2

Unclassified myoclonic epilepsy, 5 0/5

Unclassified generalized epilepsy, 10 1/10 (10) CACNA1A

Unclassified focal epilepsy, 59 5/59 (8.5) DEPDC5 (2), KCNA2, KCNQ2, PRRT2

Unclassified focal and generalized epilepsy, 8 0/8

Unclassified epilepsy, 44 6/44 (13.6) SLC6A1 (3), COL4A1, PCDH19, PRRT2

Not epilepsy, 80

Febrile seizures only, 64 3/64 (4.7) SCN1A (2), KCNA2 (mosaic, 20)

Single episode of afebrile status, 10 0/10

Single cluster of afebrile seizures in 24 h, 6 1/6 (16.7) CACNA1A

DEEs = developmental and epileptic encephalopathies.

Figure 1 Genetic results. No case had more than one diagnostic result. Shaded bars represent genes for which there is evidence for precision

therapy.
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Table 3 Summary of the clinical findings from the eight most common single-gene epilepsies

Genetic cause

PRRT2 SCN1A KCNQ2 SLC2A1

Number of patients in
this cohort and whether
related

17 (8 female) 14 (5 female) 10 (5 female) 7 (3 female)
All unrelated All unrelated All unrelated All unrelated

Incidence 1 per 9970 live births 1 per 12 200 live births 1 per 17 000 live births 1 per 24,300 live births
(10.0/100 000; 95%
CI 5.26–14.8).

(8.26/100 000; 95% CI 3.93–12.6). (5.89/100 000; 95% CI 2.24–9.56). (4.13/100 000; 95%
CI 1.07–7.19).

Age range at
presentation in months
(median)

3–19 (7) 1.5–19 (6.5) 0.17–4 (0.24) 11–18 (12)

Most common
presentation(s)

Afebrile focal seizures: 71%
(12/17)

Febrile seizures: 50% (7/14) Afebrile focal seizures:
70% (7/10)

Afebrile generalized
seizures: 86% (6/7)Afebrile focal seizures: 36% (5/14)

Status epilepticus: 36% (5/14)

Diagnosis at latest
follow-up

Self-limited infantile
epilepsy: 88% (15/17)

Dravet syndrome: 79% (11/14) Self-limited neonatal epilepsy:
60% (6/10)

Glut1-deficiency with
epilepsy: 100% (7/7)

Unclassified focal
epilepsy: 6% (1/17)

Febrile seizures only: 14% (2/14) KCNQ2 encephalopathy:
20% (2/10)

Unclassified
epilepsy: 6% (1/17)

Genetic epilepsy with febrile
seizures plus: 7% (1/14)

Self-limited infantile epilepsy:
10% (1/10)

Unclassified focal epilepsy:
10% (1/10)

Developmental
concerns at
presentation

24% (4/17) 29% (4/14) (29%) 20% (2/10) 57% (4/7)

Developmental
concerns at follow-up

12% (2/17) 64% (9/14) 30% (3/10) 43% (3/7)

Therapy-resistant
seizures

None (0/17) 86% (12/14) 20% (2/10) 14% (1/7)

Recommended
treatment(s) (Table 4)

Carbamazepine Stiripentol Carbamazepine Ketogenic diet
Fenfluramine Phenytoin

Cannabidiol

Avoidance of sodium channel
blocking medications

Zygosity 100% heterozygous (17/17) 100% heterozygous (14/14) 100% heterozygous (10/10) 100% heterozygous (7/7)

Inheritance of causative
variant

12% de novo (2/17) 70% de novo (10/14) 30% de novo (3/10) 70% de novo (5/7)
71% inherited (12/17) 30% inherited (3/14) 50% inherited (5/10) 15% inherited (1/7)

18% unknown (3/17) 10% unknown (1/14) 20% unknown (2/10) 15% unknown (1/7)

Genetic cause

CDKL5 PCDH19 DEPDC5 SLC6A1

Number of patients in
this cohort and whether
related

4 (3 female) 4 (all female) 4 (2 female) 4 (all female)
All unrelated All unrelated All unrelated 3 were siblings

Incidence 1 per 42 400 live births 1 per 20 600 live born females 1 per 42 400 live births N/A
2.36/100 000
(95% CI 0.805–5.59)

4.85/100 000 (95% CI 1.97–9.15) 2.36/100 000 (95%
CI 0.81–5.59)

Age range at
presentation in months
(median)

0.5–6 (1.65) 6–18 (11.5) 2.5–26 (20) 12–31 (19)

Most common
presentation(s)

Infantile spasms: 50% (2/4) Afebrile focal seizures: 75% (3/4) Afebrile focal seizures:
50% (2/4)

Afebrile focal seizures:
75% (3/4)Afebrile focal seizures:

50% (2/4)

Diagnosis at latest
follow-up

CDKL5 developmental and
epileptic encephalopathy:
100% (4/4)

PCDH19 related developmental and
epileptic encephalopathy:
75% (3/4)

Unclassified focal epilepsy:
75% (3/4)

Unclassified epilepsy
75% (3/4)

Unclassified epilepsy: 25% (1/4) Infantile spasms (West syndrome)
25% (1/4)

Epilepsy with myoclonic-atonic
seizures
25% (1/4)

Developmental
concerns at
presentation

50% (2/4) None (0/4) None (0/4) 75% (3/4)

Developmental
concerns at follow-up

100% (4/4) 75% (3/4) 25% (1/4) 100% (4/4)

Therapy-resistant
seizures

100% (4/4) 100% (4/4) 50% (2/4) 50% (2/4)

Recommended
treatment(s) (Table 4)

Ketogenic diet Clobazam No specific recommendation Sodium valproate

Zygosity 75% heterozygous (3/4) 100% heterozygous (4/4) 100% heterozygous (4/4) 100% heterozygous (4/4)
25% hemizygous (1/4)

Inheritance of causative
variant

75% de novo (3/4) 50% paternally inherited (2/4) 50% de novo (2/4) 100% inherited (4/4)
25% unknown (1/4) 50% de novo (2/4) 50% inherited (2/4)
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5.26–14.8). Two patients had missense variants and 15

patients had frameshift variants, of whom 13 patients

had the recurrent frameshift variant (c.649dup,

p.Arg217Profs*8). This is the most frequently observed dis-

ease-associated PRRT2 variant in the literature (Ebrahimi-

Fakhari et al., 2015). The observation that this variant ap-

pears over 400 times in the exome aggregation consortium

(ExAC) database (Lek et al., 2016) would initially suggest

that it is a relatively common population variant. However,

the same variant appears just eight times in the genome

aggregation consortium (gnomAD) database, which in-

cludes the same participants as ExAC but applies a differ-

ent sequencing methodology (The Broad Institute, 2018).

We therefore suspect that the variants seen in ExAC are

artefacts that have appeared during the DNA amplification

process. In our study we validated all variants through

Sanger sequencing and are confident that we have not re-

ported sequencing artefacts. Among 29 718 participants in

gnomAD for whom there is PRRT2 data, eight were het-

erozygous for the c.649dup variant. In our study there were

10 patients among 333 tested, making this variant 4100

times more common in our study population than in the

healthy population.
A clear age pattern of PRRT2-related epilepsy presenta-

tion was observed, with peak onset of seizures at 7 months.

The phenotype we observed was in keeping with previously

published literature on PRRT2-related epilepsy, which de-

scribes a self-limited infantile epilepsy which has median

age of onset at 6.0 months (Ebrahimi-Fakhari et al.,

2015). Outcomes were generally good in our cohort. At

most recent follow-up no patients had developed therapy-

resistant seizures, and all had been seizure-free for 46

months. Interestingly four patients had developmental con-

cerns highlighted at presentation but only two continued to

present developmental concerns at most recent follow-up.

This provides a suggestion that with this genetic epilepsy,

developmental trajectory may improve along with seizure

control as the child gets older. This hypothesis would need

to be confirmed by studying more prospective developmen-

tal assessments. Effective therapies reported were carba-

mazepine (n = 7), levetiracetam (n = 5), and sodium

valproate (n = 3).

SCN1A: Dravet syndrome, febrile seizures plus

We identified 14 patients and calculate the minimum inci-

dence of SCN1A-related seizures as 1 per 12200 live births

(8.26/100000; 95% CI 3.93–12.6). A spectrum of disease

severity was seen. Of 14 patients with SCN1A variants, 11

(79%) were ultimately diagnosed with Dravet syndrome,

making the incidence of SCN1A-related Dravet syndrome

Figure 2 Age of presentation for four genetic epilepsies. These skewed Gaussian plots are hypothetical distributions based on the mean,

median and standard deviations of the age at presentation for these four genetic epilepsies from our data. Each plot has been scaled according to

the number of cases identified in this cohort so that the area under each curve represents the total probability of finding a causative variant in each

gene in our cohort.
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1 per 15500 live births. One patient, who had a de novo

variant (Patient 90), received a diagnosis of genetic epilepsy

with febrile seizures plus (GEFS+ ). De novo SCN1A vari-

ants do not necessarily imply a severe prognosis and have

previously been associated with GEFS+ phenotypes (Myers

et al. 2017). Two patients had febrile seizures only, one of

whom (Patient 5) had an inherited variant from a father

with a history of recurrent febrile seizures. For the other

(Patient 317), inheritance status could not be determined.

Six patients had variants predicted to result in truncation

and eight had missense variants, but no genotype-phenotype

association was observed in this cohort. One of the patients

with a truncating variant (Patient 5) had febrile seizures

only. Age at presentation had a similar distribution to that

Table 4 Evidence from the literature to support gene-specific treatment approaches

Gene Recommendation(s) Evidence base Reference

n Study details P-value Evidence

level

Recommendation

grade

PRRT2 Consider carbamazepine 64 Retrospective uncontrolled clinician-reported
subjective treatment response analysis.

NC III C Huang et al. (2015)

24 Retrospective uncontrolled clinician-reported
subjective treatment response analysis.

NC III Ebrahimi-Fakhari
et al, (2015)

SCN1A Consider stiripentol 36 Placebo-controlled RCT of add-on therapy in
Dravet syndrome (number with SCN1A variant
not reported).

50.0001 1B A Chiron et al. (2000)

41 Prospective observational study of long-term
efficacy of add-on stiripentol in patients with
Dravet syndrome (39 with SCN1A variant).

NC III Myers et al. (2018)

Consider cannabidiol 120 Multicentre double-blinded placebo-controlled
RCT of add-on therapy in Dravet syndrome
(114 with SCN1A variant).

0.08 1B A Devinsky et al. (2017)

Consider fenfluramine 11 Retrospective uncontrolled clinician-reported
seizure-freedom.

NC III C Ceulemans et al. (2012)

Consider ketogenic diet 20 Retrospective uncontrolled clinician-reported
seizure reduction in Dravet syndrome (number
with SCN1A variant not reported).

NC III C Caraballo et al. (2005)

Consider levetiracetam 28 Open label uncontrolled trial of add-on lamotrigine
in Dravet syndrome (16 with SCN1A variant).

0.0001 III C Striano et al. (2007)

Consider topiramate 18 Open label uncontrolled trial of add-on topiramate
in Dravet syndrome (number with SCN1A

variant not reported).

NC III C Coppola et al. (2002)

Consider sodium valproate 160 Retrospective uncontrolled clinician-reported
subjective treatment response analysis.

NC III C Brunklaus et al. (2012)

Avoid carbamazepine 60 Retrospective uncontrolled clinician-reported
subjective treatment response analysis.

NC III C Brunklaus et al. (2012)

Avoid lamotrigine 60 Retrospective uncontrolled clinician-reported
subjective treatment response analysis.

NC III C Brunklaus et al. (2012)

21 Uncontrolled unblinded trial of add-on lamotrigine
in Dravet syndrome (number with SCN1A

variant not reported).

NC III Guerrini et al. (1998)

KCNQ2 Consider carbamazepine 15 Retrospective uncontrolled clinician report of
seizure-freedom.

NC III C Pisano et al. (2015)

Consider phenytoin 15 Retrospective uncontrolled clinician report of
seizure-freedom.

NC III C Pisano et al. (2015)

SLC2A1 Use ketogenic diet 104 Retrospective uncontrolled family-reported
subjective treatment response analysis.

NC III C Kass et al. (2016)

CDKL5 Consider ketogenic diet 82 Retrospective uncontrolled family-reported
subjective treatment response analysis.

NC III C Lim et al. (2017)

PCDH19 Consider clobazam 58 Retrospective uncontrolled clinician-reported
treatment response analysis, 3 months after
commencing therapy.

NC III C Lotte et al. (2016)

SLC6A1 Consider sodium valproate 15 Retrospective uncontrolled clinician-reported
treatment response analysis.

NC III C Johannesen et al. (2018)

SCN8A Consider phenytoin 0 Functional study. Single cell patch clamp testing
in ND/7 cells transfected with the epilepsy-
associated variant (I1327V).

NC III C Barker et al. (2016)

4 Retrospective uncontrolled clinician-reported
subjective treatment response analysis.

NC III Boerma et al. (2016)

SCN2A (with
seizure onset
53mo of age)

Consider sodium channel
blocking (SCB) drugs

158 Retrospective clinician-reported seizure-freedom. 1� 10�6 III C Wolff et al, (2017)

POLG Avoid sodium valproate 43 Retrospective clinician-reported hepatotoxicity. NC III C Anagnostou et al. (2016)

KCNT1 (in
patients
aged 54 y)

Consider trial of quinidine 0 Functional study. Single cell patch clamp
testing in Xenopus laevis oocyte cells.

NC III None (conflicting
evidence)

Milligan et al. (2014)

6 Single centre, inpatient, order randomized,
blinded, placebo-controlled trial.

0.15 NA Mullen et al. (2018)

Papers were included if they were either randomized-controlled trials, provided supportive evidence from in vitro functional studies, or analysed a cohort of 410 patients specifically

in relation to treatment response. Where multiple treatments were evaluated in the same cohort, evidence is presented in favour of the most efficacious therapy identified. See

Supplementary material for a more detailed version of this table.

mo = months; NC = not calculated; y = years.
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of the PRRT2-related seizures, with median onset at 6.5
months. In contrast to patients with PRRT2 variants,
those with SCN1A variants were likely to present with fe-
brile seizures and with status epilepticus. Half of the SCN1A

patients presented with a febrile seizure and half with an
afebrile seizure. The SCN1A phenotype observed in our

cohort was in line with the previous literature on this genetic
seizure disorder, which reports a tendency for early seizures
to be associated with fever, a median initial seizure presen-
tation at 6.0 months and a spectrum of disease severity.
While the majority go on to develop a drug-resistant epilepsy
and cognitive stagnation or decline (Harkin et al., 2007;

Table 6 Associations between features at presentation and genetic diagnosis

n (%) with

genetic cause

identified

Two-tailed

Fisher’s exact

probability 

OR (95% CI) Multivariate model

probability (Homser-

Lemeshow)

Multivariate OR

(95% CI)

Total cohort 80/333 (24.0)

Age at presenting seizure

56 months 34/74 (45.9) 50.005** 3.9 (2.3–6.9) 0.004 4.9 (1.9–12.8)

6–12 months 22/89 (24.7) n.s. n.s.

12–24 months 17/117 (14.5) 50.005* 0.4 (0.2–0.7) n.s.

24–36 months 7/53 (13.2) n.s. Reference category

Presenting seizure type

Febrile generalized, not including status 2/36 (5.6) 50.005* 0.2 (0.0–0.7) Reference category

Febrile focal, not including status 3/10 (33.3) n.s. n.s.

Febrile status, generalized or focal 7/45 (15.6) n.s. n.s

Afebrile focal, not including status 40/100 (40.0) 50.005** 3.2 (1.9–5.3) 0.012 6.9 (1.5–31.7)

Afebrile generalized, not including status¥ 21/96 (21.9) n.s. n.s

Afebrile status, generalized or focal 3/21 (14.3) n.s. n.s

Afebrile unclassified 1/4 (25.0) n.s. n.s.

Infantile spasms 3/21 (14.3) n.s. n.s

Afebrile generalized tonic-clonic 9/50 (18.0) n.s. Subtypes of afebrile generalized seizures were not

included in the mutivariate modelAfebrile generalized myoclonic 4/23 (17.4) n.s.

Afebrile generalized tonic 4/9 (44.4) n.s.

Afebrile generalized atonic 1/3 (33.3) n.s.

Afebrile generalized absence 3/11 (27.3) n.s.

�Fisher’s exact statistic calculated on a contingency table where the null hypothesis was that there would be equal proportions of patients with and without a genetic diagnosis in each

subgroup as there were in the entire tested cohort who completed genetic testing (n = 333).

*Negative association.

**Positive association.
¥Composite group of all presentations with afebrile generalized seizures.

n.s. = not significant; OR = odds ratio.

Table 5 Presentation types that had high yield for specific genetic diagnoses

Presentation Afebrile seizures

56 months

Afebrile focal seizures

512 months

Febrile or afebrile status

epilepticus 524 months

Afebrile generalized seizures

56 months and 524 months

n 63 68 59 74

Genetic diagnosis (n) KCNQ2 (10) PRRT2 (11) SCN1A (5) SLC2A1 (6)

PRRT2 (5) KCNQ2 (7) KCNA2 (1) PRRT2 (2)

SCN1A (4) SCN1A (5) POLG (1) CHD2 (1)

CDKL5 (2) CDKL5 (2) PRRT2 (1) KCNA2 (1)

KCNQ3 (2) KCNQ3 (2) SLC2A1 (1) PCDH19 (1)

COL4A1 (1) COL4A1 (1) POLG (1)

GABRA1 (1) DEPDC5 (1) SCN1A (1)

KCNT1 (1) GABRA1 (1)

STCBP1 (1) PCDH19 (1)

SCN2A (1) SCN2A (1)

SCN8A (1) SLC2A1 (1)

Total with genetic

diagnosis (%)

29 (46.0) 33 (48.5) 9 (15.2) 13 (17.6)
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Brunklaus et al., 2012) some, even if their variant has arisen
de novo, may have mostly febrile seizures and a good cog-
nitive outcome (Myers et al., 2017). While it is well estab-
lished that there is a spectrum of SCN1A-related
phenotypes, until now the relative proportions of mild
versus severe cases has not been established because no

study has used a population-based approach to SCN1A test-
ing. Here we show that the majority of SCN1A phenotypes
are in fact at the severe end of the spectrum. In our cohort,
11/14 patients were reported to have normal development at
the time of presentation. At most recent follow-up five con-
tinued to have normal cognitive development, three had mild
cognitive concerns and six had moderate cognitive concerns.
Eighty-six per cent (12/14) of patients developed therapy-
resistant seizures, making SCN1A the most common genetic
cause of therapy resistant seizures in this cohort. The most

frequently reported effective therapy was stiripentol (n = 4).

KCNQ2: self-limited (familial) neonatal seizures,

early infantile developmental and epileptic

encephalopathy

We identified 10 patients and calculate the minimum inci-
dence as 1 per 17 000 live births (5.89/10 000; 95% CI

2.24–9.56). Seizures associated with KCNQ2 variants pre-
sented significantly earlier than the other single-gene epilep-
sies in this cohort (median 7 days). Five patients had a
frameshift variant, two had a duplication of exons 2–12,
two had whole gene deletions, and one had a de novo

missense variant. The most severe epilepsy and develop-
mental impairment was observed in the patient with the
missense variant. The literature describes two distinct
phenotypes associated with KCNQ2 variants: a self-limited
familial neonatal seizure phenotype (Biervert et al., 1998;

Singh et al., 2003) and a severe neonatal-onset developmen-
tal and epileptic encephalopathy (Weckhuysen et al., 2012;
Kato et al., 2013; Olson et al., 2017). We also observed
these two phenotypes but found that the majority of pa-
tients had a mild phenotype. Seven of 10 patients (70%)
had self-limited neonatal or infantile-onset seizures, all of
whom had normal cognitive development at most recent
follow-up. Two patients had KCNQ2 encephalopathy,
and one patient had an unclassified drug-resistant focal epi-
lepsy of onset at 3 months and developed mild cognitive

impairment.
Previous studies have identified that more severe pheno-

types are observed in patients who carry missense variants
in KCNQ2 (Weckhuysen et al., 2012; Kato et al., 2013;
Olson et al., 2017). In contrast, the majority of familial
self-limited cases are associated with truncating variants
(Singh et al., 2003). We did not entirely observe this pat-
tern. In our cohort only one patient had a missense variant
(Patient 177). This patient had a severe developmental and
epileptic encephalopathy, presenting with seizures at 30
days of age. The other patient with a severe developmental

and epileptic encephalopathy had a whole gene deletion.
We observed a number of patients presenting with focal
seizures beyond the neonatal period (one at 3 months

and two at 4 months). Post-neonatal presentation with
KCNQ2-related seizures has been reported before
(Millichap et al., 2017; Zeng et al., 2018). In our cohort
early onset of seizures appeared to be associated with better
outcomes. All six of those who presented at under 1 month
of age had self-limited seizures and normal cognitive devel-

opment. Inheritance status did not fully correlate with se-
verity of phenotype. One patient with an inherited variant
and an extensive family history of self-limited familial neo-
natal seizures had profound cognitive impairment (Patient
177), suggesting modifying factors were at play. Another
patient (Patient 336) with a de novo variant, had self-lim-
ited neonatal seizures and a good cognitive outcome.
The most frequently-reported effective therapy was

carbamazepine (n = 4), followed by phenobarbitone (n = 3).

SLC2A1: generalized seizures with gait ataxia

(Glut1 deficiency)

We identified seven patients and calculate the minimum inci-
dence as 1 per 24300 live births (4.13/100000; 95% CI
1.07–7.19). Four patients had truncating variants and three
had missense variants. In contrast to all the other genetic
causes, these patients were more likely to present with gen-

eralized seizures than with focal seizures. Six of seven patients
presented with generalized seizures (three tonic-clonic, two
myoclonic, one absence). Age at presentation was later than
that observed with the other genetic causes, with a median
seizure-onset of 12 months. This is slightly later than the
median age of 8 months reported by Pong et al. (2012) in
their study of 78 patients with SLC2A1-related seizures. The
literature on SLC2A1-related phenotypes tends to emphasize
the coexistence of early childhood seizures with other clinical
features, most notably developmental delay, chorea, dystonia

and microcephaly (Di Georgis and Veggiotti, 2013).
Nonetheless, the observation that initial seizure presentation
in these children is often with absence seizures or myoclonic
seizures (Hully et al., 2015) prompted some authors to screen
children with early onset absence epilepsy (EOAE) and epi-
lepsy with myoclonic atonic seizures (EMA), for pathogenic
variants in the SLC2A1 gene. The conclusions from these
studies was that glucose 1 transporter (Glut1) deficiency
was associated with a significant minority of these presenta-
tions, 12% (Arsov et al., 2012) and 5% (Mullen et al., 2011),

respectively. In the seven patients with causative SLC2A1

variants in our cohort only two had myoclonic seizures at
any time in their history, and only one has absence seizures.
The most frequent presenting seizure type was generalized
tonic clonic seizures, an observation supported by the study
by Pong et al. (2012), which reported that a generalized tonic
clonic seizure was the presenting seizure in 53% of patients
with SLC2A1-related seizures.
Beyond the seizures, additional phenotypic features at

initial presentation were uncommon. In only two patients
was Glut1 deficiency suspected prior to genetic result and

only one patient underwent diagnostic lumbar puncture.
One patient had a marked four limb dystonia at presenta-
tion. All the others were thought to have normal motor
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function at the time of their seizure presentation. By the
time their genetic result was known, and they were clinic-
ally re-reviewed, all six of these had developed a subtle gait

ataxia. All seven patients are currently on the ketogenic
diet, the established treatment of choice for Glut1 defi-
ciency. Ketogenic diet was perceived to be effective in all

cases. At most recent follow-up all seven patients were seiz-
ure-free. Four had normal cognition and three had mild
cognitive concerns. Long-term follow-up of this cohort
and comparison with historical cohorts may help determine

whether early instigation of the ketogenic diet is associated
with improved outcomes.

Therapy-response and precision
therapy:

Seventy-six patients developed therapy resistant seizures, 36
of whom (47%) had a single-gene cause identified.
Therapy-resistance was not observed in any patients with
PRRT2 variants, and was seen in only 2/10 patients with

KCNQ2 variants. Just one patient with SCL2A1-related
seizures developed therapy-resistance. The good seizure
outcome observed in Glut1 deficiency may be related to

early establishment of the ketogenic diet. The only single-
gene epilepsies for which more than two patients developed
therapy-resistance were SCN1A (12 patients), CDKL5

(four patients), and PCDH19 (four patients). Between

them, these three genes accounted for 20/76 (26%) of all
therapy-resistant cases in this cohort. Literature review
identified evidence to support specific treatment approaches

for 64 (80%) of our 80 children with genetic diagnoses
(Table 4).

Discussion
In this study we have used a whole population prospective
cohort design to determine the incidence of the more
common single-gene epilepsies of early childhood.

Recruitment to our cohort was consistent across all 24
centres, which represent all health facilities where young
children are expected to present with seizures. Patient as-

certainment and exclusion of duplicate reporting were well
managed in the recruitment process by cross-referencing
within clinical departments, attending physicians, specialist
epilepsy nurses, EEG departments and the central genetic

laboratory.
The panel of 104 established epilepsy-associated genes

was designed to capture all the more commonly-implicated
genes, with a specific focus on those for which precision
treatment approaches exist. As some genetic epilepsies ini-

tially present with prolonged febrile seizures (Brunklaus
et al., 2012; Higurashi et al., 2013; Ebrahimi-Fakhari
et al., 2015) children with status, clusters of febrile seizures,

and recurrent prolonged febrile seizures were included.
The approach to determination of diagnostic genetic re-

sults involved comprehensive review of genetic and

phenotype data within a multidisciplinary environment.
Genetic results were reported in accordance with UK best
practice guidelines (Association for Clinical Genetic Science,
2017). Where DNA samples and/or phenotype details from
other family members were considered relevant to variant
interpretation these were requested. We agree with
Anderson and Lassmann (2018) that variants cannot be
considered in isolation from phenotypes and relevant vari-
ant interpretation requires a multidisciplinary approach.
The incidence of epilepsy in children under 36 months of

age has previously been estimated in a US population-based
cohort as 1 per 613 live births (Wirrell et al., 2012). Our
cohort represents 1 per 495 live births in Scotland. Direct
comparison between these cohorts is not appropriate as our
study included children presenting with certain febrile seiz-
ure presentations and excluded those with established non-
genetic causes. In our cohort, 163 patients presented with
recurrent afebrile seizures before the age of 12 months,
giving an estimated incidence of infantile-onset epilepsy of
1 per 1041 live births (96.0/100 000; 95% CI 81.8–112.0).
This is comparable to the figure of 1 per 1240 live births
derived from a 20-year population-based cohort in Helsinki
(patients with structural-metabolic causes removed) (Gaily
et al., 2016) and the figure of 1 per 1220 from a North
London cohort (Eltze et al., 2013).
It is established that single-gene aetiology can be identi-

fied in a substantial proportion of patients presenting with
early-childhood onset epilepsy. Berg et al. (2017) carried
out a prospective study in which they aimed to determine
aetiology in all patients with epilepsy presenting before the
age of 3 years, regardless of severity. Participants were re-
cruited from 17 epilepsy centres in the USA (Berg et al.,
2017). Their study was not population-based and used a
variety of testing methods that were not consistent between
centres. They reported a diagnostic yield of 29.2% for
those tested on epilepsy gene panels, and 27.8% for those
tested by whole-exome sequencing. These yields are slightly
higher than in our study. In Berg et al.’s study the majority
of patients (266/446) without determined aetiology did not
undergo any form of genetic testing so those results are
likely to have been affected by a degree of ascertainment
bias.
In comparison with some recently published studies of

genetic testing in epilepsy (Heyne et al., 2018; Lindy
et al., 2018) ours includes a smaller cohort of patients.
The strength of the present study relates to case ascertain-
ment. The broad inclusion criteria and proactive recruit-
ment strategy applied allowed a better understanding of
both the full phenotypic spectrum and the incidence of
the single-gene epilepsies in childhood. For the most fre-
quently encountered single-gene epilepsies in this cohort—
namely, PRRT2, SCN1A, KCNQ2 and SLC2A1—we
observed phenotypic spectra that were largely in keeping
with the literature published previously. However, we
demonstrated that these are more common than has been
previously described. Previous reports have estimated the
incidence of SCN1A-related Dravet syndrome in
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California (1 per 20 900 live births) (Wu et al., 2015) and

in Denmark (1 per 22 000 live births) (Bayat et al., 2015)

but neither study used prospective case ascertainment stra-

tegies. Our study estimates the incidence of SCN1A-related

Dravet syndrome to be 1 per 15 500 live births (11 patients

with SCN1A-related Dravet syndrome). The incidence of

Glut1 deficiency has previously been estimated as 1 per

90 000 live births in Queensland (Coman et al., 2006)

and 1 per 83 000 live births in Denmark (Larsen et al.,

2015) compared with 1 per 24 300 live births in this

study. These figures are not likely to represent a Scottish

population-specific phenomenon since the majority of cases

of Dravet syndrome and Glut1 deficiency are caused by de

novo variants. Estimated incidences for PRRT2, CDKL5,

DEPDC5, and PCDH19-related epilepsies are provided

here for the first time.
Previous studies investigating the yield of NGS in epilepsy

have found that the majority of diagnoses are concentrated

in a small number of recurrently-implicated genes. Lindy

et al. reported the results of testing 48500 patients using

a 70-gene epilepsy panel. They quoted a yield of 15.4%

(Lindy et al., 2018). As with our study 480% of their

diagnoses were in the most frequently-implicated seven

genes. Six of our seven most frequently-implicated genes

were among their seven most frequently-implicated

(DEPDC5 was not included in their panel). We identified

a substantially higher rate of PRRT2 variants in this cohort

than have been reported in previous studies (Helbig et al.,

2016; Trump et al., 2016; Lindy et al., 2018). This is likely

to reflect our inclusion of self-limited and pharmaco-re-

sponsive epilepsies that would not have previously been

considered candidates for high throughput genetic testing.
For a number of reasons this study is likely to have

underestimated the incidence of single-gene epilepsies in

this group, so our incidence figures are best considered as

minimum incidences. Some genes associated with epilepsy

are not on our panel, and for some genes (e.g. SCN1A and

KCNQ2) we were able to offer more comprehensive testing

than for others through MLPA. Chromosomal microarray

for deletions and duplications was not part of our routine

testing strategy due to the low reported yield in this group,

low penetrance of many epilepsy-associated variants, and

absence of evidence that identification of chromosomal le-

sions supports a precision medicine approach. Though the

inclusion criteria for our study were broad, we are likely to

have missed some patients with very mild phenotypes—e.g.

recurrent simple febrile seizures—who did not meet eligibil-

ity criteria. The identical twin of Patient 334 had the same

PRRT2 variant as her sister but was not eligible for inclu-

sion since all her seizures were febrile and 510min dur-

ation. Similarly, SCN1A-related disease can present with

simple febrile seizures only (Escayg et al., 2000). A complex

febrile seizure has been defined by some authors as a febrile

seizure that has any one of the following elements: focal

features, duration 415min, recurring more than once in

24 h, or associated with postictal palsy or previous neuro-

logical deficits (Capovilla et al., 2009). Our criteria did not

include children with febrile seizures with focal features

lasting 510min or those with a single febrile seizure last-

ing between 10 and 30min as duration and frequency of

febrile seizure were considered more reliable clinical pre-

dictors of SCN1A, PCDH19 and PRRT2 variants.
We are likely to have underestimated the incidence of

SLC2A1-related disease as not all patients with Glut1 defi-

ciency will present with seizures in the first 3 years of life.

The same is true for several other genetic epilepsies and neu-

rodevelopmental disorders, including CDKL5, DEPDC5,

POLG, SCN2A, MECP2, KCNT1 and GABRA1.

According to our protocol patients were not recruited to the

study if they had an aetiology identified either prior to or at

initial presentation with seizures. As a result, patients are likely

to have not been recruited if they had acute neuroimaging

findings that were deemed to explain their epilepsy, even if

such findings may indeed have an underlying genetic basis.

The most notable example of this would be tuberous sclerosis,

caused by TSC1/TSC2 variants, where neuroimaging findings

are often highly typical for this genetic disorder and the diag-

nosis may be known prior to onset of seizures. Patients with

other genetically determined developmental brain malforma-

tions may also not have been recruited. Neonates with symp-

tomatic seizures secondary to hypoxic ischaemic

encephalopathy (HIE) at birth were not recruited. Rarely,

genetic metabolic disorders such as pyridoxine dependency,

sulphite oxidase deficiency, or molybdenum co-factor defi-

ciency may mimic HIE (Baxter, 1999). We would expect

these children to continue to have seizures beyond the neo-

natal period and to be seen within one of Scotland’s tertiary

child neurology centres. Finally, we only tested DNA sam-

ples derived from blood and it has been shown that some

genetic epilepsies are due to somatic variants (Nellist et al.,

2015).
Evidence from randomized controlled trials (RCTs), open

label trials, retrospective case series, and from in vitro func-

tional studies, informs clinicians’ treatment choice when

they make a diagnosis of a single-gene epilepsy. Such evi-

dence exists for SCN1A, PRRT2, KCNQ2, SLC2A1,

PCDH19, POLG, SCN2A, and SCN8A (Table 4). On

this basis we estimate that 64/80 (80%) of the single-gene

diagnoses made in this study had potential treatment im-

plications. In the case of Glut1 deficiency, early diagnosis

and implementation of the ketogenic diet may have an

impact on developmental and motor comorbidity as well

as seizure control (Kass et al., 2016). In SCN1A-related

epilepsy, duration of use of contraindicated sodium-channel

blocking medication is associated with adverse developmen-

tal outcome (de Lange et al., 2018). Additional benefits of

early genetic diagnosis in epilepsy include providing infor-

mation for genetic counselling (Krabbenborg et al., 2016),

giving answers for affected families (Brunklaus et al., 2013;

Sawyer et al., 2016; Wynn et al., 2018), and avoidance of
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additional costly and invasive investigations. Recent eco-

nomic analyses have demonstrated that the application of

early high throughput genetic testing could save $5236

Australian dollars (Palmer et al., 2018), or $7047 US dol-

lars (Howell et al., 2018) per diagnosis when compared

with investigation programs that involved extensive ima-

ging and metabolic testing prior to genetic testing.
Evidence in support of precision therapy in epilepsy

varies in level and nature. In 2019, the majority of truly

medically ‘actionable’ genetic diagnoses in epilepsy relate to

inherited disorders of metabolism such as Glut1 deficiency,

and pyridoxine dependency (Peng et al., 2019). Questions

remain unanswered in relation to targeted treatment of

other genetic causes of epilepsy. Much of the evidence

that we have presented to support gene-specific therapy

approaches in Table 4 is at level III. Non-RCT evidence

is compromised by the absence of control groups, variabil-

ity in timing and objectivity of response analysis, and in-

consistent reporting of concomitant drug use. As

exemplified by KCNT1-related seizures, evidence can be

conflicting. Here, despite positive anecdotal reports of bene-

fit from quinidine (Bearden et al., 2014; Fukuoka et al.,

2017; Abdelnour et al., 2018) and supportive in vitro func-

tional studies (Milligan et al., 2014) a small randomized-

controlled crossover trial demonstrated no significant bene-

fit in adult patients with KCNT1-related frontal lobe epi-

lepsy (Mullen et al., 2018). Nevertheless, in reality, many

clinicians if faced with a child with unremitting seizures

associated with a KCNT1 variant may be inclined to at

least give a trial of quinidine—a drug that they would be

unlikely to use for seizures in any other scenario. The rec-

ommendation grade for specific therapy in most of the gen-

etic epilepsies is grade C. Nonetheless it is important to

note that such evidence is the basis of therapy choice in

almost all epilepsy syndromes and may provide a key lead

in to definitive trials, as has been the case with fenfluramine

in Dravet syndrome (NIH US National Library of

Medicine, 2019). Findings from RCTs must also be inter-

preted in context. In Dravet syndrome cannabidiol demon-

strates efficacy (Devinsky et al., 2017); however, there is no

biological reason why cannabidiol should be specifically

effective in this condition because it does not appear to

act on sodium channels or GABA receptors (Devinsky

et al., 2014). Cannabidiol also has efficacy in Lennox

Gastaut syndrome (French et al., 2017; Devinsky et al.,

2018), an epilepsy with varied aetiologies. Several other

broadly-acting anti-epileptic therapies including levetirace-

tam, topiramate, and the ketogenic diet have performed

just as well as cannabidiol in open label uncontrolled stu-

dies of Dravet syndrome, but as they have not been tested

in RCT format they are considered less evidence-based

(Coppola et al., 2002; Caraballo et al., 2005; Striano

et al., 2007; Devinsky et al., 2018). In contrast the keto-

genic diet is regarded as the gold standard therapy in Glut1

deficiency in the absence of any RCT data. Obtaining good

quality evidence for gene-specific treatment approaches in

epilepsy is perceived as a challenge, since many of these
disorders are exceedingly rare. To this end, defining the

incidence of the more common difficult to treat genetic

epilepsies of childhood is an important step. Orphan medi-

cinal products have been developed and licensed for many
rarer conditions than the genetic epilepsies (European Joint

Programme Rare Diseases, 2019). Gene therapy

approaches, which may provide definitive precision ther-
apy, are being trialled in rodent and non-human primate

models of human genetic epilepsies (Berkovic et al., 2015).

In this study, 36/80 patients with single-gene epilepsy had

therapy-resistant seizures. Of these 20 (56%) were asso-
ciated with just three genes, SCN1A, CDKL5, and

PCDH19. For maximum benefit, these are the genetic epi-

lepsies that should be prioritized in the development of

precision therapy.

Study limitations

Although we aimed to include all children with epilepsy
presenting in Scotland under the age of 3 years, it is pos-

sible that some patients were unreported and not included.

Therefore, all incidences reported in this study should be
viewed as minimum estimates.
Children with epilepsy due to other identifiable causes

such as hypoxic ischaemic encephalopathy, meningitis,

metabolic disorders, etc. were excluded. However, some

of these patients may have had genetic ‘mimics’ of acquired
causes, genetic causes of structural brain abnormalities, or

compound genetic-acquired aetiologies. Their exclusion

may have reduced the yield of genetic diagnoses in this
study.
The health economics of genetic testing in this group of

children were not examined, but it is possible that early

identification of a genetic diagnosis would save other

costly investigations.
This cohort is being followed up to determine whether

there is a positive impact of early genetic diagnosis and

treatment on a child’s neurodevelopment and comorbid-

ities. However, this study will take several years to report
its conclusions.

Conclusions
Single-gene epilepsies are more common than previously

reported, with a collective minimum incidence of about 1
per 2000 live births. Many of the cases identified in this

study are dominant genetic epilepsies due to de novo mu-

tations. Therefore these minimum incidence figures are ap-
plicable to other populations and are not specific for

Scotland.
Our data suggest that genetic testing should be a primary

investigation for epilepsies presenting in early childhood.

The nature of genetic testing will depend upon available
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resources. Eighty per cent of genetic diagnoses in this group

relate to eight genes, with other genetic aetiologies likely to

be individually extremely rare. A clinically relevant and

economically efficient testing paradigm would be to analyse

a small panel of genes and if this is unrevealing move to a

larger platform such as clinical exome, whole exome or

whole genome.
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