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INCIDENCE VARIETIES

IN THE PROJECTIVIZED k-TH HODGE BUNDLE

OVER CURVES WITH RATIONAL TAILS

IULIA GHEORGHITA AND NICOLA TARASCA

Abstract. Over the moduli space of pointed smooth algebraic curves,
the projectivized k-th Hodge bundle is the space of k-canonical divisors.
The incidence loci are defined by requiring the k-canonical divisors to
have prescribed multiplicities at the marked points. We compute the
classes of the closure of the incidence loci in the projectivized k-th Hodge
bundle over the moduli space of curves with rational tails. The classes
are expressed as a linear combination of tautological classes indexed
by decorated stable graphs with coefficients enumerating appropriate
weightings. As a consequence, we obtain an explicit expression for some
relations in tautological rings of moduli of curves with rational tails.

0. Introduction

This study revolves around families of algebraic curves with differentials.
For an algebraic curve C with at worst simple nodal singularities, the stable
(holomorphic) abelian differentials are the global sections of the dualizing
sheaf ωC . Similarly, for k ≥ 1, the stable (holomorphic) k-differentials are

the global sections of ω⊗k
C . The k-th Hodge bundle Ekg,n is the vector bundle

of stable k-differentials over the moduli space Mg,n of stable curves of genus

g with n marked points. Its projectivization is here denoted PEkg,n. A point

of PEkg,n consists of a stable n-pointed genus g curve together with the class
of a nonzero stable k-differential modulo scaling by units. The fibers of
PEkg,n over the locus of smooth curves Mg,n consist of k-canonical divisors.

The closure of loci of k-canonical divisors has been the focus of several re-
cent studies. Pointed curves admitting k-canonical divisors with prescribed
multiplicities at the marked points define natural loci in Mg,n. Similar loci
can be obtained by requiring the existence of a meromorphic k-differential
with prescribed zero and pole orders at the marked points. The closure of
such loci has been studied by Farkas and Pandharipande [FP2] by means
of their moduli space of twisted canonical divisors. This is a proper space
inside Mg,n and contains the space of canonical divisors together with some
additional components supported on singular curves. A conjecture for the
weighted sum of the fundamental classes of all such components in the
meromorphic case was proposed by Janda, Pandharipande, Pixton, Zvonk-
ine [FP2, Appendix], together with an algorithm to determine the class of
the closure of loci of canonical divisors in Mg,n in both the holomorphic and
meromorphic case. Extended to k ≥ 1 by Schmitt [Sch], this conjecture has
been proved by Bae, Holmes, Pandharipande, Schmitt, Schwarz [BHP+].

MSC2020. 14H10, 14C25 (primary), 30F30 (secondary).
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It follows that the class of the closure of loci of k-canonical divisors in
Mg,n is determined by the algorithm given in [FP2, Appendix] and [Sch].
The problem of computing a closed formula for such classes remains open.
We make progress on this problem by computing a closed formula for the
classes of the closure of loci of k-canonical divisors in the moduli space Mrt

g,n

of curves with rational tails. The space Mrt
g,n is a partial compactification of

Mg,n and consists of stable pointed curves with a component of geometric
genus g and possibly additional rational components.

More generally, we obtain a stronger result by computing a closed formula
for the class of the closure of incidence varieties inside the restriction of PEkg,n
over Mrt

g,n. Specifically, define the incidence locus

(0.1) Hk
g,n ⊂ PEkg,n

as the locus consisting of smooth n-pointed genus g curves together with
the class of a stable k-differential having a zero at each marked point. This
locus has codimension n in PEkg,n. Similarly, we consider the incidence loci
obtained by imposing the vanishing of the stable k-differential at the marked
points with prescribed multiplicities, see (6.1).

Starting from a recursive description of the closure of the incidence loci in
PEkg,n established by Sauvaget [Sau1,Sau2], we solve the recursion by finding

a closed formula (Definition 1) in the Chow ring of PEkg,n which expresses

the class of such loci in the restriction of PEkg,n over Mrt
g,n in all cases when

k = 1 and with few exceptions when k ≥ 2 (Theorems 2 and 6.1).
Via pull-back, A∗

(
Mg,n

)
injects in the Chow ring of PEkg,n, and one has

(0.2) A∗
(
PEkg,n

)
∼= A∗

(
Mg,n

)
[η]

/(
r∑

i=0

(−η)icr−i

(
Ekg,n

))

where r = rank
(
Ekg,n

)
and η := c1

(
OPEk

g,n
(−1)

)
.

Our formula (Definitions 1 and 5.1) lies in the tautological ring R∗
(
PEkg,n

)

which is the subring of (0.2) generated by the tautological ring R∗
(
Mg,n

)

and η. The formula is expressed as a linear combination of tautological
classes indexed by decorated stable graphs, with coefficients enumerating
appropriate weightings, which we describe next.

0.1. Dual graphs of pointed curves with rational tails. For g ≥ 0,
let G

rt
g,n be the set of trees that are dual to the locally closed strata in

Mrt
g,n consisting of pointed nodal curves with the same topological type. In

particular, an element in G
rt
g,n is a tree consisting of a genus g vertex and

possibly additional rational (i.e., genus 0) vertices dual to curve components,
edges dual to nodes, and n legs dual to the n marked points.

For a tree Γ in G
rt
g,n, let V(Γ) be the set of vertices, L(Γ) be the set of

legs, and E(Γ) be the set of edges of Γ. The set L(Γ) is often identified with
a set of labels, e.g., L(Γ) ∼= {1, . . . , n}.
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0.2. Rooted trees. Let g > 0 and Γ ∈ G
rt
g,n. By identifying the genus g

vertex as root, the graph Γ will be considered as a rooted tree with all edges
oriented away from the root. An edge e ∈ E(Γ) consists of a pair of two
half-edges e = (h+, h−): we denote by h+ (or head) the half-edge which
is further away from the genus g vertex, and by h− (or tail) the half-edge
which is closer to the genus g vertex.

The set H(Γ) of half-edges of Γ is partitioned as

H(Γ) = H+(Γ) ⊔H−(Γ)

where H+(Γ) (respectively, H−(Γ)) is the set of head (resp., tail) half-edges.

0.3. Decorations and weightings. Select g > 0 and Γ ∈ G
rt
g,n. Let vg be

the genus g vertex of Γ, and V0(Γ) := V(Γ) \ {vg} be the set of rational
vertices of Γ. Consider the moduli space

(0.3) MΓ := Mg,n(vg) ×
∏

v∈V0(Γ)

M0,n(v)

where n(v) is the valence of a vertex v, i.e., the number of legs and half-edges
incident to v.

The set of decorations Ψ(Γ) of the graph Γ is defined here as

Ψ(Γ) :=



ψ =

∏

h∈H(Γ)

ψdhh : dh ≥ 0 for all h



 ⊂ A∗

(
MΓ

)
.

For each h, the class ψh is the first Chern class of the cotangent line bundle
at the marked point corresponding to h [GP].

Select ψ =
∏
h∈H(Γ) ψ

dh
h in Ψ(Γ), and define the following set of pairs:

H(Γ,ψ) := {(h, e) |h ∈ H+(Γ), 0 ≤ e ≤ dh}

⊔ {(h, e) |h ∈ H−(Γ), 1 ≤ e ≤ dh}.
(0.4)

One has

|H(Γ,ψ)| = |E(Γ)|+ degψ.

For a half-edge h of Γ, let ι(h) be the half-edge such that (h, ι(h)) ∈ E(Γ).
Define the capacity of a head half-edge h+ in H+(Γ) as

(0.5) ℓh+ :=

{
number of legs of Γ in the maximal
connected subtree containing h+, but not ι(h+).

One has ℓh+ ≥ 2 for all h+.
A weighting of the decorated stable graph (Γ,ψ) is a function

w : H(Γ,ψ) −→ N
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satisfying the following conditions:




ℓh+ − 1 ≥ w(h+, 0) ≥ w(h+, 1) ≥ · · · ≥ w(h+, dh+)

for all heads h+,

1 ≤ w(h−, 1) < · · · < w(h−, dh−) < w(ι(h−), 0)

for all tails h−.

(0.6)

The set of weightings of the decorated stable graph (Γ,ψ)

(0.7) WΓ,ψ := {weightings of (Γ,ψ)}

is a finite set. For w ∈ WΓ,ψ, the corresponding weight of (Γ,ψ) is

(0.8) w(Γ,ψ) :=
∏

(h,e)∈H(Γ,ψ)

w(h, e).

Define

(0.9) cΓ,ψ :=
∑

w∈WΓ,ψ

w(Γ,ψ).

For instance, one has

(Γ,ψ) = g

ψ
7→ cΓ,ψ = 7,

(Γ,ψ) = g
ψ

ψ
7→ cΓ,ψ = 6,

(Γ,ψ) = g
ψ

7→ cΓ,ψ = 42.

Here and throughout, rational vertices are contracted into points for conve-
nience, and ψ-classes decorate their corresponding half-edges (later in the
paper, ψ-classes will decorate legs too).

0.4. The graph formula. For g > 0, a graph Γ ∈ G
rt
g,n defines the moduli

space MΓ from (0.3) together with a gluing map of degree one MΓ → Mg,n.

Similarly, define PEkΓ as the fiber product

(0.10)

PEkΓ PEkg,n

MΓ Mg,n.

ξΓ

The image of ξΓ has codimension equal to |E(Γ)| in PEkg,n. We set η := ξ∗Γ(η)

in A∗
(
PEkΓ

)
, so that for any cycle α, one has ξΓ∗(α · η) = ξΓ∗(α) · η by the

projection formula. We will use few more classes, introduced below.
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For a marked point ℓ, define ωℓ := ρ∗ℓ (ψ) in R
∗
(
Mg,n

)
, where ψ is the ψ-

class in R∗
(
Mg,1

)
and ρℓ : Mg,n → Mg,1 is the map obtained by forgetting

all but the ℓ-th marked point. Define ωℓ := ξ∗Γ(ωℓ) in A
∗
(
MΓ

)
.

For h ∈ H(Γ), define ωh := ξ∗Γ(ωℓ) in A
∗
(
MΓ

)
for a leg ℓ which is further

away from the root than h. This definition is independent of the choice of
such a leg ℓ (see [CT1, §1.2]).

Finally, for ψ =
∏
h∈H(Γ) ψ

dh
h in Ψ(Γ), let

βΓ,ψ :=
∏

h∈H+(Γ)

(k ωh − η)1+dh
∏

h∈H−(Γ)

(k ωh − η)dh ∈ A∗
(
PEkΓ

)
.

One has degβΓ,ψ = |E(Γ)|+degψ. We are now ready for the graph formula:

Definition 1. Define F
k
g,n ∈ Rn

(
PEkg,n

)
as

F
k
g,n :=

∑

Γ∈Grt
g,n

(−1)|E(Γ)| ξΓ∗


 ∏

ℓ∈L(Γ)

(k ωℓ − η)
∑

ψ∈Ψ(Γ)

cΓ,ψ ψβ
−1
Γ,ψ


 .

To verify that Fkg,n has degree n, observe that the product of the divisor
classes k ωℓ− η for ℓ = 1, . . . , n has degree n, and for each (Γ,ψ), the factor
β−1
Γ,ψ cancels out some of the factors k ωℓ−η to offset the codimension of the

image of ξΓ and the degree of ψ. Remarkably, the sum of the contributions
given by (Γ,ψ) such that deg βΓ,ψ > n vanishes. This is nontrivial, and
follows from Theorem 3.1. For example, when n ∈ {1, 2}, one has

F
k
g,1 = g

k ω1 − η
∈ R1

(
PEkg,1

)
,

F
k
g,2 = g

k ω2 − ηk ω1 − η
− g

2

1k ω − η

∈ R2
(
PEkg,2

)
.

Already for n = 3, the expansion of the cycle F
k
g,n is lengthy. We include

this and more examples in §7. Our first result about abelian differentials is:

Theorem 1. For k = 1 and g ≥ 2, one has
[
H

1
g,n

]
= F

1
g,n ∈ An

(
PE1

g,n

∣∣
Mrt

g,n

)
.

The statement holds for all n. Since abelian differentials of genus g curves

have degree 2g − 2, the loci H
1
g,n are empty for n > 2g − 2. In this case,

Theorem 1 gives relations in the tautological ring, as discussed in the next
Corollary 1. More generally, for k ≥ 1, we prove:

Theorem 2. For g ≥ 2, one has
[
H
k
g,n

]
= F

k
g,n in:
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(i) An
(
PEkg,n

∣∣
Mrt

g,n

)
when

{
k = 1; or

k ≥ 2 and n ≤ k(2g − 2)− 1;

(ii) An
(
PEkg,n

)
when n ≤ k.

In the case k ≥ 2 and n = k(2g − 2) left out by the statement, the cycle

F
k
g,n decomposes as the sum of the classes of H

k
g,n and an additional locus.

We discuss this case in Remarks 1.2 and 6.3.
Our most general result is described in §6 and concerns the study of

incidence loci with prescribed multiplicities. Namely, for an n-tuple m =
(m1, . . . ,mn) of positive integers, let Hk

g,m ⊂ PEkg,n be the incidence locus
consisting of smooth n-pointed genus g curves together with the class of a
k-differential having a zero of order at least mℓ at the ℓ-th marked point

for each ℓ = 1, . . . , n. Theorem 6.1 shows that the class of H
k
g,m in the

appropriate Chow ring determined by k, g, m is given by the cycle F
k
g,m

from Definition 5.1 with few exceptions. Theorem 2 is the specialization of
Theorem 6.1 at m = (1, . . . , 1).

0.5. Tautological relations. For k = 1 and n > 2g − 2, Theorem 2 gives
a vanishing statement:

Corollary 1. For g ≥ 2 and n > 2g − 2, one has

F
1
g,n = 0 in Rn

(
PE1

g,n

∣∣
Mrt

g,n

)
.

This statement provides explicit expressions for tautological relations. By
construction, these are restrictions of relations in Rn

(
PE1

g,n

)
. Moreover,

Corollary 1 induces relations in R∗
(
Mrt

g,n

)
. E.g., for g = 2 and n = 3, one

recovers the restriction to R2
(
Mrt

2,3

)
of the relation from [BP], see §7.2.

Determining the complete space of relations in R∗
(
Mg,n

)
is an open

problem [Fab1,Pix,PPZ,Jan,Pan]. In the rational tails case, the tautological
ring has been studied in [Fab2,FP1,Tav]. It is nontrivial to verify whether
all the relations from Corollary 1 are in the space of known relations, or
whether Corollary 1 contributes any new relations. For this, it would be
desirable to undertake a numerical study of the relations from Corollary 1.

0.6. Structure of the paper. We start with a recursive identity (Theorem
1.1) for the class of the closure of the incidence locus (0.1) over Mrt

g,n in §1

following [Sau1, Sau2] (see also §§A–B). Next, we show how the cycle F
k
g,n

from Definition 1 solves the recursion. For this, we first analyze certain
cycles on moduli spaces of pointed rational curves related to F

k
g,n in §§2–4,

and show how they satisfy a recursive identity (Theorem 4.4). This will
be used to conclude that the cycles F

k
g,n satisfy the same recursion as the

classes of the closure of the incidence loci over Mrt
g,n (Theorem 6.2). The

proof of Theorem 2 is given in §6 together with the proof of the more general
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statement about the incidence loci H
k
g,m with prescribed multiplicities. We

conclude with some examples and checks in §7.

Acknowledgements. Conversations with Dawei Chen and Renzo Cavalieri
and their collaborations on related projects [CT3,CT2,CT1] provided the
inspiration and the groundwork that made our results possible. Also, we
would like to thank Rahul Pandharipande, Georg Oberdieck, and Adrien
Sauvaget for comments and questions on a preliminary announcement of
this work, and Johannes Schmitt for providing some numerical verification
of our formula.

1. A recursive identity for incidence loci

We present here a recursive identity for the class of the incidence locus

H
k
g,n over curves with rational tails following [Sau1,Sau2].
First we define the extra loci EI . For m ≤ n− 1, consider the locus

(1.1) Hk
g,m ⊂ PEkg,n−m where m =

(
m, 1n−m−1

)

consisting of smooth genus g curves with n−m marked points together with
the class of a stable k-differential having a zero of order at least m at the
first marked point and zeros at the other marked points. This locus has
codimension n− 1 in PEkg,n−m.

For a non-empty I ⊆ {1, . . . , n− 1} of size |I| = m, let

(1.2) γ : PEkg,n−m ×M0,I⊔{n,hn} −→ PEkg,n

be the gluing map of degree one obtained by identifying the first marked
point on elements of PEkg,n−m with the marked point hn of elements in

M0,I⊔{n,hn} (and relabeling the other marked points of elements in PEkg,n−m
by elements of {1, . . . , n − 1} \ I in case n −m > 1, i.e., |I| < n − 1) and
extending stable k-differentials by zero on the attached rational tail.

The extra locus EI is defined as

(1.3) EI := γ∗H
k
g,m ⊂ PEkg,n.

A general element of EI consists of a stable pointed curve with a rational tail
containing the marked points with labels in I⊔{n} and a genus g component
containing the remaining marked points, together with a stable k-differential
vanishing with orderm at the preimage of the node in the genus g component
and vanishing at all marked points in the genus g component.

Let πn : PE
k
g,n → PEkg,n−1 be the map obtained by forgetting the last

marked point, and let ρn : PE
k
g,n → PEkg,1 be the map obtained by forgetting

all but the last marked point (and relabeling it as P1).

Theorem 1.1 ( [Sau1,Sau2]). For g ≥ 2 and n ≥ 2, the identity

π∗n

[
H
k
g,n−1

]
· ρ∗n

[
H
k
g,1

]
=
[
H
k
g,n

]
+
∑

I

|I|[EI ]

where the sum is over all non-empty I ⊆ {1, . . . , n− 1}, holds in:
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(i) An
(
PEkg,n

∣∣
Mrt

g,n

)
when

{
k = 1; or

k ≥ 2 and n ≤ k(2g − 2)− 1;

(ii) An
(
PEkg,n

)
when n ≤ k.

The loci Hk
g,m ⊂ PEkg,n−m from (1.1) with m ≤ n−1 are of pure codimen-

sion n− 1 and are obtained from Hk
g,n−1 ⊂ PEkg,n−1 by colliding the first m

marked points. Hence, from the class of Hk
g,n−1, one computes the classes

of the loci from (1.1) by colliding points, and the classes of the extra loci
EI from (1.3) by push-forward via the corresponding map γ. It follows that

Theorem 1.1 expresses the class of the incidence locus H
k
g,n recursively in n.

The base case n = 1 is computed in [Sau1, §1.6; KSZ, §4]: For k ≥ 1 and
g ≥ 2, one has

(1.4) H
k
g,1 ≡ k ω − η ∈ Pic

(
PEkg,1

)
.

Remark 1.2. In the case k ≥ 2 and n = k(2g − 2) left out by Theorem 1.1,
one has

(1.5) π∗n

[
H
k
g,n−1

]
· ρ∗n

[
H
k
g,1

]
=
[
H
k
g,n

]
+
[
Eab

]
+
∑

I

|I|[EI ]

in An
(
PEkg,n

∣∣
Mrt

g,n

)
, where Eab ⊂ PEkg,n is the locus whose general element

has a genus g component, a rational tail containing all marked points, and
the k-th power of an abelian differential vanishing with order k(2g − 2) at
the preimage of the node on the genus g component.

For k = 1, Theorem 1.1 and Remark 1.2 were obtained by Sauvaget [Sau1]
over Mg,n (but no graph formula was given there). Sauvaget informed us
that the techniques of [Sau2] could be used to extend the argument for k ≥ 1.
We provide an alternative proof of Theorem 1.1 and Remark 1.2 in §B by
applying the incidence variety compactification from [BCG+1,BCG+2].

2. Cycles from weighted rational trees

Theorem 1.1 gives a recursion satisfied by the classes of the loci H
k
g,n. As

a preliminary study towards the solution of the recursion, we consider here
cycles on moduli spaces of stable pointed rational curves. After introducing
the set of rational rooted trees, we define the cycles Zm(n, i, j) and EI(i, j).
These will be shown to satisfy a recursive identity in §4.

2.1. Rational rooted trees. Let G0,n+1 = G
rt
0,n+1 be the set of trees dual

to strata in M0,n+1. Relabel the (n+ 1)-th leg of each tree as h0.
Let T ∈ G0,n+1. By identifying the vertex incident to h0 as root, the tree

T will be considered as a rooted tree. An edge e ∈ E(T) consists of a pair
of two half-edges e = (h+, h−), where h+ (or head) is the half-edge which
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is further away from the leg h0, and h− (or tail) is the half-edge which is
closer to the leg h0. Let

H+(T) := {head half-edges h+ of T} ⊔ {h0},

H−(T) := {tail half-edges h− of T},

H(T) := H+(T) ⊔H−(T).

A vertex v of T is said to be external if there is no tail half-edge of T
incident to v.

These definitions are compatible with the ones in the introduction when
T arises as a rational subtree of a graph Γ ∈ G

rt

g,n+ with g > 0 and n+ ≥ n.

2.2. Trees decorations. Next, we extend the decorations from §0.3 to ra-
tional rooted trees. The decorations will account for the special role played
by h0. Also, we will allow a heavier weight on one leg.

Let T ∈ G0,n+1. Given m ≥ 1, assign weight m to the first leg of T, and
weight 1 to all other legs.

For a half-edge h of T, let ι(h) be the half-edge such that (h, ι(h)) ∈ E(T).
For h ∈ H+(T), define the weighted capacity of h as

ℓmh :=





sum of the weights of the legs in the maximal
connected subtree containing h, but not ι(h)

if h 6= h0,

n− 1 +m if h = h0.

Consider the moduli space

MT :=
∏

v∈V(T)

M0,n(v),

and define the set of decorations Ψ(T) of the graph T as

Ψ(T) :=



ψ = ψd11

∏

h∈H(T)

ψdhh

∣∣∣∣∣
dh ≥ 0 for all h,

d1 ≥ 0



 ⊂ A∗

(
MT

)
.

Let ψ = ψd11
∏
h∈H(T) ψ

dh
h in Ψ(T), and define accordingly the set

H(T,ψ) := {(h, e) |h ∈ H+(T), 0 ≤ e ≤ dh}

⊔ {(h, e) |h ∈ H−(T), 1 ≤ e ≤ dh} ⊔ {(1, e) | 1 ≤ e ≤ d1}.

One has

|H(T,ψ)| = |H+(T)|+ degψ = 1 + |E(T)|+ degψ.(2.1)

This uses that H+(T) contains the head half-edges together with h0, hence
|H+(T)| = 1 + |H−(T)| = 1 + |E(T)|.
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The set of i-weightings of (T,ψ) compatible with the legs weight is

W
i,m
T,ψ :=





w : H(T,ψ) → N :

w(h0, 0) = i,

ℓmh − 1 ≥ w(h, 0) ≥ w(h, 1) ≥ · · · ≥ w(h, dh)

for all heads h or h = h0,

1 ≤ w(h−, 1) < · · · < w(h−, dh−) < w(ι(h−), 0)

for all tails h−,

1 ≤ w(1, 1) < · · · < w(1, d1) < m





.(2.2)

For m = 1, we set

(2.3) W
i
T,ψ := W

i,1
T,ψ.

One has

(2.4) if W
i,m
T,ψ 6= ∅, then i < n− 1 +m and d1 < m.

The inequality i < n − 1 +m follows from the conditions i = w(h0, 0) and
w(h0, 0) ≤ ℓmh0 − 1. In particular, there are only finitely many non-empty

W
i,m
T,ψ for given m and T ∈ G0,n+1, ψ ∈ Ψ(T). The inequality d1 < m follows

from the conditions on w(1, e) for e = 1, . . . , d1.

For w ∈ W
i,m
T,ψ, the corresponding i-weight of (T,ψ) is

(2.5) w(T,ψ) :=
∏

(h,e)∈H(T,ψ)

w(h, e).

Define

(2.6) ci,mT,ψ :=
∑

w∈Wi,m

T,ψ

w(T,ψ).

Following (2.4), if this is non-zero, then i < n− 1 +m and d1 < m.

2.3. The cycles Dec
i,m
n (D) and Z

m(n, i, j). Let T ∈ G0,n+1. Consider the
gluing map of degree one defined by T:

(2.7) ξT : MT −→ M0,n+1.

For each ψ ∈ Ψ(T), one has

deg ξT∗(ψ) = |E(T)|+ degψ = −1 + |H+(T)|+ degψ = −1 + |H(T,ψ)|.

(2.8)

The last two equalities follow from (2.1).
For a formal variable D, the cycle Dec

i,m
n (D) in A∗

(
M0,n+1

) [
D−1

]
is

defined as

(2.9) Dec
i,m
n (D) :=

∑

T∈G0,n+1

∑

ψ∈Ψ(T)

(−1)|H
+(T)| ci,mT,ψ ξT∗ (ψ) D

−|H(T,ψ)|.
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This is a polynomial in D−1 with coefficients in A∗
(
M0,n+1

)
. It will be

convenient to name also its coefficients. For this, define

(2.10) Z
m(n, i, j) :=

[
Dec

i,m
n (D)

]
1−n−m−j+i

in A∗
(
M0,n+1

)

where [X]t denotes the coefficient of Dt in X. One has
(2.11)

Z
m(n, i, j) =

∑

(T,ψ)

(−1)|H
+(T)| ci,mT,ψ ξT∗ (ψ) in An+m−2+j−i

(
M0,n+1

)

where the sum is over decorated trees (T,ψ) such that ξT∗ (ψ) has degree
n+m− 2 + j − i in A∗

(
M0,n+1

)
. When m = 1, we simply write

Dec
i
n(D) := Dec

i,1
n (D) and Z(n, i, j) := Z

1(n, i, j).

In Theorem 3.2, we will show that the cycles Z(n, i, j) vanish for i, j ≥ 1.

2.4. Colliding points on rational trees. Here we show that the cycles
Z
m(n, i, j) for arbitrary m (and arbitrary i, j) are obtained from the case
m = 1 by colliding points. This is a prelude to Theorem 5.2.

Theorem 2.1. For 1 ≤ m < n, let n− := n−m+ 1. The cycle

Z
m(n−, i, j) ∈ An−1+j−i

(
M0,n−+1

)

is obtained from Z(n, i, j) in An−1+j−i
(
M0,n+1

)
by colliding the first m

marked points into the marked point P1 — and relabeling the other marked
points as P2, . . . , Pn− .

Proof. The case m = 1 is trivial. Assume the statement holds for m−1 such
that 1 ≤ m− 1 < n− 1. It is enough to show that the cycle Z

m(n−, i, j) in
An−1+j−i

(
M0,n−+1

)
is obtained from

(2.12) Z
m−1(n− + 1, i, j) ∈ An−1+j−i

(
M0,n−+2

)

by colliding the first two marked points into the marked point P1 — and
relabeling the other marked points as P2, . . . , Pn− .

To collide the points, one proceeds as follows. Let δ1,2 be the class of
the divisor of stable pointed rational curves whose general element has two
rational components with one of them containing only two marked points,
namely P1 and P2. The cycle obtained from (2.12) by colliding the first two
marked points is

(2.13) π2∗
(
δ1,2 · Z

m−1(n− + 1, i, j)
)
∈ An−1+j−i

(
M0,n−+1

)

where π2 is the map obtained by forgetting the second marked point. We
need to show that
(2.14)

π2∗
(
δ1,2 · Z

m−1(n− + 1, i, j)
)
= Z

m(n−, i, j) ∈ An−1+j−i
(
M0,n−+1

)
.

For this, we analyze the various terms arising in the expansion of (2.13) and
show that they match the terms in Z

m(n−, i, j). The non-zero terms arising
in the expansion of (2.13) are obtained by colliding the first two marked



12 I. GHEORGHITA AND N. TARASCA

points in the terms of (2.12) contributed by decorated trees where the first
two legs are incident to the same vertex, say v1. We distinguish two cases
depending on the valence of v1.

Case 1. Let (T̂,ψ) be a decorated tree contributing to (2.12) such that
the first two legs are incident to a trivalent vertex v1. We show that the

contribution of (T̂,ψ) to (2.13) matches the contribution of (T,ψ · ψ1) to

Z
m(n−, i, j), where T is the tree obtained from T̂ by removing the second

leg and contracting the edge incident to the vertex v1.

Using (2.11), the contribution of (T̂,ψ) to (2.12) is given by

(−1)|H
+(T̂)| ci,m−1

T̂,ψ
ξ
T̂∗

(ψ) .

By (2.6), the coefficient ci,m−1

T̂,ψ
is the sum of ŵ(T̂,ψ) for ŵ in W

i,m−1

T̂,ψ
. By

linearity, for ŵ ∈ W
i,m−1

T̂,ψ
, the contribution of (T̂,ψ, ŵ) to (2.12) is

(−1)|H
+(T̂)| ŵ(T̂,ψ) ξT̂∗ (ψ) .

Colliding the first two marked points gives rise to the following contribution

of (T̂,ψ, ŵ) to (2.13):

(2.15) (−1)|H
+(T)| ŵ(T̂,ψ) ξT∗ (ψ · ψ1) .

The factor −ψ1 decorating the first leg arises from the intersection with δ1,2
in (2.13). Next, we show that ŵ(T̂,ψ) = w(T,ψ · ψ1) for an appropriate

w ∈ W
i,m
T,ψ·ψ1

.

Let h+1 be the head half-edge in T̂ incident to the trivalent vertex v1, and

let h−1 be the tail half-edge such that (h+1 , h
−
1 ) ∈ E(T̂). A factor ψh with

h = h−1 in the decoration ψ of T̂ induces a factor ψ1 decorating T. Let d1
be the resulting degree of ψ1 in ψ · ψ1 decorating T. Then the degree of ψh
with h = h−1 in the decoration ψ of T̂ is d1 − 1. For ŵ in W

i,m−1

T̂,ψ
, one has

ŵ(h+1 , 0) ≤ ℓm−1
h+
1

− 1 = m− 1.

The conditions on ŵ for tails give

1 ≤ ŵ(h−1 , 1) < · · · < ŵ(h−1 , d1 − 1) < ŵ(h+1 , 0).

It follows that d1 < m. Consider the bijection

H(T̂,ψ)
∼=
−→ H(T,ψ · ψ1)

(h−1 , e) 7→ (1, e), for 1 ≤ e < d1,

(h+1 , 0) 7→ (1, d1),

(h, e) 7→ (h, e), for h 6∈ {h−1 , h
+
1 } and all e.

For all heads h+ 6= h+1 or h+ = h0 in T̂, the weighted capacity ℓm−1
h+

of h+

in T̂ is equal to the weighted capacity ℓmh+ of the corresponding h+ in T.
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Consider the map

W
i,m−1

T̂,ψ
→ W

i,m
T,ψ·ψ1

, ŵ 7→ w, with





w(1, e) := ŵ(h−1 , e), if 1 ≤ e < d1,
w(1, d1) := ŵ(h+1 , 0),
w(h, e) := ŵ(h, e), otherwise.

This map is a bijection and preserves the weights, i.e.,

if ŵ 7→ w, then ŵ(T̂,ψ) = w(T,ψ · ψ1).

It follows that for ŵ ∈ W
i,m−1

T̂,ψ
, the contribution of (T̂,ψ, ŵ) to (2.13) given

by (2.15) is equal to

(−1)|H
+(T)| w(T,ψ · ψ1) ξT∗ (ψ · ψ1)

where ŵ 7→ w. This matches the contribution of (T,ψ·ψ1, w) to Z
m(n−, i, j).

Vice versa, a decorated tree where ψ1 has positive degree can arise in
the expansion of (2.13) only by colliding the first two marked points on a
term of (2.12) contributed by a decorated tree where the first two legs are
incident to a trivalent vertex.

It follows that the contributions to (2.13) obtained by colliding the first
two marked points on decorated trees where the first two legs are incident
to a trivalent vertex match the contributions to Z

m(n−, i, j) from decorated
trees where ψ1 has positive degree.

Case 2. Finally, consider a decorated tree (T̂,ψ) contributing to (2.12) such
that the first two legs are incident to a vertex v1 of valence at least four. We
can assume that ψ1 has degree zero in ψ, since otherwise the contribution

of (T̂,ψ) to (2.13) is zero, due to the vanishing ψ1 · δ1,2 = 0. We show that

the contribution of (T̂,ψ) to (2.13) matches the contribution of (T,ψ) to

Z
m(n−, i, j), where T is the tree obtained from T̂ by merging the first two

legs. In this case, the sets of edges of the trees T̂ and T are isomorphic, and

moreover the weighted capacity ℓm−1
h+ of h+ in T̂ is equal to the weighted

capacity ℓmh+ of the corresponding h+ in T, for all heads h+ or h+ = h0. It
follows that

ci,m−1

T̂,ψ
= ci,mT,ψ.

Hence, one has

π2∗

(
δ1,2 · (−1)|H

+(T̂)| ci,m−1

T̂,ψ
ξT̂∗ (ψ)

)
= (−1)|H

+(T)| ci,mT,ψ ξT∗ (ψ) .

The LHS is the contribution of (T̂,ψ) to (2.13), and the RHS is the contri-
bution of (T,ψ) to Z

m(n−, i, j).
We conclude that the contributions to (2.13) obtained by colliding the first

two marked points on decorated trees where the first two legs are incident
to a vertex of valence at least four match the contributions to Z

m(n−, i, j)
from decorated trees where ψ1 has degree zero. This ends the proof. �
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2.5. The extra cycles EI . We define here the cycles E
i
I(D) and EI(i, j).

These cycles are obtained as push-forward of Deci,mn (D) and Z
m(n, i, j), and

will be used to express the recursive identities in Theorems 4.1 and 4.2.
For T ∈ G0,n+1, let vn be the vertex incident to the leg n, and let h+n be

the element in H+(T) incident to vn. If vn is external, let T\vn be the graph
obtained from T by removing the vertex vn together with the legs incident
to it and the element h+n .

For ∅ 6= I ⊆ {1, . . . , n− 1}, define the set of decorated codas as
(2.16)

DCI :=




(T,ψ)

∣∣∣∣∣∣∣

T ∈ G0,n+1,

vn is external with set of incident legs I ⊔ {n},

and the degree of ψh with h = h+n in ψ is zero




.

For I = {1, . . . , n− 1}, the set DCI consists of a single decorated tree (T, 0)
where T has only one vertex — in this case, T \ vn = ∅ and ψ = 0. For
I ( {1, . . . , n−1}, one has T\vn 6= ∅ for (T,ψ) ∈ DCI . For such decorated
trees, by relabeling the tail half-edge of the edge connecting vn to T \ vn as
leg 1 of T \ vn, and relabeling the other legs of T \ vn accordingly, one has
T \ vn ∈ G0,n−|I|+1.

Let (T,ψ) ∈ DCI for some ∅ 6= I ⊆ {1, . . . , n − 1}. An element h+ in
H+(T) is called a predecessor of h+n if h+ is incident to a vertex v 6= vn closer
to h0 than vn. Consider the subset of i-weightings

W
i,I
T,ψ :=




w ∈ W

i
T,ψ

∣∣∣∣∣

w (h+, 0) ≤ ℓh+ − 2

for all predecessors h+ of h+n

and w (h+n , 0) = |I|




.

Here W
i
T,ψ is as in (2.3). One has

(2.17) if W
i,I
T,ψ 6= ∅, then

{
either i ≤ n− 2 and |I| ≤ n− 2,
or i = |I| = n− 1.

For (T,ψ) ∈ DCI , define

(2.18) diT,ψ :=
1

|I|

∑

w∈Wi,I

T,ψ

w(T,ψ).

Following (2.17), one has

(2.19) if diT,ψ 6= 0, then

{
either i ≤ n− 2 and |I| ≤ n− 2,
or i = |I| = n− 1.

In the case i = n− 1 and I = {1, . . . , n − 1}, one has diT,0 = 1.
Consider the cycle

E
i
I(D) :=

∑

(T,ψ)∈DCI

(−1)|H
+(T)|−1 diT,ψ ξT∗ (ψ) D

−|H(T,ψ)|
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in A∗
(
M0,n+1

)
[D−1]. Similarly to (2.10), let

(2.20) EI(i, j) :=
[
E
i
I(D)

]
−n−j+i

in An−1+j−i
(
M0,n+1

)

be its coefficients. One has

(2.21) EI(i, j) =
∑

(T,ψ)

(−1)|H
+(T)|−1 diT,ψ ξT∗ (ψ)

in An−1+j−i
(
M0,n+1

)
, where the sum is over decorated trees (T,ψ) in DCI

such that ξT∗ (ψ) has degree n− 1 + j − i.

Here we show that when |I| ≤ n − 2, the cycles EI(i, j) are obtained as
pushforward of cycles Zm(n−m, i, j) with m = |I|. Let

γ : M0,n−m+1 ×M0,I⊔{n,h+n } −→ M0,n+1

be the gluing map of degree one obtained by identifying the marked point
P1 on elements of M0,n−m+1 with the marked point h+n of elements in

M0,I⊔{n,h+n }, and relabeling the other marked points of elements inM0,n−m+1

by elements of {h0, 1, . . . , n− 1} \ I.

Lemma 2.2. Let ∅ 6= I ( {1, . . . , n− 1} and m := |I| ≤ n− 2. One has

E
i
I(D) = γ∗ Dec

i,m
n−m(D) ∈ A∗

(
M0,n+1

) [
D−1

]
.

Proof. We show that the coefficients of the two polynomials E
i
I(D) and

γ∗Dec
i,m
n−m(D) in D−1 match. Namely, using (2.10) and (2.20), we show

(2.22) EI(i, j) = γ∗ Z
m(n−m, i, j) ∈ An−1+j−i

(
M0,n+1

)
.

For (T,ψ) ∈ DCI , the gluing map ξT factors as ξT = γ ◦ ξT\vn , hence

ξT∗ (ψ) = γ∗
(
ξT\vn ∗ (ψ)

)
.

This uses that the degree of ψh with h = h+n in ψ is zero. Moreover, one has

H+(T) = H+(T \ vn) ⊔ {h+n },

hence |H+(T)| − 1 = |H+(T \ vn)|. Let h−n be the tail half-edge such that
(h+n , h

−
n ) ∈ E(T). One has a bijection

H(T,ψ) \ {(h+n , 0)}
∼=
−→ H(T \ vn,ψ)

(h−n , e) 7→ (1, e), for all e,

(h, e) 7→ (h, e), for h 6∈ {h−n , h
+
n } and all e.

For all predecessors h+ of h+n in T, the number ℓh+ − 1 for h+ in T is equal
to the weighted capacity ℓmh+ of the corresponding h+ in T \ vn. For all
other heads h+ in T, the capacity ℓh+ of h+ in T is equal to the weighted
capacity ℓmh+ of the corresponding h+ in T\vn. It follows that the constraint

on w ∈ W
i,I
T,ψ that w(h+, 0) ≤ ℓh+ − 2 for all predecessors h+ of h+n in T is

equivalent to the constraint on w ∈ W
i,m
T\vn,ψ

that w(h+, 0) ≤ ℓmh+ − 1 for the

corresponding h+ in T \ vn.
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Consider the map

W
i,I
T,ψ → W

i,m
T\vn,ψ

, ŵ 7→ w, with

{
w(1, e) := ŵ(h−n , e),
w(h, e) := ŵ(h, e), otherwise.

This map is a bijection, and since ŵ(h+n , 0) = |I|, one has

if ŵ 7→ w, then
1

|I|
ŵ(T,ψ) = w(T \ vn,ψ).

Using (2.6) and (2.18), it follows that

diT,ψ = ci,mT\vn,ψ
.

Hence (2.21) can be written as

EI(i, j) = γ∗



∑

(T−,ψ)

(−1)|H
+(T−)| ci,m

T−,ψ
ξT−∗ (ψ)


 ∈ An−1+j−i

(
M0,n+1

)

where the sum is over decorated trees (T−,ψ) such that (T−,ψ) = (T\vn,ψ)
for some (T,ψ) in DCI , and such that ξT−∗ (ψ) has degree n − 2 + j − i.
Using (2.11), the statement follows. �

3. Vanishing cycles on moduli of pointed rational curves

Here we show how certain coefficients of the polynomial Decin(D) intro-
duced in the previous section encode relations in A∗

(
M0,n+1

)
. This will be

used in the proof of the recursive relations in §4.

Recall the cycle Dec
i
n(D) = Dec

i,1
n (D) from (2.9) defined as

Dec
i
n(D) :=

∑

T∈G0,n+1

∑

ψ∈Ψ(T)

(−1)|H
+(T)| ciT,ψ ξT∗ (ψ) D

−|H(T,ψ)|

in A∗
(
M0,n+1

) [
D−1

]
, where the coefficients ciT,ψ = ci,1T,ψ are as in (2.6).

Theorem 3.1. For i ≥ 1, one has Dn−i
Dec

i
n(D) ∈ A∗

(
M0,n+1

)
[D].

First we rewrite this statement as a vanishing statement about the coef-
ficients of the polynomial Decin(D). Recall from (2.10) the cycle

Z(n, i, j) :=
[
Dec

i
n(D)

]
i−n−j

in A∗
(
M0,n+1

)

where [X]t denotes the coefficient of Dt in X. This gives

(3.1) Z(n, i, j) =
∑

(T,ψ)

(−1)|H
+(T)| ciT,ψ ξT∗ (ψ) in An−1+j−i

(
M0,n+1

)

where the sum is over decorated trees (T,ψ) such that ξT∗ (ψ) has degree
n− 1 + j − i in A∗

(
M0,n+1

)
.

To prove Theorem 3.1, it suffices to prove the following.

Theorem 3.2. For i, j ≥ 1, one has Z(n, i, j) = 0 in An−1+j−i
(
M0,n+1

)
.
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The statement is non-trivial for i < n (since the coefficients ciT,ψ vanish by

definition otherwise) and j < i (since the cycle vanishes for degree reasons
otherwise). This statement is proven as part (b) of Theorem 4.1 in §4.

3.1. Examples. Here we collect some examples of Theorem 3.2. Each
graph stands for the sum of the pairwise non-isomorphic graphs obtained
by all possible labeling of the unmarked legs by 1, . . . , n. One has

Z(3, 2, 1) = 2

h0

− 6 ψh0 = 0 ∈ A1
(
M0,4

)
,

and

Z(4, 3, 1) = 3

h0

+ 9

h0

− 18 ψh0 = 0

in A1
(
M0,5

)
. Also, the following cycles vanish in A2

(
M0,5

)
:

Z(4, 2, 1) =− 14 ψ2
h0 + 14

h0 ψ
+ 6

ψh0

− 6

h0

− 2

h0

,

Z(4, 3, 2) =− 75 ψ2
h0 + 21

h0 ψ
+ 18

ψh0

− 9

h0

− 3

h0

.

3.2. Preliminary identities. Here we start proving some identities which
will help to prove Theorem 3.2 in §4.

Lemma 3.3. For n ≥ 3, one has Z(n, n− 1, 1) = 0 in A1
(
M0,n+1

)
.

Proof. From (2.8), a decorated tree (T,ψ) contributes to Z(n, n − 1, 1) if
and only if |E(T)| + deg(ψ) = 1, i.e., |H(T,ψ)| = 2. Recall from §2.1 that
H+(T) always contains the element h0. There are two cases.

If degψ = 1, then the tree T has only one vertex, and ψ = ψh0 . Hence,
one has H(T,ψ) = {(h0, 0), (h0, 1)}. In this case, the set of (n−1)-weightings
W
n−1
T,ψ from (2.3) consists of the functions w such that w(h0, 0) = n − 1

and w(h0, 1) = a, with a ∈ {1, . . . , n − 1}. From (2.6), it follows that
cn−1
T,ψ = (n− 1)

(n
2

)
.

If degψ = 0, then the tree T has exactly one edge e = (h+, h−). In
this case, one has H(T,ψ) = {(h0, 0), (h

+, 0)}. The set W
n−1
T,ψ consists of
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the functions w such that w(h0, 0) = n − 1 and w(h+, 0) = a, with a ∈

{1, . . . , ℓh+ − 1}. It follows that cn−1
T,ψ = (n− 1)

(ℓ
h+

2

)
.

We deduce that

(3.2) Z(n, n− 1, 1) = −(n− 1)

(
n

2

)
ψh0 + (n− 1)

n−1∑

m=2

(
m

2

)
δm

where δm is the sum of the classes of the boundary divisors in M0,n+1 whose
general elements consist of a rational component containing the marked
point h0 and a rational component containing precisely m other marked
points. The vanishing of Z(n, n− 1, 1) is then due to the identity

(3.3)

(
n

2

)
ψh0 =

n−1∑

m=2

(
m

2

)
δm in A1

(
M0,n+1

)
.

This follows from the well-known identity ψh0 =
∑

M δM in A1
(
M0,n+1

)

obtained by fixing two elements a, b ∈ {1, . . . , n}, where the sum is over
{a, b} ⊆M ⊂ {1, . . . , n} with |M | ≤ n−1, and δM is the class of the divisor
in M0,n+1 whose general element consists of a rational component contain-
ing the marked point h0 and a rational component containing precisely the
marked points inM . Summing over all choices of a and b, one deduces (3.3),
hence the vanishing of Z(n, n− 1, 1) from (3.2). �

We end this section with the following recursive identity, which will be
used in the proof of Theorem 4.1(b) to deduce the vanishing of Z(n, n−1, j)
for j ≥ 1 from Lemma 3.3 and the vanishing of Z(n, n− 2, j) for j ≥ 1:

Lemma 3.4. For j ≥ 2, the following holds in Aj
(
M0,n+1

)
:

Z(n, n− 1, j) =
n− 1

n− 2
Z(n, n− 2, j − 1) + (n− 1)ψh0 Z(n, n− 1, j − 1).

Proof. Let j ≥ 2, and let (T,ψ) be a decorated tree such that ξT∗ (ψ) has
degree j in A∗

(
M0,n+1

)
. We show that the contributions of (T,ψ) to the

two sides of the equality in the statement match.
The maximal capacity ℓh = n for h in H+(T) is attained only at h = h0.

It follows that the only elements of H(T,ψ) where an (n− 1)-weighting can
have value n−1 are the pairs (h, e) where h = h0. We distinguish two cases.

First, assume the degree of ψh0 in ψ is zero. In this case, (T,ψ) does not
contribute to ψh0 Z(n, n − 1, j − 1). Moreover, the pair (h0, 0) is the only
element of H(T,ψ) where an (n − 1)-weighting can have value n − 1. It
follows that the map

W
n−1
T,ψ → W

n−2
T,ψ , w 7→ w where w(h, e) :=

{
n− 2 if (h, e) = (h0, 0),
w(h, e) otherwise

is a bijection. If w 7→ w, then w and w only differ at (h0, 0), where w(h0, 0) =
n − 1 and w(h0, 0) = n − 2. Using the definition (2.5), one has w(T,ψ) =
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n−1
n−2 w(T,ψ). From the definition (2.6), one has

cn−1
T,ψ =

n− 1

n− 2
cn−2
T,ψ .

From (3.1), it follows that (T,ψ) contributes equally to the two sides of the
equality in the statement.

Finally, assume the degree of ψh0 in ψ is positive. Let d0 > 0 be the
degree of ψh0 in ψ. Then H(T,ψ) contains (h0, e) precisely for 0 ≤ e ≤ d0.
Consider the partition

W
n−1
T,ψ = W

a ⊔W
b

where

W
a :=

{
w ∈ W

n−1
T,ψ |w(h0, 1) ≤ n− 2

}
,

W
b :=

{
w ∈ W

n−1
T,ψ |w(h0, 1) = n− 1

}
.

The map w 7→ w from the previous case gives a bijection W
a

∼=
−→ W

n−2
T,ψ such

that w(T,ψ) = n−1
n−2 w(T,ψ). Next, let ψ− := ψ−1

h0
ψ. The contribution

of (T,ψ) to ψh0 Z(n, n − 1, j − 1) equals the contribution of (T,ψ−) to
Z(n, n− 1, j− 1). The set H(T,ψ−) contains (h0, e) only for 0 ≤ e ≤ d0− 1.
One has a bijection

W
b → W

n−1
T,ψ− , w 7→ w− where w−(h, e) :=

{
w(h0, e+ 1) if h = h0,
w(h, e) otherwise.

Moreover, if w 7→ w−, then w(T,ψ) = (n− 1)w−(T,ψ−). Hence one has

cn−1
T,ψ =

n− 1

n− 2
cn−2
T,ψ + (n − 1) cn−1

T,ψ− .

It follows that (T,ψ) contributes equally to the two sides of the equality in
the statement. This implies the statement. �

4. Recursive identities on moduli of pointed rational curves

Here we prove certain recursive identities satisfied by the cycles Z(n, i, j)
and Dec

i
n(D). These will be a key ingredient in the proof of Theorem 2.

The proof of the recursive identities is intertwined with the proof of the
vanishing statement from Theorem 3.2.

Recall the cycle Z(n, i, j) in A∗
(
M0,n+1

)
from (3.1). Expanding the co-

efficients ciT,ψ = ci,1T,ψ as in (2.6), one has

(4.1)

Z(n, i, j) =
∑

(T,ψ,w)

(−1)|H
+(T)| w(T,ψ) ξT∗ (ψ) in An−1+j−i

(
M0,n+1

)

where the sum is over (T,ψ, w) such that ξT∗ (ψ) has degree n− 1+ j− i in
A∗
(
M0,n+1

)
and w is an i-weighting of (T,ψ). Recall that the legs of each

such T are labelled by 1, . . . , n, h0.
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Define the truncated cycle

(4.2) Z
t(n, i, j) in An−1+j−i

(
M0,n+1

)

as the cycle obtained from Z(n, i, j) by restricting the sum in (4.1) to those
(T,ψ, w) additionally satisfying the following property:
(4.3){

if h0, the leg n, and a tail h− are incident to the same trivalent vertex,

then i = w(h0, 0) ≥ w(ι(h−), 0).

Also, for a non-empty I ⊆ {1, . . . , n− 1}, recall the cycle

EI(i, j) =
∑

(T,ψ)

(−1)|H
+(T)|−1 diT,ψ ξT∗ (ψ) in An−1+j−i

(
M0,n+1

)

from (2.21), where the sum is over those decorated trees (T,ψ) in the set
DCI from (2.16) such that ξT∗ (ψ) has degree n−1+j−i, and the coefficients
diT,ψ are as in (2.18).

Let πn : M0,n+1 → M0,n be the map obtained by forgetting the point Pn.

Theorem 4.1. (a) For 1 ≤ i ≤ n− 2 and j ∈ Z, one has

(4.4) π∗n (Z(n− 1, i, j + 1))−
∑

I

|I|EI (i, j) = Z
t(n, i, j)

in An−1+j−i
(
M0,n+1

)
, where the sum is over all ∅ 6= I ⊆ {1, . . . , n−1}.

(b) For i, j ≥ 1, one has

Z
t(n, i, j) = 0 and Z(n, i, j) = 0 in An−1+j−i

(
M0,n+1

)
.

As a consequence of Theorem 4.1, we show:

Theorem 4.2. For all i ≥ 1 and j ∈ Z, one has

(4.5) π∗n (Z(n− 1, i, j + 1))−
∑

I

|I|EI (i, j) = Z
t(n, i, j)

in An−1+j−i
(
M0,n+1

)
, where the sum is over all ∅ 6= I ⊆ {1, . . . , n− 1}.

Next, we modify this statement by replacing the truncated cycles Zt(n, i, j)
via the following Lemma. Let σ0 : M0,n → M0,n+1 be the gluing map ob-
tained by attaching at the marked point h0 a rational component containing
the marked points h0 and Pn.

Lemma 4.3. For i ≥ 1 and j ∈ Z, one has

Z(n, i, j) = Z
t(n, i, j) −

∑

i+>i

i σ0∗
(
Z(n− 1, i+, j+)

)
∈ An−1+j−i

(
M0,n+1

)

where for each i+, the number j+ is defined by j+ − i+ = j − i.

Proof. Since j+ − i+ = j − i, the cycle Z(n − 1, i+, j+) has degree equal
to n − 2 + j − i in A∗

(
M0,n

)
, and thus σ0∗ (Z(n− 1, i+, j+)) has degree

n − 1 + j − i in A∗
(
M0,n+1

)
. The statement follows from the definition
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of Z
t(n, i, j) as the cycle obtained from Z(n, i, j) by restricting the sum

in (4.1) to those triples (T,ψ, w) satisfying (4.3). Hence the difference
Z(n, i, j) − Z

t(n, i, j) is contributed by those triples (T,ψ, w) which do not
satisfy (4.3), i.e., h0, the leg n, and a tail h− are incident to a trivalent
vertex of T and i = w(h0, 0) < w(ι(h−), 0) =: i+. Such a triple (T,ψ, w)
contributes to i σ0∗ (Z(n− 1, i+, j+)), and vice versa. The negative sign be-
fore i σ0∗ (Z(n− 1, i+, j+)) accounts for the new edge contributed by the
gluing map σ0. Hence the statement. �

By (2.10) and (2.20), the cycles Z(n, i, j) and EI(i, j) are coefficients of
the polynomials Decin(D) = Dec

i,1
n (D) and E

i
I(D), respectively. That is,

Dec
i
n(D) =

∑

j>i−n

Z(n, i, j)Di−n−j , E
i
I(D) =

∑

j>i−n

EI(i, j)D
i−n−j

in A∗
(
M0,n+1

) [
D−1

]
. Combining Theorem 4.2 and Lemma 4.3, we have:

Theorem 4.4. For i ≥ 1, one has

π∗n
(
Dec

i
n−1(D)

)
−
∑

I

|I|EiI (D)−
∑

i+>i

i σ0∗

(
Dec

i+
n−1(D)

)
= Dec

i
n(D)

in A∗
(
M0,n+1

) [
D−1

]
. The first sum is over all ∅ 6= I ⊆ {1, . . . , n− 1}.

This statement will be used in the proof of Theorem 6.1. The next Lemma
4.6 shows that for any given n, Theorem 4.2 follows from Theorem 4.1. The
latter is proven in the remainder of §4.2.

4.1. Partitions of G0,n+1. We consider here partitions of the set of rational
rooted trees G0,n+1. These will be used in the proof of Theorem 4.1.

Let T ∈ G0,n+1. A vertex v of T is external if there is no tail half-edge
of T incident to v. A subtree T′ of T is external if either T′ = T, or there
exists an edge (h+, h−) in E(T) such that T′ is the maximal subtree of T
containing the head half-edge h+, but not the tail half-edge h−.

Let vn be the vertex incident to the leg n, and v0 the vertex incident to h0.
Let hn be the unique element of H+(T) incident to vn. For a half-edge h,
let ι(h) be the half-edge such that (h, ι(h)) ∈ E(T).

Consider the set of decorated rational trees with i-weightings:

(4.6) DGW
i
0,n+1 =

{
(T,ψ, w) |T ∈ G0,n+1, ψ ∈ Ψ(T), w ∈ W

i
T,ψ

}
.

For 1 ≤ i ≤ n− 2, let

DGW
i
0,n+1 = A

i
0,n+1 ⊔ B

i
0,n+1 ⊔ C

i
0,n+1
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be the partition where

A
i
0,n+1 :=




(T,ψ, w)

∣∣∣∣∣∣∣

either vn is incident to h0;

or vn is trivalent, adjacent to v0, and incident to

a tail h−, and w(hn, 0) < w(ι(h−), 0)




,

B
i
0,n+1 :=





(T,ψ, w)

∣∣∣∣∣∣∣∣∣∣∣

vn is not incident to h0; and

if vn is trivalent, adjacent to v0, and incident to

a tail h−, then w(hn, 0) ≥ w(ι(h−), 0); and

if vn is external,

then the degree of ψhn in ψ is positive





,

C
i
0,n+1 :=

{
(T,ψ, w)

∣∣∣∣
vn is external and not incident to h0,

and the degree of ψhn in ψ is zero

}
.

For (T,ψ, w) ∈ A
i
0,n+1, the vertex vn could be external. In this case, vn

is the only vertex of T.
For n = 3 and i = 1, one has B1

0,n+1 = ∅, and G0,n+1 = A
1
0,n+1 ⊔ C

1
0,n+1.

4.2. Proof of Theorems 4.1 and 4.2. We start with two preliminary
Lemmata:

Lemma 4.5. The LHS of (4.4) expands as a Z-linear combination of classes
ξT∗ (ψ) for T ∈ G0,n+1 and ψ ∈ Ψ(T), as does the RHS.

Proof. Let us first consider π∗n (Z(n− 1, i, j + 1)). By definition, this is a
Z-linear combination of terms of type π∗n

(
ξT∗ (ψ)

)
with T in G0,n and ψ in

Ψ
(
T
)
. Each such term expands as

(4.7) π∗n
(
ξT∗ (ψ)

)
=
∑

T

ξT∗ (π
∗
n (ψ))

where T ∈ G0,n+1 ranges over all graphs obtained from T by adding a leg
n to one of its vertices. Let T be one of such graphs, let vn be the vertex
incident to the leg n, and hn be the unique element of H+(T) incident to vn.

Consider first the case when for all tail half-edges h− incident to vn, the
degree of ψh− in ψ is zero. Pull-back formulas for ψ-classes give

ξT∗ (π
∗
n (ψ)) = ξT∗ (ψ)− ξT◦∗ (ψ

◦) ∈ A∗
(
M0,n+1

)
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where:

T◦ :=





the tree obtained from T by
splitting the vertex vn into two vertices v◦n and v⊥

such that v◦n is trivalent and incident to: the leg n,
the element in H+(T◦) equivalent to hn from T,
and an edge incident to v⊥;

(4.8)

ψ◦ :=





the monomial obtained from ψ by

replacing the factor ψdnhn ,
where dn is the degree of ψhn in ψ,

with ψd
⊥

h⊥
where h⊥ is the head half-edge incident to v⊥

and d⊥ := dn − 1;
if dn = 0, then one sets ψ◦ = 0.

(4.9)

An example is given in Figure 1.

(T,ψ) =
n

h0 ψh−ψhn
7→





(T◦,ψ◦) =

n

h0 ψh−

(
Th

−

,ψh
−

)
=

n

h0 ψh+

Figure 1. An example of the decorated trees (T◦,ψ◦) and
(
Th

−

,ψh
−

)
.

More generally, if for some tail half-edge h− incident to vn, the degree of
ψh− in ψ is positive, then pull-back formulas for ψ-classes give more terms:

(4.10) ξT∗ (π
∗
n (ψ)) = ξT∗ (ψ)− ξT◦∗ (ψ

◦)−
∑

h−

ξ
Th−∗

(
ψh

−
)

where T◦ and ψ◦ are as in (4.8) and (4.9); the sum is over tail half-edges
h− incident to vn; and for each such tail h−:

Th
−

:=





the tree obtained from T by

splitting the vertex vn into two vertices vh
−

n and v⊥

such that vh
−

n is trivalent and incident to: the leg n,
the tail half-edge equivalent to h− from T,
and an edge incident to v⊥;

(4.11)

ψh
−

:=





the monomial obtained from ψ

by replacing the factor ψ
d−
h−

,
where d− is the degree of ψh− in ψ,

with ψd
⊥

h⊥
where h⊥ is the tail half-edge incident to v⊥

in the direction of vh
−

n , and d⊥ := d− − 1;

if d− = 0, then one sets ψh
−

= 0.

(4.12)
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See the example in Figure 1.
Combining (4.7) and (4.10) shows the claim for the contributions arising

from π∗n (Z(n− 1, i, j + 1)).
Regarding the cycles EI(i, j), the claim follows immediately from (2.21).

We emphasize that after (2.16) and (2.19), one has
(4.13)

if diT,ψ 6= 0 and i ≤ n− 2, then

{
vn is external and not incident to h0,

and the degree of ψhn in ψ is zero.

Hence, if (T,ψ) contributes to EI(i, j) on the LHS of (4.4), then (T,ψ, w)
for all i-weightings w is in the subset Ci0,n+1 ⊆ DGW

i
0,n+1 from §4.1. �

Lemma 4.6. For any given n ≥ 3, Theorem 4.1 implies Theorem 4.2.

Proof. Let n ≥ 3, and assume Theorem 4.1 holds for n.
For i ≥ n, both sides of (4.5) vanish. Indeed, for the sets of i-weightings to

be non-empty, one needs i < n, as in (2.4). Hence, using the definitions (4.1)
and (4.2), both Z(n − 1, i, j + 1) and Z

t(n, i, j) vanish for i ≥ n. Similarly,
using the definition (2.21) and (2.19), one concludes the vanishing of the
cycles EI(i, j) for i ≥ n.

For i = n− 1, we need to prove (4.5) in Aj
(
M0,n+1

)
for j ≥ 0. As in the

previous paragraph, the cycle Z(n− 1, n− 1, j +1) on the LHS vanishes for
all j, since the sets of i-weightings are empty in this case. For j ≥ 1, the
cycle Z

t(n, n − 1, j) on the RHS vanishes from Theorem 4.1(b). Moreover,
when j ≥ 1, the only cycles EI(n − 1, j) of positive degree j are those with
|I| < n − 1, and these vanish since all coefficients dn−1

T,ψ in (2.21) vanish in

this case using (2.19). For j = 0, using (2.19), the only non-vanishing cycle
EI(n − 1, 0) in (4.5) is the one with |I| = n − 1. In this case, both cycles
EI(n−1, 0) and Z

t(n, n−1, 0) consist of only one term contributed by (T,ψ)
where T is the tree with only one vertex and ψ = 0. In this case, both sides
of (4.5) are equal to −i = −(n− 1).

Finally, for 1 ≤ i ≤ n − 2, the identity (4.5) follows from part (a) of
Theorem 4.1. Hence the statement. �

We now turn to the proof of Theorem 4.1:

Proof of Theorem 4.1. We prove part (a) and part (b) simultaneously by
induction on n.

For part (b), one can assume that 1 ≤ j < i, since the vanishing of
Z
t(n, i, j) and Z(n, i, j) in An−1+j−i

(
M0,n+1

)
for 1 ≤ i ≤ j is trivial for

degree reasons. In addition, one can assume i < n, since otherwise the sets
of i-weightings are empty, hence Z

t(n, i, j) and Z(n, i, j) vanish.

The base case is n = 3, where i = 1. In this case, (4.4) is an identity in
A1+j

(
M0,4

)
, hence non-trivial only for j ∈ {−1, 0}.

When j = −1, the only cycle EI(1,−1) of degree zero is the one with
|I| = n − 1, and this vanishes from (2.19) since i < n − 1. Both sides of
(4.4) are then equal to the fundamental class of M0,4.
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When j = 0, the term π∗n (Z(n− 1, i, j + 1)) does not contribute any cycle
in dimension zero. Hence the LHS of (4.4) is provided only by the two
EI(1, 0), namely

3

1h0

2

+

3

2h0

1

while the RHS of (4.4) has in addition the following terms

(4.14)

2

1h0

3

− ψh0
3

1

2 .

Since (4.14) vanishes in A1
(
M0,4

)
, part (a) follows.

For n = 3, the only non-trivial case of part (b) is given when i = 2 and
j = 1, and it is a special case of Lemma 3.3.

Next, we show the following:

Claim 4.7. Assume parts (a) and (b) for n − 1, n − 2, . . . , 3. Then part (a)
holds for n, i.e., the contributions of all (T,ψ) to the two sides of (4.4)
match, modulo relations in A∗

(
M0,n+1

)
.

Proof of Claim 4.7. Let n ≥ 4. The RHS of (4.4) is Zt(n, i, j), given by

Z
t(n, i, j) =

∑

(T,ψ,w)

(−1)|H
+(T)| w(T,ψ) ξT∗ (ψ) in An−1+j−i

(
M0,n+1

)

where the sum is over (T,ψ, w) in the set DGW
i
0,n+1 from (4.6) such that

ξT∗ (ψ) has degree n − 1 + j − i in A∗
(
M0,n+1

)
and the property (4.3) is

satisfied.
For each such (T,ψ, w), the argument depends on the position of the leg

n in T. For this, let 1 ≤ i ≤ n− 2, and consider the partition of DGWi
0,n+1

from §4.1:

DGW
i
0,n+1 = A

i
0,n+1 ⊔ B

i
0,n+1 ⊔ C

i
0,n+1.

Contributions from A
i
0,n+1. Let us consider the contributions of (T,ψ, w) in

A
i
0,n+1 to Z

t(n, i, j). First, we arrange such contributions in parts, and then
we distinguish Subcases 1 and 2 below.

We partition the contributions from A
i
0,n+1 to Z

t(n, i, j) as follows. The
idea is that the partition is suggested by the set of decorated trees contribut-
ing to the pull-back of ψ-classes, as in (4.10), and each part consists of:

(i) a triple (T,ψ, w) where the vertex vn incident to the leg n has valence
at least four and is incident to h0;

(ii) possibly a triple (T◦,ψ◦, w◦) where the vertex v◦n incident to the leg n
is trivalent and incident to h0;

(iii) possibly triples (Th
−

,ψh
−

, wh
−

) where the vertex vh
−

n incident to the
leg n is trivalent and adjacent to the vertex incident to h0.
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To define such parts, consider a triple (T,ψ, w) in A
i
0,n+1 such that the

valence of the vertex vn incident to the leg n is at least four. In particular,
vn is incident to h0.

The possible triple (T◦,ψ◦, w◦) in the part containing (T,ψ, w) is defined
as follows: T◦ is the graph obtained from T as in (4.8); ψ◦ is the decoration
obtained from ψ as in (4.9); and w◦ is the i-weighting defined by

w◦ (h◦n, 0) = w (hn, 0) ,

w◦
(
h⊥, e

)
= w (hn, e+ 1) for 0 ≤ e ≤ d⊥,

w◦ (h, e) = w (h, e) otherwise.

Here, we have used the identification

H(T,ψ)
∼=
−→ H(T◦,ψ◦)

(hn, 0) 7→ (h◦n, 0),

(hn, e+ 1) 7→ (h⊥, e), for 0 ≤ e ≤ d⊥,

(h, e) 7→ (h, e), for h 6= hn and all e.

The triple (T◦,ψ◦, w◦) is considered only if ψ◦ 6= 0. Since (T,ψ, w) is in
A
i
0,n+1, by definition the triple (T◦,ψ◦, w◦) is in A

i
0,n+1 as well. Moreover,

one has the following equality of weights

(4.15) w (T,ψ) = w◦ (T◦,ψ◦) .

Since a divisorial ψ-class is exchanged with an edge, the classes ξT∗(ψ) and
ξT◦∗(ψ

◦) have equal degree in A∗
(
M0,n+1

)
.

In addition, the possibly remaining triples of the part containing (T,ψ, w)

are triples (Th
−

,ψh
−

, wh
−

), one for each tail half-edge h− incident to vn in T,

where: Th
−

is the graph obtained from T as in (4.11); ψh
−

is the decoration

obtained from ψ as in (4.12); and wh
−

is the i-weighting defined by

wh
−
(
h⊥, e

)
= w

(
h−, e

)
, for 0 ≤ e ≤ d⊥,

wh
−
(
ι(h⊥), 0

)
= w

(
h−, d⊥ + 1

)
,

wh
−

(h, e) = w (h, e) otherwise.

Here, we have used the identification

H(T,ψ)
∼=
−→ H(Th

−

,ψh
−

)

(h−, e) 7→ (h⊥, e), for 0 ≤ e ≤ d⊥,

(h−, d⊥ + 1) 7→ (ι(h⊥), 0),

(h, e) 7→ (h, e), for h 6= h− and all e.

For each h−, the triple (Th
−

,ψh
−

, wh
−

) is considered only if ψh
−

6= 0. Since

(T,ψ, w) is in A
i
0,n+1, by definition the triple (Th

−

,ψh
−

, wh
−

) is in A
i
0,n+1
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as well, and one has

(4.16) w (T,ψ) = wh
−
(
Th

−

,ψh
−
)
.

Since a divisorial ψ-class is exchanged with an edge, the classes ξT∗(ψ) and

ξ
Th−∗

(ψh
−

) have equal degree in A∗
(
M0,n+1

)
.

For (T,ψ, w) to contribute to Z
t(n, i, j), the degree of ξT∗(ψ) is required

to be n − 1 + j − i in A∗
(
M0,n+1

)
. This implies that the corresponding

ξT◦∗(ψ
◦) and all ξ

Th−∗
(ψh

−

) have the same degree n− 1 + j − i. In addi-
tion, (T◦,ψ◦, w◦) satisfies the property (4.3) by construction; (T,ψ, w) and

all (Th
−

,ψh
−

, wh
−

) trivially satisfy (4.3). This implies that if (T,ψ, w) con-

tributes to Z
t(n, i, j), then (T◦,ψ◦, w◦) and all (Th

−

,ψh
−

, wh
−

) contribute
to Z

t(n, i, j) as well.
The number of head half-edges of T and corresponding T◦ varies by one.

Similarly, the number of head half-edges of T and each corresponding Th
−

varies by one. Using (4.15) and (4.16), it follows that the sum of the con-
tributions to Z

t(n, i, j) of all triples in the part of Ai0,n+1 corresponding to

(T,ψ, w) is:

(4.17) (−1)|H
+(T)| w(T,ψ)

(
ξT∗(ψ)− ξT◦∗(ψ

◦)−
∑

h−

ξ
Th−∗

(ψh
−

)

)
.

As in (4.10), this is

(4.18) (−1)|H
+(T)| w(T,ψ) ξT∗(π

∗
nψ) ∈ A∗

(
M0,n+1

)
.

This is the total contribution to Zt(n, i, j) of the part of Ai0,n+1 corresponding

to (T,ψ, w). We distinguish two subcases:

Subcase 1. Consider first the case when the sum of the degrees of ψh in ψ for
h incident to vn in T is valence(vn)− 3. In this case, the total contribution
to Z

t(n, i, j) as given in (4.18) vanishes. Indeed, our assumption implies that
the sum of the degrees of π∗n ψh in the term π∗nψ from (4.18) for h incident
to vn is valence(vn)−3. The product of π∗n ψh in π∗nψ for h incident to vn is
then the pull-back via πn of a cycle of degree valence(vn)− 3 supported on
a moduli space of rational curves with valence(vn)− 1 marked points. Such
cycle vanishes for degree reasons.

Similarly, no such contributions arise in π∗n (Z(n− 1, i, j + 1)). Indeed,
arguing as in Lemma 4.5, contributions to π∗n (Z(n− 1, i, j + 1)) arise pre-
cisely from terms like ξT∗(π

∗
nψ), hence they are null in this case, as in the

previous paragraph. Also, since (T,ψ, w), (T◦,ψ◦, w◦) and (Th
−

,ψh
−

, wh
−

)
are all in A

i
0,n+1, there are no contributions to the cycles EI(i, j).

It follows that the sum of the contributions of such decorated trees van-
ishes on both sides of (4.4).

Subcase 2. It remains to consider the case when the sum of the degrees of
ψh in ψ for h incident to vn in T is less than valence(vn) − 3. After (4.7),
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the contribution (4.18) to Z
t(n, i, j) in this case matches a contribution to

(−1)|H
+(T)| w(T,ψ)π∗n

(
ξT∗(ψ)

)
,

where T is the tree obtained by removing the leg n from T. Finally, this
matches the contribution

(−1)|H
+(T)|w(T,ψ)π∗n

(
ξT∗(ψ)

)
,

to π∗n (Z(n− 1, i, j + 1)) in the LHS of (4.4). Indeed, recall that h0 is incident
to vn in T, and i ≤ n − 2. In particular, removing the leg n in T does not
affect the computation of the capacities of the head half-edges, as defined in
(0.5). It follows that (T,ψ) and (T,ψ) have the same i-weightings, hence
w(T,ψ) = w(T,ψ). Also, one has |H+(T)| = |H+(T)|.

Similarly to Subcase 1, there are no contributions to the cycles EI(i, j).
Hence such decorated trees have equal contributions to the two sides of (4.4).

This concludes the discussion of the case (T,ψ, w) ∈ A
i
0,n+1.

Contributions from B
i
0,n+1 ⊔ C

i
0,n+1. Consider (T,ψ, w) ∈ B

i
0,n+1 ⊔ C

i
0,n+1

contributing to Z
t(n, i, j). We define a subset PT,ψ,w of B

i
0,n+1 ⊔ C

i
0,n+1

assigned to (T,ψ, w), and use the inductive hypothesis to show that the
sum of the contributions of the triples in PT,ψ,w to Z

t(n, i, j) is equivalent
to a contribution to the LHS of (4.4).

To define the set PT,ψ,w, we proceed as follows. Consider

Text :=
the maximal connected subtree of T
containing the leg n, but not containing h0.

Let next be the number of legs of T within Text. One has next < n.
Define Tint to be the complement of Text in T. There is a unique edge in

E(T) with tail half-edge in Tint and head half-edge in Text. Let hext0 be such
head half-edge in Text.

The set H±(Text) is the restriction of H±(T) to Text, and define similarly
H±(Tint) as the restriction of H±(T) to Tint. One has

H(T) = H(Text) ⊔H(Tint).

Factoring ψ as ψ =
∏
h∈H(T) ψ

dh
h , consider its restrictions

ψext :=
∏

h∈H(Text)

ψdhh and ψint :=
∏

h∈H(Tint)

ψdhh

to Text and Tint, respectively. One has ψ = ψintψext. This induces the
partition

H(T,ψ) = H(Tint,ψint) ⊔H(Text,ψext).

The i-weighting w in W
i
T,ψ is the union of two functions

w = wint ⊔wext,
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wherewint and wext are the restrictions of w to H(Tint,ψint) and H(Text,ψext),
respectively. One has

wint ∈ W
i,a
Tint,ψint and wext ∈ W

a
Text,ψext for some a.(4.19)

Here, Wi,a
Tint,ψint is as in (2.2), with the tail half-edge ι(hext0 ) in Tint playing

the role of the first leg in (2.2), and W
a
Text,ψext is as in (2.3).

The function wint gives a lower bound for a. For this, consider the tail
h− := ι(hext0 ) which is half of the edge connecting Tint and Text. If d− is the
degree of ψh− in ψ, let

(4.20) a0 := wint
(
h−, d−

)
.

By the definition of the weighting w, one has wext(hext0 , 0) = a for some
a > a0.

Since (T,ψ, w) is in B
i
0,n+1 ⊔ C

i
0,n+1, one has that wext is an a-weighting

of (Text,ψext), for some a, satisfying the property (4.3).
The set PT,ψ,w consists of those triples (T′,ψ′, w′) in B

i
0,n+1 ⊔ C

i
0,n+1

contributing to Z
t(n, i, j) which are obtained by fixing Tint, ψint, wint, and

varying Text, ψext, wext. Namely, define PT,ψ,w ⊆ B
i
0,n+1 ⊔ C

i
0,n+1 as

PT,ψ,w :=

{
(
T′,ψ′, w′

)
∣∣∣∣∣
T′int = Tint, ψ′int = ψint, w′int = wint,

deg ξT′∗ (ψ
′) = n− 1 + j − i in A∗

(
M0,n+1

)
}
.

Since PT,ψ,w ⊆ B
i
0,n+1 ⊔ C

i
0,n+1, for each (T′,ψ′, w′) in PT,ψ,w one has that

w′ext ∈ W
a
T′ext,ψ′ext for some a > a0

and w′ext satisfies the property (4.3).
The sum of the contributions of all (T′,ψ′, w′) in PT,ψ,w to Z

t(n, i, j)
consists of the following term:

(4.21)
∑

(T′,ψ′,w′)∈PT,ψ,w

(−1)|H
+(T′)| w′(T′,ψ′) ξT′∗

(
ψ′
)
.

We need to show that (4.21) is equivalent to a contribution to the LHS
of (4.4). For this, we first rewrite (4.21) so that we can apply the inductive

hypothesis for the triples
(
T′ext,ψ′ext, w′ext

)
.

For (T′,ψ′, w′) ∈ PT,ψ,w, the i-weighting w
′ ∈ W

i
T′,ψ′ is the union of two

functions w′ = wint ⊔ w′ext such that

wint ∈ W
i,a
Tint,ψint and wext ∈ W

a
T′ext,ψ′ext for some a > a0

as in (4.19). From (2.5), the corresponding i-weight of (T′,ψ′) factors as

w′(T′,ψ′) = wint
(
Tint,ψint

)
w′ext

(
T′ext,ψ′ext

)
.
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We can thus rewrite (4.21) as
(4.22)

wint
(
Tint,ψint

) ∑

(T′,ψ′,w′)∈PT,ψ,w

(−1)|H
+(T′)| w′ext

(
T′ext,ψ′ext

)
ξT′∗

(
ψ′
)
.

One has

(4.23) H+
(
T′
)
= H+

(
Tint

)
⊔H+

(
T′ext

)
.

Moreover, each map ξT′ factors as ξT′ = ζT ◦ ξT′ext , where

ζT : M0,next+1 ×
∏

v∈V(Tint)

M0,n(v) −→ M0,n+1

is the gluing map of degree one defined by Tint and the edge connecting Tint

and Text. Hence we have

(4.24) ξT′∗

(
ψ′
)
= ζT∗

(
ψint ξT′ext∗

(
ψ′ext

))
.

By definition of the truncated cycles Zt(next, a, b), we have

(4.25)
∑

(T′,ψ′,w′)∈PT,ψ,w

(−1)|H
+(T′ext)| w′ext

(
T′ext,ψ′ext

)
ξT′ext∗

(
ψ′ext

)

=
∑

a>a0

Z
t(next, a, b)

where for each a, the number b is determined by

next − 1 + b− a = deg ξText ∗

(
ψext

)
.

Since W
a
T′ext,ψ′ext = ∅ for a ≥ next, the sum on the RHS of (4.25) is finite.

Using (4.23), (4.24), and (4.25), it follows that (4.22) can be rewritten as

(4.26) (−1)|H
+(Tint)| wint

(
Tint,ψint

) ∑

a>a0

ζT∗

(
ψint

Z
t(next, a, b)

)
.

Formula (4.26) expresses the term of the RHS of (4.4) contributed by all
triples in PT,ψ,w.

Since next < n, the induction hypothesis together with Lemma 4.6 for
next imply that for each a, one has

(4.27) π∗next

(
Z(next − 1, a, b+ 1)

)
−
∑

I

|I|EI (a, b) = Z
t(next, a, b)

in An
ext−1+b−a

(
M0,next+1

)
. In the above sum, I ranges over all non-empty

subsets of the restriction of the set of legs L(T) \ {n} to Text.
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Using (4.27) to replace Z
t(next, a, b) in (4.26), we have that the term of

the RHS of (4.4) contributed by all triples (T′,ψ′, w′) in PT,ψ,w is

(4.28) (−1)|H
+(Tint)| wint

(
Tint,ψint

)

×
∑

a>a0

ζT∗

(
ψint

(
π∗next

(
Z(next − 1, a, b + 1)

)
−
∑

I

|I|EI (a, b)

))
.

Next, we verify that (4.28) matches a contribution to the LHS of (4.4).
For this, we proceed by considering four subcases. This will conclude the
proof of Claim 4.7.

Let (T′,ψ′, w′) ∈ PT,ψ,w. Let v
′
n be the vertex of T′ incident to the leg n,

and h′n be the head half-edge incident to v′n. Let T′ext
0 be the maximal

subtree of T′ext containing v′n such that for every vertex v of T′ext
0 , the sum

of the degrees of ψh in ψ′ for h incident to v is valence(v)−3. In particular,

one has T′ext
0 6= ∅ if and only if the sum of the degrees of ψh in ψ′ for h

incident to v′n is equal to valence(v′n) − 3. For instance, T′ext
0 6= ∅ when

v′n is trivalent — in this case, the degree of ψh in ψ′ for h incident to v′n is
necessarily zero, otherwise ξT′∗ (ψ

′) = 0.

Subcase 3. Assume first that T′ext
0 6= ∅, and if trivalent, then v′n is adjacent

only to vertices in T′ext
0 . Moreover, assume that v′n is not trivalent and

external in T′ — the case when v′n is trivalent and external will be treated in
Subcase 5. Following the proof of Lemma 4.5, there is no contribution from
such (T′,ψ′) to the LHS of (4.4). Indeed, the conditions that T′ext

0 6= ∅

and a trivalent v′n be adjacent only to vertices in T′ext
0 imply that such

a decorated tree does not contribute to π∗n (Z(n− 1, i, j + 1)); moreover,

the conditions that T′ext
0 6= ∅ and v′n is not trivalent and external in T′

imply that such a decorated tree does not contribute to the cycles EI(i, j).

Similarly, the decorated tree (T′ext,ψ′ext) does not contribute to the LHS
of (4.27). Hence, the decorated tree (T′,ψ′) contributes neither to the LHS
of (4.4), nor to (4.28), as desired.

Subcase 4. Consider (T′,ψ′, w′) ∈ B
i
0,n+1. Then from (4.13), (T′,ψ′) does

not contribute to the classes EI(i, j) in the LHS of (4.4). Assume that either

T′ext
0 = ∅, or v′n is trivalent and adjacent to at least one vertex not in T′ext

0 .
In these cases, (T′,ψ′) contributes to π∗n (Z(n− 1, i, j + 1)) in the LHS of
(4.4).

When T′ext
0 = ∅, the total contribution of (T′,ψ′) to the LHS of (4.4) is

(4.29) (−1)|H
+(T′)| ci

T′,ψ′
ξT′∗

(
ψ′
)

where
(
T′,ψ′

)
is the decorated tree with T′ obtained by removing the leg n

from T′. Similarly, consider the decorated tree
(
T′ext,ψ′ext

)
where T′ext is

the graph obtained by removing the leg n from T′ext.
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The term in (4.29) can be decomposed as follows. As in (4.19), an i-
weighting w′ of

(
T′,ψ′

)
decomposes as w′ = wint ⊔ w′ext, where wint is an

i-weighting of
(
Tint,ψint

)
and w′ext is an a-weighting of (T′ext,ψ′ext) for

some a. Hence, we have

(4.30) ci
T′,ψ′

=
∑

wint

wint
(
Tint,ψint

) ∑

a>a0

ca
T′

ext
,ψ′ext

.

The number a0 is determined by each wint, as in (4.20).
Fixing wint, consider the triples (T′,ψ′, w′) for all w′ whose restriction to(

Tint,ψint
)
is wint. Restricting (4.29), the contribution of all such triples to

the LHS of (4.4) is

wint
(
Tint,ψint

) ∑

a>a0

(−1)|H
+(T′)| ca

T′
ext
,ψ′ext

ξT′∗

(
ψ′
)
.

Using (4.23) and (4.24), this is

(4.31) (−1)|H
+(Tint)| wint

(
Tint,ψint

)

×
∑

a>a0

ζT∗

(
ψint (−1)|H

+(T′ext)| ca
T′

ext
,ψ′ext

ξT′ext∗

(
ψ′ext

))
.

This formula gives the contribution to the LHS of (4.4) of the triples (T′,ψ′, w′)
for all w′ whose restriction to

(
Tint,ψint

)
is wint. Here the term

(−1)|H
+(T′ext)| ca

T′
ext
,ψ′ext

ξT′ext∗

(
ψ′ext

)

matches the contribution of (T′ext,ψ′ext) to π∗next

(
Z(next − 1, a, b + 1)

)
.

It follows that the contribution to the LHS of (4.4) of the triples (T′,ψ′, w′)
for all w′ with fixed wint matches the contribution to (4.28) of (T′,ψ′, w′)
for all w′ with fixed wint, as desired.

When v′n is trivalent, the term in (4.29) has to be replaced by

(−1)|H
+(T′)|

(
ci
T′,ψ+ + ci

T′,ψ−

)
ξT′∗

(
ψ′
)

where: the tree T′ is obtained from T′ by removing the leg n and contracting
an edge to stabilize; the decoration ψ+ is defined so that ψ′ is obtained from
ψ+ as in (4.9); and ψ− is defined so that ψ′ is obtained from ψ− as in (4.12).
If v′n is trivalent and adjacent to v0, then the contribution ci

T′,ψ−
ξT′∗ (ψ

′)

arises as in (4.17), and so it has already been discussed in Subcases 1–2. For
all the other contributions, the argument then continues as in the case when
T′ext

0 = ∅.

Subcase 5. Next, consider (T′,ψ′, w′) ∈ C
i
0,n+1, and assume that v′n is triva-

lent and external in T′. In this case, (T′,ψ′) contributes to the class EI(i, j)
such that I ⊔{n} is the set of the two legs incident to v′n, but does not con-
tribute to the class π∗n (Z(n− 1, i, j + 1)) in the LHS of (4.4). Using (2.21),
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it follows that the total contribution of (T′,ψ′) to the LHS of (4.4) is

(4.32) − (−1)|H
+(T′)|−1 |I| diT′,ψ′ ξT′∗

(
ψ′
)
.

As in (4.30), we have

diT′,ψ′ =
∑

wint

wint
(
Tint,ψint

) ∑

a>a0

da
T′ext,ψ′ext .

Here as well, the number a0 is determined by each wint as in (4.20). Using
this with (4.23) and (4.24), the contribution to the LHS of (4.4) of (T′,ψ′)
for a fixed wint becomes

(4.33) (−1)|H
+(Tint)|wint

(
Tint,ψint

)

×
∑

a>a0

ζT∗

(
ψint (−1)|H

+(Text)| |I| da
T′ext,ψ′ext ξT′ext∗

(
ψ′ext

))
.

This is the summand of (4.32) corresponding to a fixed wint. Here the term

(−1)|H
+(Text)| |I| da

T′ext,ψ′ext ξT′ext∗

(
ψ′ext

)

matches the contribution of (T′ext,ψ′ext) to −|I| EI(a, b).
Hence the contribution to the LHS of (4.4) of (T′,ψ′) for a fixed wint

matches the contribution to (4.28) of (T′,ψ′) for a fixed wint, as desired.

Subcase 6. Finally, it remains to discuss the case when (T′,ψ′, w′) ∈ C
i
0,n+1

and the external vertex v′n has valence at least four. In this case, (T′,ψ′)
contributes both to π∗n (Z(n− 1, i, j + 1)) and to the cycle EI(i, j) where
I ⊔ {n} is the set of the legs incident to v′n. Then, the total contribution of
(T′,ψ′) to the LHS of (4.4) is

(−1)|H
+(T′)|

(
ci
T

′
,ψ′

+ |I| diT′,ψ′

)
ξT′∗

(
ψ′
)
.

This is the sum of terms similar to (4.29) and (4.32). Hence, as above, for
a fixed wint this reduces to the sum of (4.31) and (4.33), and this matches
the contribution to (4.28), as desired.

This concludes the proof of Claim 4.7. △

Finally, we show the following.

Claim 4.8. Part (b) for n− 1 and part (a) for n imply part (b) for n.

Proof of Claim 4.8. As argued at the beginning of the proof of Theorem 4.1,
one can assume that 1 ≤ j < i < n, since the vanishing of Zt(n, i, j) and
Z(n, i, j) is otherwise trivial.

For 2 ≤ i ≤ n − 2, assume part (b) for n − 1. Specifically, assume the
vanishing Z(n − 1, i, j) = 0 in An−1+j−i

(
M0,n

)
for j ≥ 1. Using Theorem

2.1, this implies the vanishing of all cycles Z
m(n − m, i, j) obtained from

Z(n − 1, i, j) by colliding points. Using (2.22), by pushing forward, this
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implies the vanishing of all cycles EI(i, j) in An−1+j−i
(
M0,n+1

)
for j ≥ 1.

Then part (a) for n implies

(4.34) Z
t(n, i, j) = 0 in An−1+j−i

(
M0,n+1

)
for 1 ≤ j < i ≤ n− 2.

We note that in part (a) with j = 0, while Z(n− 1, i, 1) vanishes, the cycles
EI(i, 0) are non-zero, and so is Zt(n, i, 0).

Regarding the cycle Z(n, i, j), the vanishing

Z(n, i, j) = 0 in An−1+j−i
(
M0,n+1

)
for 1 ≤ j < i ≤ n− 2

follows from Lemma 4.3, (4.34), and the vanishing of Z(n − 1, i+, j+) for
i+ > i and j+ − i+ = j − i. Indeed, since j+ ≥ 1 for all i+ > i and j ≥ 1,
the cycles Z(n−1, i+, j+) in Lemma 4.3 vanish by the induction hypothesis.

It remains to establish the case i = n−1, i.e., the vanishing of Zt(n, n−1, j)
and Z(n, n − 1, j) in Aj

(
M0,n+1

)
for 1 ≤ j ≤ n − 2. First we note that

Z
t(n, n − 1, j) = Z(n, n − 1, j), since for any i-weighting w with i = n − 1,

one has that w(h0, 0) = n−1 is the maximal value of w, hence the condition
(4.3) is automatically satisfied. The case j = 1 is proven by Lemma 3.3.
For j ≥ 2, assume the vanishing of Z(n, n − 1, j − 1). The case i = n − 2
discussed above establishes the vanishing of Z(n, n− 2, j− 1). Then Lemma
3.4 implies the vanishing of Z(n, n − 1, j) in Aj

(
M0,n+1

)
. Hence the case

i = n− 1 follows for all j ≥ 1.
This concludes the proof of Claim 4.8. △

Combining Claims 4.7 and 4.8, Theorem 4.1 follows by induction. �

5. Colliding points on rational tail trees

We introduce the cycle F
k
g,m in Definition 5.1 generalizing F

k
g,n from Def-

inition 1. As shown in Theorem 5.2, Fkg,m is obtained from F
k
g,n by colliding

marked points. The cycle Fkg,m will feature in Theorem 6.1, a generalization
of Theorem 2.

Let m = (m1, . . . ,mn) be an n-tuple of positive integers. Let g > 0 and
Γ ∈ G

rt
g,n. The n-tuple m induces a weight on the legs of Γ, i.e., let the leg

ℓ have weight mℓ for all ℓ = 1, . . . , n.
Define the set of decorations Ψ(Γ) of the graph Γ as

Ψ(Γ) :=



ψ =

n∏

ℓ=1

ψdℓℓ

∏

h∈H(Γ)

ψdhh

∣∣∣∣∣
dh ≥ 0 for all h,

dℓ ≥ 0 for all ℓ



 ⊂ A∗

(
MΓ

)
.

Let ψ =
∏n
ℓ=1 ψ

dℓ
ℓ

∏
h∈H(Γ) ψ

dh
h in Ψ(Γ), and define accordingly

H(Γ,ψ) := {(ℓ, e) | ℓ ∈ L(Γ), 1 ≤ e ≤ dℓ}

⊔ {(h, e) |h ∈ H−(Γ), 1 ≤ e ≤ dh}

⊔ {(h, e) |h ∈ H+(Γ), 0 ≤ e ≤ dh}.

One has |H(Γ,ψ)| = |E(Γ)|+ degψ.
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For a half-edge h of Γ, let ι(h) be the half-edge such that (h, ι(h)) ∈ E(Γ).
For h+ ∈ H+(Γ), define the weighted capacity ℓmh+ of h+ as:

ℓmh+ :=

{
sum of the weights of the legs of Γ in the maximal
connected subtree containing h+, but not ι(h+).

The set of weightings of (Γ,ψ) compatible with the legs weight is

W
m
Γ,ψ :=





w : H(Γ,ψ) → N :

ℓmh+ − 1 ≥ w(h+, 0) ≥ w(h+, 1) ≥ · · · ≥ w(h+, dh+)

for all heads h+,

1 ≤ w(h−, 1) < · · · < w(h−, dh−) < w(ι(h−), 0)

for all tails h−,

1 ≤ w(ℓ, 1) < · · · < w(ℓ, dℓ) < mℓ

for all legs ℓ





.

One has

(5.1) if W
m
Γ,ψ 6= ∅, then dℓ < mℓ for all legs ℓ.

For each leg ℓ, the inequality dℓ < mℓ follows from the conditions on w(ℓ, e)
for e = 1, . . . , dℓ.

For w ∈ W
m
Γ,ψ, the corresponding weight of (Γ,ψ) is

w(Γ,ψ) :=
∏

(h,e)∈H(Γ,ψ)

w(h, e).

Define

cmΓ,ψ :=
∑

w∈Wm
Γ,ψ

w(Γ,ψ).

For ψ =
∏n
ℓ=1 ψ

dℓ
ℓ

∏
h∈H(Γ) ψ

dh
h in Ψ(Γ), define

βΓ,ψ :=
n∏

ℓ=1

(k ωℓ − η)dℓ
∏

h∈H+(Γ)

(k ωh − η)1+dh
∏

h∈H−(Γ)

(k ωh − η)dh

in R∗
(
PEkΓ

)
. One has degβΓ,ψ = |E(Γ)| + degψ.

Definition 5.1. For m = (m1, . . . ,mn) with n+ :=
∑n

ℓ=1mℓ, define F
k
g,m

in Rn
+ (

PEkg,n
)
as

F
k
g,m :=

∑

Γ∈Grt
g,n

(−1)|E(Γ)| ξΓ∗




n∏

ℓ=1

(k ωℓ − η)mℓ

∑

ψ∈Ψ(Γ)

cmΓ,ψ ψβ
−1
Γ,ψ


 .

For m = (1, . . . , 1) = 1n, the cycle F
k
g,m specializes to the cycle F

k
g,n from

Definition 1.
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Theorem 5.2. The cycle F
k
g,m in Rn

+ (
PEkg,n

)
is obtained from F

k
g,n+ in

Rn
+
(
PEkg,n+

)
by colliding the first m1 marked points into the marked point

P1, the next m2 marked points into the marked point P2, etc.

Proof. The argument is similar to the one for Theorem 2.1. Here, trees have
a positive genus vertex, and more than one leg can be decorated with ψ-
classes. However, these differences do not basically alter the argument used
for Theorem 2.1.

Namely, it is enough to show that the cycle F
k
g,m in Rn

+ (
PEkg,n

)
for

m = (m1, . . . ,mi−1,mi, 1
n−i) with i ≤ n

is obtained from F
k
g,m− in Rn

+ (
PEkg,n+1

)
with

m− := (m1, . . . ,mi−1,mi − 1, 1n−i+1)

by colliding the points Pi and Pi+1. Here 1a = (1, . . . , 1) is an a-tuple of
elements 1 for a ≥ 0. In other words, we show that

(5.2) πi+1∗

(
δ0:{i,i+1} · F

k
g,m−

)
= F

k
g,m ∈ Rn

+
(
PEkg,n

)

where πi+1 : PE
k
g,n+1 → PEkg,n is the map obtained by forgetting the point

Pi+1, and δ0:{i,i+1} is the class of the divisor in PEkg,n+1 which is the preimage

of the divisor in Mg,n+1 whose general element is a nodal curve with two
components such that one component is rational and contains only two
marked points, namely Pi and Pi+1.

The non-zero terms arising in the expansion of the LHS of (5.2) are ob-
tained by colliding Pi and Pi+1 on the terms of Fkg,m− contributed by deco-

rated graphs where the legs i and i+ 1 are incident to the same vertex, say
vi. The argument then continues as in the proof of Theorem 2.1. Namely,
the contributions to the LHS of (5.2) obtained by decorated graphs where
the valence of vi is three match the contributions to F

k
g,m where the degree

of ψi is positive, as in Case 1 there. Similarly, the contributions to the LHS
of (5.2) obtained by decorated graphs where the valence of vi is at least four
match the contributions to F

k
g,m where the degree of ψi is zero, as in Case 2

there. The statement follows. �

6. Proof of Theorem 2

Here we complete the proof of Theorem 2. We prove more generally
the following statement. Given an n-tuple m = (m1, . . . ,mn) of positive
integers, define

(6.1) Hk
g,m ⊂ PEkg,n

as the locus consisting of smooth n-pointed genus g curves (C,P1, . . . , Pn)
together with the class of a stable k-differential having a zero of order at
least mℓ at the marked point Pℓ for each ℓ = 1, . . . , n.
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Let n+ := |m| =
∑n

ℓ=1mℓ. Unless k ≥ 2, n+ = k(2g − 2) and k | mℓ for

all ℓ, the locus Hk
g,m has pure codimension n+ in PEkg,n.

For m = (1, . . . , 1) = 1n, the locus Hk
g,m specializes to Hk

g,n from (0.1).

Theorem 6.1. Let g ≥ 2 and m = (m1, . . . ,mn) with |m| = n+. One has
[
H
k
g,m

]
= F

k
g,m

in:

(i) An
+
(
PEkg,n

∣∣
Mrt

g,n

)
when

(6.2)

{
k = 1; or

k ≥ 2 and n+ ≤ k(2g − 2)− 1;

(ii) An
+ (

PEkg,n
)
when n+ ≤ k.

One recovers Theorem 2 when m = (1, . . . , 1) = 1n. When k = 1 and
n+ = 2g−2, the statement gives all strata classes in the projectivized Hodge
bundle over curves with rational tails.

Sometimes, the locus (6.1) is the union of multiple components. In this
case, (6.2) implies that all components have the same dimension, and the
class given in Theorem 6.1 is a weighted sum of the classes of the compo-
nents. For instance, see the example in (7.3)–(7.4).

The key steps of the proof are provided by Theorems 1.1, 4.4, 5.2, and
the next Theorem 6.2. This next statement is a recursive identity about the
cycle F

k
g,n which is the counterpart of Theorem 1.1. For this, we first define

the cycles EI . For a non-empty I ⊆ {1, . . . , n − 1} of size |I| = m, recall

the gluing map of degree one γ : PEkg,n−m×M0,I⊔{n,hn} → PEkg,n from (1.2).
Let

(6.3) EI := γ∗ F
k
g,m where m =

(
m, 1n−m−1

)
.

Recall the map πn : PE
k
g,n → PEkg,n−1 obtained by forgetting the point Pn,

and the map ρn : PE
k
g,n → PEkg,1 obtained by forgetting all but the point Pn.

Theorem 6.2. For n ≥ 2, one has

(6.4) π∗n

(
F
k
g,n−1

)
· ρ∗n

(
F
k
g,1

)
−
∑

I

|I|EI = F
k
g,n ∈ Rn

(
PEkg,n

)

where the sum is over all non-empty I ⊆ {1, . . . , n− 1}.

Proof. We verify that the contributions of each graph Γ in G
rt
g,n to the two

sides of (6.4) match, modulo tautological relations. For this, we distinguish
two cases, depending on the position of the leg n in each graph.

In the second case, it will be convenient to expand F
k
g,n ∈ Rn

(
PEkg,n

)
as

(6.5) F
k
g,n =

∑

(Γ,ψ,w)

(−1)|E(Γ)| w(Γ,ψ) ξΓ∗

[
ψβ−1

Γ,ψ

n∏

ℓ=1

(k ωℓ − η)

]
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where the sum is over triples (Γ,ψ, w) such that Γ ∈ G
rt
g,n, ψ ∈ Ψ(T),

and w ∈ WΓ,ψ. This formula follows by expanding the coefficients cΓ,ψ in
Definition 1.

Case 1. Consider Γ ∈ G
rt
g,n where the leg n is incident to the genus g vertex.

On the LHS of (6.4), the graph Γ contributes only to π∗n
(
F
k
g,n−1

)
· ρ∗n

(
F
k
g,1

)
,

and using Definition 1, the contribution is

(−1)|E(Γ)| ξΓ∗



n−1∏

ℓ=1

(k ωℓ − η)
∑

ψ∈Ψ(Γ)

cΓ,ψ ψβ
−1
Γ,ψ


 · (k ωn − η).

Rearranging factors, this is

(−1)|E(Γ)| ξΓ∗




n∏

ℓ=1

(k ωℓ − η)
∑

ψ∈Ψ(Γ)

cΓ,ψ ψβ
−1
Γ,ψ




thus matching the contribution of Γ to F
k
g,n in the RHS of (6.4).

Case 2. Consider Γ ∈ G
rt
g,n where the leg n is incident to a rational ver-

tex. We argue by applying Theorem 4.4 locally to a rational subtree of Γ
containing the leg n.

Namely, let T be the maximal rational subtree of Γ which contains the
leg n, and let Γ◦ := Γ \ T be its complement. If e = (h0, t0) ∈ E(Γ) is the
edge connecting the genus g vertex in Γ◦ and the tree T, then the head h0
is in T and the tail t0 = ι(h0) is in Γ◦.

Let GΓ◦
be the subset of Grt

g,n consisting of graphs obtained by fixing Γ◦

and varying T. This is:

GΓ◦
:=
{
Γ̂ := Γ◦ ⊔e T

′ ∈ G
rt
g,n | T′ ∈ G0,n′+1

}

where n′ is the number of legs of Γ within T. For each Γ̂ = Γ◦ ⊔e T
′ in GΓ◦

,
the gluing map ξΓ̂ from (0.10) factors as ξΓ̂ = ζΓ ◦ξT′ where ξT′ is as in (2.7)
and

ζΓ : M0,n′+1 × PEkg,n(g) ×
∏

v∈V0(Γ◦)

M0,n(v) −→ PEkg,n

is the gluing map of degree one defined by Γ◦ and the edge e. The map ζΓ
extends the k-differentials of elements of PEkg,n(g) by zero on the attached

rational tails. Recall that n(g) is the valence of the genus g vertex, and
V0(Γ◦) is the set of rational vertices of Γ◦.

Consider a triple
(
Γ̂, ψ̂, ŵ

)
with Γ̂ ∈ GΓ◦

, ψ̂ ∈ Ψ(Γ̂), and ŵ ∈ W
Γ̂,ψ̂

. The

contribution of
(
Γ̂, ψ̂, ŵ

)
to F

k
g,n as given in (6.5) is

(6.6) (−1)|E(Γ̂)| ŵ
(
Γ̂, ψ̂

)
ξ
Γ̂∗

[
ψ̂ β−1

Γ̂,ψ̂

n∏

ℓ=1

(k ωℓ − η)

]
.
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Given the decomposition Γ̂ = Γ◦ ⊔ T′, let ψ◦ and ψ′ be the restrictions of

ψ̂ to Γ◦ and T′ respectively. Similarly, let w◦ and w′ be the restrictions of
ŵ to (Γ◦,ψ◦) and (T′,ψ′), respectively. If d0 is the degree of ψt0 in ψ◦, let

(6.7) i0 := w◦ (t0, d0) .

By definition of the weighting ŵ, one has that w′(h0, 0) = i for some i > i0,
i.e., w′ ∈ W

i
T′,ψ′ for some i > i0.

Decomposing as

|E(Γ̂)| = |E(Γ◦)|+ |H+(T′)|, ŵ
(
Γ̂, ψ̂

)
= w◦ (Γ◦,ψ◦) w

′
(
T′,ψ′

)
,

ξΓ̂ = ζΓ ◦ ξT′ , ψ̂ = ψ◦ψ
′, β

Γ̂,ψ̂
= βΓ◦,ψ◦

βT′,ψ′ ,

and using the identity

ξΓ̂∗

[
αβ−1

T′,ψ′

n∏

ℓ=1

(k ωℓ − η)

]
= ξΓ̂∗

[
α (k ωt0 − η)−|H(T′,ψ′)|

n∏

ℓ=1

(k ωℓ − η)

]

in A∗
(
PEkg,n(g)

)
for an arbitrary cycle α, the contribution in (6.6) is

(−1)|E(Γ◦)|w◦ (Γ◦,ψ◦) ζΓ∗

[
ψ◦ β

−1
Γ◦,ψ◦

n∏

ℓ=1

(k ωℓ − η)

× (−1)|H
+(T′)| w′

(
T′,ψ′

)
ξT′∗

(
ψ′
)
(k ωt0 − η)−|H(T′,ψ′)|

]
.

Summing over all (ψ◦, w◦) and (T′,ψ′, w′), one has

(6.8)
∑

(ψ◦,w◦)

(−1)|E(Γ◦)|w◦ (Γ◦,ψ◦) ζΓ∗

[
ψ◦ β

−1
Γ◦,ψ◦

n∏

ℓ=1

(k ωℓ − η)

×
∑

i>i0

Dec
i
n′(k ωt0 − η)

]

where for each i

Dec
i
n′(D) =

∑

(T′,ψ′,w′)

(−1)|H
+(T′)|w′

(
T′,ψ′

)
ξT′∗

(
ψ′
)
D−|H(T′,ψ′)|

in A∗
(
M0,n′+1

) [
D−1

]
, as in (2.9) with Dec

i
n′(D) = Dec

i,1
n′ (D). The index

i0 appearing in (6.8) is determined by w◦, as in (6.7).
From Theorem 4.4, we have

(6.9)

π∗n
(
Dec

i
n′−1(D)

)
−
∑

I

|I|EiI (D)−
∑

i+>i

i σ0∗

(
Dec

i+

n′−1(D)
)
= Dec

i
n′(D).
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We next verify that the sum of the contributions of all Γ̂ ∈ GΓ◦
to F

k
g,n,

as given by the expression obtained by replacing (6.9) for i > i0 in (6.8),
matches the sum of the contributions of such graphs to the LHS of (6.4).

Indeed, the sum of the contributions of all Γ̂ ∈ GΓ◦
to π∗n

(
F
k
g,n−1

)
·ρ∗n
(
F
k
g,1

)

is computed as follows. Consider the term of π∗n
(
F
k
g,n−1

)
· ρ∗n

(
F
k
g,1

)
given by

(6.10)
∑

(Γ,ψ,w)

(−1)|E(Γ)|w(Γ,ψ)π∗n

(
ξΓ∗

[
ψβ−1

Γ,ψ

n−1∏

ℓ=1

(k ωℓ − η)

])
· (k ωn − η)

where the sum is over: the graphs Γ obtained from the graphs Γ̂ ∈ GΓ◦
by

removing the leg n (and contracting an edge if the vertex vn incident to the
leg n is trivalent); the decorations ψ of Γ; and the weightings w of (Γ,ψ).

For Γ̂ = Γ◦ ⊔e T
′ in GΓ◦

, the graph obtained by removing the leg n can
be decomposed as Γ = Γ◦ ⊔ T′, where T′ is the tree obtained from T′ by
removing the leg n (and contracting an edge when necessary, as before).

As in (4.7) and (4.10), the expansion of (6.10) consists of a sum of the dec-
orated graphs obtained by first adding the leg n to all vertices of each Γ, and
then expanding the decorations π∗(ψ) accordingly. The sum of the terms
obtained by adding the leg n to the subtree T′ of each Γ, and expanding the
decorations π∗(ψ) accordingly, is

(6.11)
∑

(ψ◦,w◦)

(−1)|E(Γ◦)|w◦ (Γ◦,ψ◦) ζΓ∗

[
ψ◦ β

−1
Γ◦,ψ◦

n∏

ℓ=1

(k ωℓ − η)

×
∑

i>i0

π∗n
(
Dec

i
n′−1(k ωt0 − η)

)
]
.

When adding the leg n to the genus g vertex of a graph Γ, the expansion
of each decoration π∗(ψ) consists of ψ decorating the graph with the leg
n attached to genus g vertex (this case has been treated in Case 1), minus
additional terms contributed by the pull-back of ψ-classes decorating the
tails incident to the genus g vertex. In particular, when the degree of ψt0 in
ψ is positive, the expansion of π∗(ψ) includes the term corresponding to a

decorated graph (Γ̂, ψ̂) where Γ̂ = Γ◦⊔vn⊔T′ is obtained from Γ = Γ◦⊔eT′

with e = (h0, t0) by inserting a trivalent vertex vn incident to the leg n,
attached to the genus g vertex in Γ◦ via an edge with tail equal to t0, and

attached to T′ via an edge with head equal to h0. The decoration ψ̂ is

obtained from ψ by decreasing the degree of ψt0 by one, i.e., ψ̂ · ψt0 = ψ.
A weighting w of such (Γ,ψ) can be decomposed as follows. Let ψ◦ and

ψ′ be the restrictions of ψ̂ to Γ◦ and T′, respectively, so that ψ̂ = ψ◦ψ′,
and thus ψ = ψ◦ ψt0 ψ

′. Let d0 be the degree of ψt0 in ψ◦, so that d0 + 1 is
the degree of ψt0 in ψ. Similarly, let w◦ and w′ be the restrictions of w to
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(Γ◦,ψ◦) and (T′,ψ′), respectively. One has the decomposition

w(Γ,ψ) = w◦ (Γ◦,ψ◦) · i · w′(T′,ψ′) for some i > i0

where i0 = w(t0, d0) as in (6.7) and i = w(t0, d0 + 1). Moreover, one con-
cludes that

w′ ∈ W
i+

T′,ψ′
for some i+ > i.

The inequalities i+ > i > i0 follow from the definition of the weighting w.

The gluing map ξΓ̂ for such Γ̂ = Γ◦ ⊔ vn ⊔ T′ factors as

ξ
Γ̂
= ζΓ ◦ σ0 ◦ ξT′ ,

where σ0 : M0,n′ → M0,n′+1 is the map obtained by attaching at h0 a ra-
tional component containing the leg n and h0.

Summing over all (ψ◦, w◦) and (T′,ψ′, w′), one obtains

(6.12)
∑

(ψ◦,w◦)

(−1)|E(Γ◦)|w◦ (Γ◦,ψ◦) ζΓ∗

[
ψ◦ β

−1
Γ◦,ψ◦

n∏

ℓ=1

(k ωℓ − η)

×

(
−

∑

i+>i>i0

i σ0∗

(
Dec

i+

n′−1(D)
))]

.

Finally, after (6.3) and Definition 5.1, and applying Lemma 2.2 when
|I| < n′ − 1, the sum of the contributions of all Γ′ ∈ GΓ◦

to EI is
(6.13)
∑

(ψ◦,w◦)

(−1)|E(Γ◦)|w◦ (Γ◦,ψ◦) ζΓ∗

[
ψ◦ β

−1
Γ◦,ψ◦

n∏

ℓ=1

(k ωℓ−η)
∑

i>i0

E
i
I(k ωt0−η)

]
.

The sum of (6.11) and (6.12) gives the contribution of all Γ̂ ∈ GΓ◦
to

π∗n
(
F
k
g,n−1

)
·ρ∗n
(
F
k
g,1

)
. Additionally, using (6.13) for each I, one obtains that

the sum of the contributions of all Γ̂ ∈ GΓ◦
to the LHS of (6.4) matches the

sum of the contributions of such graphs to F
k
g,n, as given by the expression

obtained by replacing (6.9) for i > i0 in (6.8). This ends the proof. �

We now complete the proof of Theorem 6.1:

Proof of Theorem 6.1. First we argue that the case m = (1, . . . , 1) implies
the case of arbitrary m. Precisely, assume the statement holds for a given
n and m = (1, . . . , 1), so that if (6.2) holds, then one has

(6.14)
[
H
k
g,n

]
= F

k
g,n ∈ An

(
PEkg,n

∣∣
Mrt

g,n

)

and if n ≤ k, then (6.14) extends over Mg,n. Given a sequence m =

(m1, . . . ,mn−) with |m| = n of length n− < n, the locus H
k
g,m in PEkg,n− is

obtained from the locus H
k
g,n by colliding the first m1 marked points into

the marked point P1, the next m2 marked points into the marked point P2,
etc. From Theorem 5.2, our assumption implies the statement for m.
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Next, we proceed by recursion on n to show the case m = (1, . . . , 1).
The base case n = 1 is established by (1.4). Assume (6.2) and assume the
statement holds for n− 1, i.e., one has

[
H
k
g,n−1

]
= F

k
g,n−1 ∈ An−1

(
PEkg,n−1

∣∣
Mrt

g,n−1

)

and this extends over Mg,n−1 when n−1 ≤ k. The argument in the previous
paragraph shows that given m = (m, 1, . . . , 1) with |m| = n − 1 of length
(n− 1)− = n−m ≤ n− 1, one has

(6.15)
[
H
k
g,m

]
= F

k
g,m ∈ An−1

(
PEkg,n−m

∣∣
Mrt

g,n−m

)

and this extends over Mg,n−m when n − 1 ≤ k. Recall the loci EI from

(1.3) defined as EI = γ∗ H
k
g,m, where the map γ is as in (1.2). From (6.15)

and (6.3), it follows that

[EI ] = EI ∈ An
(
PEkg,n

∣∣
Mrt

g,n

)

and over Mg,n when n ≤ k. The assumption (6.2) allows us to use Theorem
1.1. Then the statement for n and m = (1, . . . , 1) follows from Theorems
1.1 and 6.2. This ends the proof. �

Remark 6.3. In the case k ≥ 2, n = k(2g−2), andm = (1, . . . , 1), the proof
of Theorem 6.1 together with (1.5) show that

F
k
g,n =

[
H
k
g,n

]
+
[
Eab

max

]
∈ An

(
PEkg,n

∣∣
Mrt

g,n

)
.

7. Examples

We collect here some examples of the cycles F
k
g,n from Definition 1 and

F
k
g,m from Definition 5.1, and verify our results in some special cases.

7.1. The case n = 3. The cycle F
k
g,3 ∈ R3

(
PEkg,3

)
is

F
k
g,3 = g

k ω2 − ηk ω1 − η

k ω3 − η

− g

k ω − η

k ω − η

− 3 g

(k ω − η)2

− 7 g

k ω − η

ψ
− 2 g

ψ(k ω − η)

− 6 g
ψ

ψ

+ 3 g

k ω − η

+ 2 g
ψ

.
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7.2. A vanishing cycle. Specializing the above cycle at g = 2 and k = 1,
we obtain the vanishing cycle

F
1
2,3 = 0 ∈ R3

(
PE1

2,3

∣∣
Mrt

2,3

)
.

This is a special case of Corollary 1, and can be verified as follows. Since
η2 = η λ1 − λ2 in A∗(PE1

2,3) where λi := ci(E
1
2,3) = 0 in A∗(Mrt

2,3), all terms

with a factor of η2 vanish. The coefficient of η is a cycle in R2(Mrt
2,3) which

recovers the restriction of the relation in A2(M2,3) from [BP] plus the pull-
back of a relation in A2(Mrt

2,2) from [Get]. Finally, the constant term in η

is in R3(Mrt
2,3) and vanishes due to known relations (see e.g., [Tav]).

7.3. The Logan divisor. Here we verify how the cycle F
k
g,n for n = g and

k = 1 recovers a well-known divisor on moduli spaces of curves.
The Logan divisor Lg in Mg,g is the locus of g-pointed genus g curves

(C,P1, . . . , Pg) such that the divisor P1 + · · · + Pg moves in a pencil [Log].
Equivalently, via the Riemann-Roch theorem, the g marked points are re-
quired to be zeros of a common abelian differential. Hence the Logan di-

visor is the push-forward of the incidence locus H
1
g,g via the forgetful map

ϕ : PE1
g,g → Mg,g, and one has

[
Lg

]
= ϕ∗

[
H

1
g,g

]
∈ Pic

(
Mg,g

)
.

As a check on Theorem 2, we verify that ϕ∗ F
1
g,g ≡ Lg on Mrt

g,g. The cycle

F
1
g,g is a polynomial in η of degree g. First, we replace (−η)g via the relation

(−η)g = −λ1(−η)
g−1 + · · · in A∗

(
PE1

g,g

)
. Then we use that ϕ∗

(
(−η)d

)
= 1

if d = g − 1, and vanishes if d < g − 1. It follows that

ϕ∗ F
1
g,g =

[
F
1
g,g

]
g−1

− λ1
[
F
1
g,g

]
g

where [X]i if the coefficient of (−η)i in X. Hence we have

ϕ∗ F
1
g,g =

g∑

i=1

ωi − λ1 −

g∑

i=2

(
i

2

)
δ0:i ∈ Pic

(
Mrt

g,g

)
.

This checks with the restriction on Mrt
g,g of the class of Lg from [Log]. Here

δ0:i is the class of the divisor whose general element has an elliptic tail
containing i marked points. Additionally, for g = 2, using Theorem A.2,
one verifies ϕ∗ F

1
2,2 ≡ L2 over M2,2, as in (B.15).

7.4. The case of one heavy marked point. When m = (a) for some
positive a, the cycle F

k
g,m from Definition 5.1 is

F
k
g,(a) =

a−1∑

b=0

eb (1, . . . , a− 1) (k ω1 − η)a−b ψb1 ∈ Ra
(
PEkg,1

)
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where eb(x1, . . . , xa−1) is the b-th elementary symmetric function in a − 1
variables, here evaluated at 1, . . . , a − 1. Since ω1 = ψ1 in R∗

(
PEkg,1

)
, this

cycle can be rewritten as

(7.1) F
k
g,(a) =

a−1∏

b=0

((k + b)ψ1 − η) ∈ Ra
(
PEkg,1

)
.

Theorem 6.1 shows that

(7.2)
[
H
k
g,(a)

]
= F

k
g,(a) ∈ Aa

(
PEkg,1

∣∣
Mg,1

)

when either k = 1, or k ≥ 2 and a ≤ k(2g − 2) − 1, and this holds in
Aa
(
PEkg,1

)
when a ≤ k.

For instance, when a = k = g = 2, the locus H
2
2,(2) consists of two

equidimensional components:

(7.3) H
2
2,(2) = H

2
2,1(2, 1, 1) ∪H

2,ab
2,1 (2, 2) ⊆ PE2

2,1

where H
2
2,1(2, 1, 1) consists of quadratic differentials that have generically

a double zero at the marked point and two simple zeros elsewhere, and

H
2,ab
2,1 (2, 2) consists of squares of abelian differentials that have generically

double zeros at both the marked point and its (unmarked) hyperelliptic

conjugate point. In this case, the class of H
2
2,(2) decomposes as:

(7.4) F
2
2,(2) =

[
H

2
2,1(2, 1, 1)

]
+
[
H

2,ab
2,1 (2, 2)

]
∈ A2

(
PE2

2,1

)
.

As a check, one has ϕ∗ F
2
2,(2) = ϕ∗(η

2) = 1, where ϕ : PE2
2,1 → M2,1 is

the forgetful map. Indeed, the restriction of ϕ to H
2,ab
2,1 (2, 2) has degree

one, while ϕ has positive-dimensional fibers when restricted to the other
component.

7.5. The case of one heavy unmarked point. By forgetting the marked
point, the locus Hk

g,(a) gives rise to the stratum

Hk
g(a) ⊆ PEkg

consisting of k-differentials vanishing with order at least a at some point.
Let π : PEkg,1 → PEkg be the map obtained by forgetting the marked point,

and let κb := π∗
(
ψb+1

)
. We deduce:

Corollary 7.1. For g ≥ 2, one has

[
H
k
g(a)

]
=

a∑

b=1

(−1)a−b eb(k, . . . , k + a− 1)κb−1 η
a−b

in:
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(i) Aa−1
(
PEkg

∣∣
Mg

)
when

{
k = 1; or

k ≥ 2 and a ≤ k(2g − 2)− 1;

(ii) Aa−1
(
PEkg

)
when a ≤ k.

Proof. The hypotheses allow one to use Theorem 6.1 to conclude that (7.2)
holds when either k = 1, or k ≥ 2 and a ≤ k(2g − 2) − 1, and holds in
Aa
(
PEkg,1

)
when a ≤ k. It remains to compute the push-forward via π.

Expanding F
k
g,(a) from (7.1) as a polynomial in ψ1, one has

π∗

(
F
k
g,(a)

)
=

a∑

b=1

(−1)a−b eb(k, . . . , k + a− 1)κb−1 η
a−b ∈ Ra−1

(
PEkg

)
.

Hence the statement. �

For instance, when a = 2 and k ≥ 2, one has

(7.5)
[
H
k
g(2)

]
= k(k + 1)κ1 − (2k + 1)(2g − 2) η ∈ Pic

(
PEkg

)
.

This recovers the class of the divisorial stratum for k ≥ 2 computed in [KSZ].

When a = k = g = 2, the locus H
2
2(2) is the union of the two divisors

H
2
2(2, 1, 1) and H

2,ab
2 (2, 2) obtained by forgetting the marked point on the

two components in (7.3), and (7.5) decomposes as the weighted sum
[
H

2
2(2)

]
=
[
H

2
2(2, 1, 1)

]
+ 2

[
H

2,ab
2 (2, 2)

]
∈ Pic

(
PE2

2

)
.

Here the factor of 2 in front of the second summand is due to the fact
that the restriction of π to H

2
2,1(2, 2) → H

2
2(2, 2) has generically degree 2,

corresponding to the 2 zeros of the square differentials.
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Appendix A. The incidence locus for n = 2

The class of the incidence locus for n = 1 is given by:

Lemma A.1 ( [Sau1, §1.6], [KSZ, §4]). For k ≥ 1 and g ≥ 2, one has

H
k
g,1 ≡ k ω − η ∈ Pic

(
PEkg,1

)
.

For n = 2, the class of the locus H
k
g,2 in PEkg,2 follows from [Sau1,Sau2].

In this section, we provide an alternative proof by applying the incidence
variety compactification from [BCG+1,BCG+2].

First we set some notation. Recall the locus EI from (1.3). Here we need
the case I = {1}. Its class is the push-forward of the class in Lemma A.1
via the map γ in (1.2). Moreover, let

g−1 1

2

1

µ1=0

⊂ PEkg,2

be the locus consisting of curves with an elliptic tail containing both marked
points together with a class of a stable k-differential µ whose restriction µ1
to the elliptic component is identically zero. Such a stable k-differential µ
has a pole of order at most k − 1 at the preimage of the node in the genus
g − 1 component. This locus has codimension k + 1 in PEkg,2.

Theorem A.2 ( [Sau1,Sau2]). Let g ≥ 2. For k = 1, one has

(A.1) H
1
g,2 ≡ (ω1 − η) (ω2 − η)−E{1} − g−1 1

2

1

µ1=0

−

⌊g/2⌋∑

i=1

i

2

1

g−i

in A2
(
PE1

g,2

)
, and for k ≥ 2, one has

H
k
g,2 ≡ (k ω1 − η) (k ω2 − η)− E{1} ∈ A2

(
PEkg,2

)
.

We deduce Theorem A.2 from the next Proposition A.4 and Lemma A.1.

A.1. Preliminaries. In this and the next section, we use the incidence
variety compactification from [BCG+1,BCG+2]. We briefly review it here.

Let C be a nodal curve and C̃ → C its normalization. Let Q1, . . . , Qs be

the nodes in C, and for each Qi, let Q
+
i and Q−

i be its two preimages in C̃.
Stable k-differentials on C are identified via pull-back with k-differentials

on C̃ admitting poles of order at most k at the preimages of the nodes and
satisfying the k-residue condition at Q+

i and Q−
i for each i.

A twisted k-differential τ on a nodal curve C is a collection τ = {τi}i of
(possibly meromorphic) k-differentials, one for each irreducible component
of C. We will refer to the τi as the aspects of τ .

The closure of strata of smooth pointed curves and k-differentials with all
zeros and poles marked with prescribed multiplicities is described for k = 1
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in [BCG+1, Thm 1.3] and for k ≥ 2 in [BCG+2, Thm 1.5]. An element
(C,P1, . . . , Pn, µ), where (C,P1, . . . , Pn) is a stable pointed curve and µ is a
(possibly meromorphic) stable k-differential, is in the closure of such strata
if and only if it admits a twisted k-differential compatible with a certain full
order on the dual graph of C. The maxima in the full order are required
to correspond to the irreducible components where µ is not identically zero.
The twisted k-differential is required to: coincide with µ on the maxima;
have zeros and poles at the marked points with prescribed multiplicities;
satisfy the matching zero and pole order property at vertical nodes; satisfy
the k-residue condition at horizontal nodes; and satisfy the global k-residue
condition. We refer the reader to [BCG+1, BCG+2] for the description of
these compatibility conditions.

A.2. A set-theoretic statement. The following statement is a prelimi-
nary step toward the proof of Theorem A.2. For i ∈ {1, 2}, let πi : PE

k
g,2 →

PEkg,1 be the map obtained by forgetting the i-th marked point (and rela-

beling the remaining marked point as P1).

Proposition A.3. The intersection

(A.2) π−1
1

(
H
k
g,1

)
∩ π−1

2

(
H
k
g,1

)
⊂ PEkg,2

consists of the following components for k = 1:

(A.3) H
1
g,2, E{1}, g−1 1

2

1

µ1=0

,

i

2

1

g−i

for 1 ≤ i ≤ ⌊g/2⌋,

and for k ≥ 2:

(A.4) H
k
g,2 and E{1}.

Proof. By definition, H
k
g,2 is the only component of the intersection (A.2)

which intersect the locus of smooth curves for all k ≥ 1. To study the addi-
tional components over the locus of nodal curves, we consider the incidence
variety compactification of Hk

g,k(2g−2) ⊂ PEkg,k(2g−2) from [BCG+1,BCG+2]

and regard H
k
g,1 and H

k
g,2 as the images of H

k
g,k(2g−2) under the maps

PEkg,k(2g−2) → PEkg,1 and PEkg,k(2g−2) → PEkg,2

obtained by forgetting all but the first one or two marked points, respec-

tively. This provides the description of the boundaries of H
k
g,1 and H

k
g,2 in

terms of twisted k-differentials that we use below.
The intersection (A.2) consists of (C,P1, P2, µ), where (C,P1, P2) is a

stable two-pointed curve and µ is the class of a stable k-differential, such
that each marked point Pi is a zero of some twisted k-differential of type µ.

The locus H
k
g,2 consists of (C,P1, P2, µ) where both marked points are

zeros of the same twisted k-differential of type µ for all k ≥ 1.
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For a general (C,P1, P2, µ) in E{1} with k ≥ 1, the stable k-differential µ
has a simple zero at the preimage of the node on the genus g component.
Then each marked point is a simple zero of a twisted k-differential of type
µ whose aspect on the rational tail has a pole of order 2k + 1 at the node.

When k = 1, consider the third locus listed in (A.3) and select a general
element in it, with elliptic tail denoted E. Since we can always find a twisted
abelian differential whose aspect on E has a pole of order 2 at the node and
a zero at one of the marked points, the image of the third locus under πi is

in H
1
g,1, for i ∈ {1, 2}. The aspect of such a twisted abelian differential on E

does not vanish generically at both marked points, hence such a locus is not

in H
1
g,2. However, when k ≥ 2, such a locus has codimension k + 1 and is

contained in H
k
g,2. Indeed, one can always find a twisted k-differential whose

aspects on E has a pole of order at least k + 1 at the node and vanishes at
both marked points.

For the remaining types of loci in (A.3), consider their general element.
The restriction of a general abelian differential µ to the two components of
positive genus is holomorphic and non-zero at the nodes. The global residue
condition [BCG+1, Def. 1.2(4)] is satisfied by a twisted abelian differential
of type µ whose aspect on the rational component has simple zeros at one
of the marked points and at a smooth point generically away from the other
marked point, and poles of order 2 at both nodes. This implies that the last
loci in (A.3) are in (A.2) when k = 1. However, when k ≥ 2, the restriction of
a general stable k-differential µ to the two components of positive genus has
a pole of order k at each node, hence the aspect on the rational component
of a twisted k-differential of type µ cannot have any zeros. It follows that
the last loci in (A.3) do not lie in the intersection (A.2) for k ≥ 2.

Next, we show that the loci in (A.3) and (A.4) are the only ones in (A.2)
for k = 1 and k ≥ 2, respectively. To detect components of (A.2) over
the locus of nodal curves, we analyze a general element (C,P1, P2, µ) in the
inverse image of the locus of nodal curves from Mg,2 and in (A.2). It suffices
to consider the following cases: (a) the curve C has exactly one node; or (b)
the curve C has two nodes.

For the one-nodal case, we show that (C,P1, P2, µ) is in one of the first
three loci in (A.3) when k = 1, or in one of the loci in (A.4) when k ≥ 2.

If C is one-nodal with a non-disconnecting node, then both marked points

need to be in the support of µ. Hence (C,P1, P2, µ) is in fact in H
k
g,2.

If C is one-nodal with a rational tail containing both marked points, then
necessarily µ vanishes at the preimage of the node in the genus g component.
Hence (C,P1, P2, µ) is in E{1}.

In the remaining cases of one-nodal C with a disconnecting node, assume
first that each marked point is in a component of C where µ is not identically

zero. Then µ vanishes at both marked points, hence (C,P1, P2, µ) is in H
k
g,2.

We are left with the case when C is one-nodal, and one or both marked
points are on a component of C of positive genus where µ is identically
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zero. If k = 1 and µ is identically zero on an elliptic component containing
both marked points, then (C,P1, P2, µ) is in the third locus listed in (A.3).
Otherwise, (C,P1, P2, µ) is the general element of a locus of codimension

higher than two inside H
k
g,2. Indeed, there exists a twisted k-differential of

type µ whose aspect on the component of C where µ is identically zero has
a zero at the one or two marked points in there and has a pole of order at
least k+1 at the node; in case one marked point is on the component where
µ is not identically zero, then such point must be a zero of µ.

Finally, we analyze the two-nodal case, and show that necessarily k = 1
and (C,P1, P2, µ) is in the loci of the fourth type listed in (A.3).

If C has only disconnecting nodes and nonrational components, then both
marked points are generically away from the zeros of µ, hence such an el-
ement is not in (A.2). Likewise, a general element of a locus of two-nodal
curves with a twice marked rational tail is not in (A.2), since the support of
µ does not generically contain the preimage of the node in the nonrational
component adjacent to the rational tail. If C contains a rational bridge
with one marked point, then the other marked point is generically away
from the support of µ. If instead C has a twice marked rational bridge, then
(C,P1, P2, µ) is in one of the loci of the fourth type listed in (A.3), and as
discussed at the beginning of the proof, such loci are in (A.2) but not in

H
k
g,2 only for k = 1.
Similar arguments cover the case when C is irreducible with two non-

disconnecting nodes, as well as the case when C has both a non-disconnecting
node and a disconnecting node. We are left with the case when C has two
components meeting in two points. If both components of C are nonrational,
the restriction of µ to each component has generically poles of order k at
both nodes, and the marked points are generically not in the support of µ.
If C has a (marked) rational component, the restriction of µ to the genus
g − 1 component has generically poles of order k at the two nodes, forcing
there to be no zeros of µ on the rational component. �

A.3. Computation of multiplicities. The intersection (A.2) is generi-

cally transverse over Mg,2, hence the component H
k
g,2 has multiplicity one

in the intersection for all k ≥ 1. Then Proposition A.3 implies that there
exist a, b, ci ∈ Q, with i = 1, . . . , ⌊g/2⌋, such that for k = 1, one has

(A.5)

π∗1

[
H

1
g,1

]
·π∗2

[
H

1
g,1

]
=
[
H

1
g,2

]
+a
[
E{1}

]
+b g−1 1

2

1

µ1=0

+

⌊g/2⌋∑

i=1

ci

i

2

1

g−i

in A2
(
PE1

g,2

)
, and for k ≥ 2, one has

(A.6) π∗1

[
H
k
g,1

]
· π∗2

[
H
k
g,1

]
=
[
H
k
g,2

]
+ a

[
E{1}

]
∈ A2

(
PEkg,2

)
.
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Proposition A.4. One has

a = 1 for k ≥ 1, and b = ci = 1 for all i and k = 1.

Proof. To find the coefficient a, let π : PEkg,2 → PEkg be the forgetful map

and consider π∗ of (A.5) and (A.6). One has

π∗

(
π∗1

[
H
k
g,1

]
· π∗2

[
H
k
g,1

])
= k2(2g − 2)2

[
PEkg

]
,

π∗

(
H
k
g,2

)
= k(2g − 2)(k(2g − 2)− 1)

[
PEkg

]
,

π∗
(
E{1}

)
= k(2g − 2)

[
PEkg

]
,

for all k ≥ 1, and the push-forward of the other classes in (A.5) vanishes.
Hence a = 1. This concludes the proof of the statement for k ≥ 2.

For k = 1, to find the coefficient b, we restrict to a test surface S in PE1
g,2

defined as follows: consider a pencil of plane cubics of degree 12 along with
a section of the Hodge bundle over M1,1, identify one of its basepoints with
a general point on a fixed general genus g − 1 curve with a general abelian
differential, vary the first marked point along the genus g − 1 component,
and let the second marked point be one of the other basepoints of the pencil
of plane cubics. We compute the following intersections below:

S · π∗1

[
H

1
g,1

]
· π∗2

[
H

1
g,1

]
= 2(g − 1)− 1,(A.7)

S ·
[
H

1
g,2

]
= 2(g − 1)− 2,(A.8)

S · g−1 1

2

1

µ1=0

= 1.(A.9)

Moreover, S has empty intersection with the remaining classes in (A.5).
These intersections imply that b = 1.

Since λ1 = 1 on the elliptic pencil, where λ1 is the first Chern class of the
Hodge bundle, the section of the Hodge bundle over M1,1 assigns the zero
abelian differential to precisely one elliptic curve in the elliptic pencil.

The intersection in (A.9) is contributed by the element of S where the
elliptic tail has the zero abelian differential, and the marked point in the
genus g − 1 component collides with the node, creating a rational bridge.

The remaining intersections can be computed using the description of the
boundaries of these loci provided by the incidence variety compactification.

The intersection in (A.8) is contributed by the elements of S where the
elliptic tail has the zero abelian differential, and the marked point in the
genus g − 1 component coincides with one of the zeros of the differential
(such zeros are generically away from the node). For each such element of
S, there exists a twisted abelian differential whose aspect on the elliptic tail
has a zero at the marked point and a pole of order 2 at the node. The
intersection is transverse along all such contributions.
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The intersection in (A.7) consists of the sum of the contributions to (A.8)

and (A.9). Indeed, the contribution to (A.9) is clearly in π−1
1 (H

1
g,1), because

the second marked point is in the elliptic tail with a zero differential, so that a
suitable twisted differential can be found as above, and it is also seen to be in

π−1
2 (H

1
g,1) by taking a twisted differential whose aspect on the rational bridge

has poles of order 2 at both nodes and simple zeros at the first marked point
and at some other smooth point. Such a twisted differential satisfies the
global residue condition of the incidence variety compactification [BCG+1,
Def. 1.2(4)]. The intersection is transverse along all such contributions.

We remark that the contribution to (A.9) is not in H
1
g,2: a twisted differ-

ential vanishing at the second marked point has order −2 at the preimage of
the node in the elliptic component, and generically order 0 at the preimage
of the node in the genus g− 1 component. It follows that the aspect on the
rational bridge has orders 0 and −2 at the nodes, hence does not vanishes
at the first marked point.

To find the coefficient ci, for 1 ≤ i ≤ ⌊g/2⌋, consider the test surface Si in
PE1

g,2 obtained as follows: select a general element of the boundary divisor

∆i:{1} in PE1
g,2 consisting of curves with a genus i component containing

precisely the first marked point, and vary the two marked points in their
corresponding components. In particular, elements of Si have a fixed general
stable differential µ. When a marked point collides with the node, it gives
rise to a rational bridge, and µ is extended by zero on such rational bridges.
We show the following intersections below:

Si · π
∗
1

[
H

1
g,1

]
· π∗2

[
H

1
g,1

]
= (2i − 1)(2(g − i)− 1),(A.10)

Si ·H
1
g,2 = (2i − 1)(2(g − i)− 1)− 1,(A.11)

Si ·

i

2

1

g−i

= 1.(A.12)

Moreover, Si has empty intersection with the remaining classes in (A.5). It
follows that ci = 1, for all 1 ≤ i ≤ ⌊g/2⌋.

The intersection (A.12) is contributed by the element of Si where both
marked points collide with the node, creating two rational bridges.

The intersection (A.11) is contributed by those elements of Si where ei-
ther both marked points coincide with zeros of the differential, or where ex-
actly one of the marked points collides with the node and the other marked
point is a zero of the differential. In the cases when exactly one of the
marked points collides with the node, creating a rational bridge, there ex-
ists a twisted differential of type µ whose aspect on the rational bridge has
zeros at the marked point and at some other smooth point, poles of order 2
at the nodes, and satisfies the global residue condition [BCG+1, Def. 1.2(4)].
The intersection is transverse along all such contributions.
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The intersection (A.10) is the sum of the contribution to (A.11) and
(A.12). In fact, the contribution to (A.12) is in (A.10) as well, since each
marked point is the zero of some twisted differential of type µ.

However, the contribution to (A.12) is not in (A.11), since there exist
no twisted differential of type µ vanishing at both marked points. For this,
assume there exists a twisted differential τ of type µ whose aspects τ1 and τ2
on the two rational bridges have zeros at the two marked points. Since µ is
holomorphic and non-zero at the preimages of the nodes in the components
of genus i and g−i, it follows that τ1 and τ2 have a pole of order 2 at the nodes
Q1 and Q2 where the rational bridges meet the genus i and g−i components,
respectively. Then, since τ1 and τ2 vanish at the marked points, for degree
reasons one has that τ1 and τ2 must each have a pole of order at least 1 at
the node Q0 where the two rational bridges meet. As the sum of the order of
the poles at Q0 has to be equal to 2, one has that τ1 and τ2 must each have
a simple pole at Q0. The global residue condition [BCG+1, Def. 1.2(4)]
requires that ResQ1

(τ1) = ResQ2
(τ2) = 0. By the residue theorem, this

forces the residues at Q0 to be zero, a contradiction. �

Theorem A.2 follows from (A.5), (A.6), Proposition A.4, and Lemma A.1.

Appendix B. A recursive identity for incidence loci

Theorem 1.1 provides a recursive identity for the class of the incidence

locus H
k
g,n over curves with rational tails. For k = 1, Theorem 1.1 and Re-

mark 1.2 are specializations of results by Sauvaget [Sau1] valid over Mg,n.
The techniques of [Sau2] could be used to extend the argument for k ≥ 1.
Here we provide an alternative proof by applying the incidence variety com-
pactification from [BCG+1,BCG+2].

We start by proving the next Theorem B.1. Recall the loci EI and the
natural maps πn : PE

k
g,n → PEkg,n−1 and ρn : PE

k
g,n → PEkg,1 from §1.

Theorem B.1 ( [Sau1,Sau2]). For g ≥ 2 and n ≥ 2, the identity

π∗n

[
H
k
g,n−1

]
· ρ∗n

[
H
k
g,1

]
=
[
H
k
g,n

]
+
∑

I

|I|[EI ]

where the sum is over all non-empty I ⊆ {1, . . . , n− 1}, holds in:

(i) An
(
PEkg,n

∣∣
Mrt

g,n

)
when

(B.1)





k = 1; or

k = 2 and n ≤ 2(2g − 2)− 2; or

k ≥ 3 and n ≤ k(2g − 2)− 1;

(ii) An
(
PEkg,n

)
when n ≤ k.
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B.1. On the hypothesis (B.1). We start with the following Lemma, which
explains how we use the hypothesis (B.1):

Lemma B.2. Let k ≥ 2, let g and n be such that (B.1) holds, and m ≤ n−1.
The locus of k-differentials that are k-th powers of abelian differentials has
positive codimension inside the closure of Hk

g,m ⊂ PEkg,n−m from (1.1).

Here are some examples showing how the lemma fails when (B.1) fails.
When k = 2 and n = 4g − 5, consider the locus

(B.2) H
2
g,m ⊂ PE2

g,1 where m = (4g − 6) .

This locus has two components: a component parametrizing quadratic dif-
ferentials generically with a zero of order 4g − 6 at the marked point and
simple zeros at two distinct unmarked points; and a component parametriz-
ing squares of abelian differentials generically with a zero of order 4g − 6
at the marked point and a double zero at an unmarked point. These two
components have equal dimension by [BCG+2, Theorem 1.1] or [Sch].

Similarly, when k ≥ 3 and n = k(2g − 2), consider the locus

(B.3) H
k
g,m ⊂ PEkg,1 where m = (k(2g − 2)− 1) .

This locus has two equidimensional components: a component parametrizing
k-differentials with a zero of order k(2g − 2)− 1 at the marked point and a
simple zero elsewhere; and a component parametrizing k-th powers of abelian
differentials vanishing with order k(2g − 2) at the marked point.

Proof of Lemma B.2. For k ≥ 2 and m ≤ n − 1, consider a locus H
k
g,m in

PEkg,n−m as in (1.1), and write H
k
g,m = A ∪ B, where A (respectively, B) is

the closure of the locus of differentials in H
k
g,m that are not k-th powers of

abelian differentials, (resp., are k-th powers of abelian differentials).
Differentials in A have generically a zero of order m and k(2g − 2) −m

simple zeros. Differentials in B have generically a zero of order k⌈mk ⌉ (i.e., the
smallest multiple of k which is greater than or equal tom) and (2g−2)−⌈mk ⌉
zeros of order k. From [BCG+2, Theorem 1.1], one has

dimA = 2(k + 1)(g − 1)−m, dimB = 4(g − 1)−
⌈m
k

⌉
+ 1.

It follows that for values of m small enough, B has positive codimension in

H
k
g,m, and the loci A and B have equal dimension for values of m such that

(B.4) (k − 1)2(g − 1) = m−
⌈m
k

⌉
+ 1.

A case study shows that (B.4) fails when (B.1) holds. Indeed, if k | m,
then (B.4) only holds for k = 2 and m = 4g − 6. This implies n ≥ 4g − 5,
e.g., the case given by (B.2). Otherwise, if k ∤ m, then m ≡ k − 1 mod k,
hence m = k(2g − 2) − 1. This is the case given by (B.3). The statement
follows. �
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B.2. A set-theoretic study. To prepare for the proof of Theorem B.1, we
study the components of the intersection

(B.5) π−1
n

(
H
k
g,n−1

)
∩ ρ−1

n

(
H
k
g,1

)
⊂ PEkg,n.

By definition, Hk
g,n is the only component of (B.5) over Mg,n.

Lemma B.3. Let k, g, and n be such that (B.1) holds. The loci EI ⊂ PEkg,n
for all non-empty I ⊆ {1, . . . , n−1} are contained in the intersection (B.5),

but not in H
k
g,n.

Proof. The argument is similar to the one used for Proposition A.3. For a
non-empty I ⊆ {1, . . . , n− 1}, consider a general element (C,P1, . . . , Pn, µ)
in EI . By definition, the curve C has a rational tail containing the marked
points with labels in I ⊔ {n}, and the stable k-differential µ has a zero of
order |I| at the preimage of the node in the genus g component of C and
zeros at the marked points in the genus g component.

To see that EI is in π−1
n

(
H
k
g,n−1

)
, we need to construct a twisted k-

differential of type µ satisfying the conditions of the incidence variety com-
pactification and vanishing at the first n − 1 marked points. For this, con-
sider the twisted k-differential whose aspect on the genus g component will
be the restriction of µ on that component, while the aspect on the rational
component will have a pole of order 2k + |I| at the node and zeros at the
marked points with labels in I. When k = 1, the global residue condi-
tion [BCG+1, Def. 1.2(4)] is satisfied since the residue of the twisted abelian
differential at the preimage of the node in the rational component is zero.
When k ≥ 2, using Lemma B.2, the hypothesis (B.1) implies that the re-
striction of µ to the genus g component is generically not the k-th power
of an abelian differential. It follows that the global k-residue condition is
automatically satisfied [BCG+2, Def. 1.4(4)(ii)].

In order for EI to be in ρ−1
n

(
H
k
g,1

)
, we need to construct a twisted k-

differential of type µ satisfying the conditions of the incidence variety com-
pactification and vanishing at the last marked point. This is as in the previ-
ous paragraph, just simpler, and is made possible by the fact that µ vanishes
with order |I| ≥ 1 at the preimage of the node in the genus g component.

There is no single twisted k-differential of type µ vanishing at all marked

points, hence EI is not in H
k
g,n. The statement follows. �

Next, we prove the converse of Lemma B.3 over the locus of curves with
rational tails. We use an inductive argument by means of the following maps:
For 1 ≤ i ≤ n − 1, the map πi : PE

k
g,n → PEkg,n−1 is obtained by forgetting

the marked point Pi, and relabeling the marked points Pj for j > i as Pj−1.

Proposition B.4. Let k, g, and n be such that (B.1) holds. The locus H
k
g,n

and the extra loci EI ⊂ PEkg,n for all non-empty I ⊆ {1, . . . , n − 1} are the

only components of (B.5) over Mrt
g,n.
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Proof. We proceed by induction on n. The base case n = 2 is treated by
Proposition A.3. For n ≥ 3, let B be an irreducible component of (B.5) over
Mrt

g,n. For 1 ≤ i ≤ n− 1, the image of (B.5) under πi is

πi

(
π−1
n

(
H
k
g,n−1

)
∩ ρ−1

n

(
H
k
g,1

))
= πi

(
π−1
n

(
H
k
g,n−1

))
∩ ρ−1

n−1

(
H
k
g,1

)

= π−1
n−1

(
H
k
g,n−2

)
∩ ρ−1

n−1

(
H
k
g,1

)
.

(B.6)

By the induction hypothesis, it follows that πi (B) is either in H
k
g,n−1 or in

one of the loci

(B.7) EI ⊂ PEkg,n−1 for ∅ 6= I ⊆ {1, . . . , n− 2}.

The rational tail in a general element of one of such EI contains the marked

points with labels in I ⊔ {n− 1}.

Consider a general element (C,P1, . . . , Pn, µ) in B, and assume B 6⊆ H
k
g,n.

This implies that there is no twisted k-differential of type µ vanishing at all
marked points. We show below that B ⊆ EI for some I.

If πi (B) ⊆ H
k
g,n−1, then C has a twisted k-differential of type µ vanishing

at all points Pj with j 6= i. This implies that µ vanishes at those marked
points and preimages of nodes that are in the genus g component of C; and
moreover, for each preimage of a node in the genus g component, the order
of vanishing is at least equal to the number of marked points Pj with j 6= i
contained in the maximal rational subcurve of C intersecting the genus g
component at that node.

For B to be in (B.5) while B 6⊆ H
k
g,n, the point Pi needs to replace Pn as

a zero of the twisted k-differential in the following sense. Assume that Pn
is in the genus g component of πi(C). Then the only possibility for Pi in
C is to be in a rational tail containing only the marked points Pi and Pn.
In this case, B ⊆ EI with I = {i}. Otherwise, assume that Pn is in a
rational component of πi(C), and let R be the maximal rational subcurve
of C containing Pn. Then Pi is necessarily in R. In this case, B ⊆ EI with
I ⊔ {n} equal to the set of markings in R.

Next, assume πi (B) ⊆ EI for some I as in (B.7). Then, the point Pn is
in a rational component of C. Let R be the maximal rational subcurve of
C containing Pn. In particular, I ⊔ {n− 1} is the set of markings in πi(R).

We argue that the point Pi is not in R. Let Q be the node of C where

the genus g component intersects R. Since πi (B) ⊆ EI while B 6⊆ H
k
g,n,

the stable k-differential µ vanishes at the preimage of Q in the genus g
component with order precisely equal to

∣∣I
∣∣. It follows that if Pi is in R,

then there is no twisted k-differential of type µ vanishing at all the first n−1
marked points, a contradiction to B being in (B.5).

Hence the point Pi is in the complement of R in C. We deduce that
B ⊆ EI where I is obtained from I after increasing by one all j ∈ I such
that j ≥ i (this shift is due to the relabeling of points given by the map πi).
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The statement follows. �

Next, we show that when n ≤ k, Proposition B.4 extends over Mg,n:

Proposition B.5. When n ≤ k, the intersection (B.5) is contained only
over the locus of curves with rational tails.

Proof. We again proceed by induction on n. The base case n = 2 is treated
by Proposition A.3. For n ≥ 3, let B be an irreducible component of (B.5)
which does not lie over Mrt

g,n. We will show that each such B has positive

codimension in either H
k
g,n or one of the extra loci EI ⊂ PEkg,n.

Let 1 ≤ i ≤ n − 1. Using (B.6) as in the proof of Proposition B.4, the

induction hypothesis implies that πi (B) is in either H
k
g,n−1 or one of the loci

EI ⊂ PEkg,n−1 for some I as in (B.7). Additionally, since B does not lie over

Mrt
g,n, one has that πi(B) is strictly contained in either H

k
g,n−1 or one of the

EI . Let (C,P1, . . . , Pn, µ) be a general element in B.

Consider the case when πi(B) ⊂ H
k
g,n−1. We can assume that C has no

rational tails, otherwise we can replace B with the higher-dimensional locus
whose general element is obtained by smoothing all rational tails in C.

First, suppose that C is a curve with (at least) one disconnecting node, a
genus a subcurve, and a genus g − a subcurve, where 1 ≤ a ≤ g − 1. If µ is
generically nonzero on each component and vanishes at the n marked points,

then B has codimension at least n + 1 and is contained in H
k
g,n. Consider

instead the case where µ is identically zero on the genus a subcurve, and
vanishes at all marked points on the genus g−a subcurve. The codimension

of this locus is at least N := h0
(
Ca, ω

⊗k
Ca

(kQ)
)
+1 = k(2a−1)−a+2, where

Ca is the genus a subcurve of C, and Q is the node connecting Ca to the rest
of C. The assumption n ≤ k implies n < n(2i− 1)− i+2 ≤ N. Thus, B has

codimension higher than n. Furthermore, since πi(B) ⊂ H
k
g,n−1, there exists

a twisted k-differential of type µ vanishing at Pj with j 6= i. If Pi is on the

genus g−a subcurve, it must also be a zero of µ since B ⊂ π−1
n

(
H
k
g,n−1

)
. If

Pi is on the genus a subcurve, then since n < N , we may find a potentially
different twisted k-differential of type µ vanishing at all marked points on Ca
including Pi. In all cases, one concludes that B is in H

k
g,n. The case where

C has (at least) one non-disconnecting node and µ is generically nonzero
and vanishes at all marked points is similar.

Now suppose that C has a rational bridge, and µ is nonzero on the non-
rational components. In order for this locus to be in (B.5), µ must be
identically zero on the rational bridge, and we must have poles of order at
most k− 1 at the nodes on the nonrational components meeting the bridge.
These conditions allow the marked points on the rational bridge to be zeros
of a twisted k-differential of type µ. Moreover, a pole of order k on a nonra-
tional component implies that the vertices corresponding to that nonrational
component and to the rational bridge are on the same level in the ordered
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dual graph of C, a contradiction to the assumption that µ is nonzero on
nonrational components. In this case, B has codimension at least n+1 and

is contained in H
k
g,n. The case where C has a rational component meeting

the rest of the curve in two non-disconnecting nodes is similar.
Finally, assume that πi(B) ⊂ EI = πi(EI) for some I. This requires that

C have a rational tail containing Pn. Let m + 1 be the number of marked
points on the maximal rational subcurve R of C containing Pn. In order for
B to be in (B.5), µ needs to vanish with order at least m at the nodal point
in C \R meeting R. This implies that B is contained in EI . �

B.3. Auxiliary computations. Theorem B.1 will follow from Proposi-
tions B.4 and B.5 after determining the multiplicity of each component in
(B.5). For this, we start with some preliminary computations. Let

(B.8) Ln := π∗n

[
H
k
g,n−1

]
· ρ∗n

[
H
k
g,1

]
∈ An

(
PEkg,n

)
.

Lemma B.6. Let k, g, and n be such that (B.1) holds. For 1 ≤ i ≤ n− 1,
one has

(πi)∗

[
H
k
g,n

]
= (k(2g − 2)− (n− 1))

[
H
k
g,n−1

]
,(B.9)

(πi)∗ [Ln] = (k(2g − 2)− (n− 2)) Ln−1,
(B.10)

(πi)∗ [EI ] =





(k(2g − 2)− (n− 2))EI if i 6∈ I,
[
H
k
g,n−1

]
if I = {i},

0 if i ∈ I and |I| > 1

(B.11)

in An−1
(
PEkg,n−1

)
. In (B.11), when i 6∈ I, the set I is obtained from I after

decreasing by one all j ∈ I with j > i.

Proof. For (B.9), the restriction of πi to Hk
g,n has degree k(2g− 2)− (n− 1)

over Hk
g,n−1, equal to the number of unmarked zeros of the k-differential µ

for a general (C,P1, . . . , Pn−1, µ) in Hk
g,n−1.

For (B.10), since one may forget the marked points in any order, one has
ρn = ρn−1 ◦ πi. Using the projection formula, one computes

(πi)∗ [Ln] = (πi)∗

(
π∗n

[
H
k
g,n−1

]
· ρ∗n

[
H
k
g,1

])

= (πi)∗

(
π∗n

[
H
k
g,n−1

])
· ρ∗n−1

[
H
k
g,1

]

= c π∗n−1

[
H
k
g,n−2

]
· ρ∗n−1

[
H
k
g,1

]

= cLn−1

where c := k(2g − 2) − (n − 2). The third equality follows from (πi)∗ π
∗
n =

π∗n−1 (πi)∗ and the first part of the statement.
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Finally, for (B.11), when i 6∈ I, the restriction of πi to EI has generically
degree k(2g−2)−(n−2) over EI , equal to the number of zeros at unmarked
smooth points of the k-differential in a general element of EI . Indeed, from
Lemma B.2, a k-differential in a general element of EI is not the k-th power

of an abelian differential when k ≥ 2, hence has a zero of order |I| at the
preimage of the node in the genus g component of C, simple zeros at the
n− 2− |I| marked points in the genus g component of C, and simple zeros
elsewhere for all k ≥ 1.

When I = {i}, the restriction of πi to EI has generically degree one over
Hk
g,n−1. In the remaining case when i ∈ I and |I| > 1, the restriction of πi

to EI has generically one-dimensional fibers. The statement follows. �

Also, we will use intersections with the following test space. For n ≥ 3,
let C be a general smooth genus g curve, and identify a general point Q in
C with a general point in a rational curve R containing the marked points
P1, . . . , Pn−1. Consider the n-dimensional test space T ⊂ PEkg,n consisting
of elements (C ∪Q R,P1, . . . , Pn, µ) obtained by varying the k-differential

µ in a general Pn−1 ⊆ PH0(C,ωkC), and the point Pn along C. One has
T ∼= Pn−1 × C.

Lemma B.7. Let k, g, and n be such that (B.1) holds. One has

T ·
[
H
k
g,n

]
= k(2g − 2)− (n− 1),(B.12)

T · Ln = k(2g − 2),(B.13)

T · [EI ] =

{
1 if I = {1, . . . , n − 1},

0 otherwise.
(B.14)

Proof. The intersection (B.12) is contributed by those elements (µ, Pn) of
T ∼= Pn−1×C for which there exists a twisted k-differential of type µ vanish-
ing at all marked points. The only possibility is that µ is the k-differential µ0
which vanishes with order n−1 at Q (such µ0 is generically unique, and after
Lemma B.2, µ0 is generically not the k-th power of an abelian differential
when k ≥ 2), and Pn coincides with one of the remaining k(2g−2)− (n−1)
zeros of µ0 in C. The intersection is transverse along all such elements.

The intersection (B.13) is contributed by those elements (µ, Pn) of T for
which there exists a twisted k-differential of type µ vanishing at the first
n− 1 marked points, and a possibly distinct twisted k-differential of type µ
vanishing at Pn. Hence, in addition to the contributions to (B.12), also the
element (µ = µ0, Pn = Q) of T contributes to (B.13). After Lemma B.2,
µ0 is generically not the k-th power of an abelian differential when k ≥ 2.
It follows that µ0 vanishes generically with order n − 1 at Q for all k ≥ 1,
hence the element (µ0, Q) contributes to (B.13) with multiplicity n− 1.
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Finally, for (B.14), T intersects a locus EI only if Pn is on a rational
component. This only happens for Pn = Q, in which case T intersects EI
with I = {1, . . . , n− 1} transversally at (µ = µ0, Pn = Q). �

In the final step of the proof of Theorem B.1, we will use the following:

Lemma B.8. Let k, g, and n be such that (B.1) holds. The class of H
k
g,n

and the classes of the loci EI for all I are independent in An
(
PEkg,n

)
.

Proof. We proceed by induction on n. When n = 2, there is only one
locus EI , namely EI with I = {1}. To show independence, we restrict the

classes of H
k
g,2 and E{1} to a test surface. For this, consider the test surface

Si ⊂ PEkg,n with i = 1 appeared for k = 1 in the proof of Proposition A.4.

Namely, select a general element of the boundary divisor ∆1:{1} in PEkg,2
consisting of curves with an elliptic tail containing only the first marked
point. The elements of the surface S1 ⊂ PEkg,n are obtained by varying
the two marked points in their corresponding components. In particular,
elements of S1 have a fixed general stable differential µ. When a marked
point collides with the node, it gives rise to a rational bridge. For k = 1, µ is
extended by zero on such rational bridges, while for k ≥ 2, the restriction
of µ to such rational bridges has poles of order k at the two nodes on each
rational bridge.

The surface S1 has empty intersection with E{1}. For k = 1, one has

S1 ·
[
H

1
g,2

]
= 2g − 4 from (A.11). For k ≥ 2, one has

Si ·
[
H
k
g,2

]
= (k(2i − 2) + k) (k(2(g − i)− 2) + k) .

This intersection is contributed by those elements of Si where both marked
points coincide with zeros of the differential µ, and the intersection is trans-
verse along all such elements. Contrary to the case k = 1, there is no
contribution from the elements where one marked point collides with the
node, creating a rational bridge. Indeed, when k ≥ 2, the restriction of µ to
a rational bridge has poles of order k at both nodes and does not have any
zeros for degree reasons.

It follows that S1 has nonzero intersection with H
k
g,2, unless k = 1 and

g = 2. We conclude that the classes of H
k
g,2 and E{1} are independent, unless

k = 1 and g = 2.
In case k = 1 and g = 2, we arrive at a similar statement by considering

the push-forward of H
1
2,2 and E{1} via the forgetful map ϕ : PE1

2,2 → M2,2.
One computes

ϕ∗

[
H

1
2,2

]
= ω1 + ω2 − λ1 − δ0:2 − δ1:0,(B.15)

ϕ∗

[
E{1}

]
= δ0:2(B.16)

in Pic
(
M2,2

)
. Here λ1 is the first Chern class of the Hodge bundle; δ0:2 is

the class of the divisor ∆0:2 of curves with a rational tail; and δ1:0 is the class
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of the divisor ∆1:0 of curves with an unmarked elliptic tail. The identity

(B.15) can be shown either by using Theorem A.2 for the class of H
1
2,2, or

by observing that the restriction of ϕ to H
1
2,2 is generically finite over the

divisor of curves with marked hyperelliptic conjugate points, and the class
of such divisor is indeed given by (B.15) [Log] (see also §7.3). The identity
(B.16) follows since the restriction of ϕ to E{1} is generically finite over ∆0:2.

The classes in (B.15) and (B.16) are independent in Pic
(
M2,2

)
.

Hence, the classes of H
k
g,2 and E{1} are independent for all k ≥ 1 and

g ≥ 2. The statement for n = 2 follows.

For n ≥ 3, assume that

(B.17) α
[
H
k
g,n

]
+
∑

I

αI [EI ] = 0 ∈ An
(
PEkg,n

)

for some coefficients α,αI ∈ Q. After applying (πi)∗ to (B.17) for some
1 ≤ i ≤ n− 1 and using Lemma B.6, we get

(
(c− 1)α + α{i}

) [
H
k
g,n−1

]
+ c

∑

I : i/∈I

αI
[
EI
]
= 0

where c := k(2g − 2) − (n − 2). The loci E
I
⊂ PEkg,n−1 thus obtained are

precisely the extra loci at the (n − 1)-th step as in (B.7). By the inductive
assumption, we deduce

(c− 1)α+ α{i} = 0 and αI = 0 for all I : i /∈ I.

Applying (πi)∗ to (B.17) for all 1 ≤ i ≤ n− 1 shows that αI = 0 in all cases
except possibly for I = {1, . . . , n− 1}, and thus α = 0 as well.

Hence, (B.17) reduces to αI [EI ] = 0 where I = {1, . . . , n−1}. Restricting
to the test space from Lemma B.7, we deduce αI = 0 as well. �

B.4. Proof of Theorems B.1, 1.1, and Remark 1.2.

Proof of Theorem B.1. We proceed by induction on n. For the base case
n = 2, the statement holds by Theorem A.2. For the inductive step, assume
(B.1), and consider the intersection (B.5). Since this is generically transverse

over Mg,n, the component H
k
g,n contributes with multiplicity one to the

intersection for all k ≥ 1. From Proposition B.4, we know that

Ln =
[
H
k
g,n

]
+
∑

I

an,I [EI ] ∈ An
(
PEkg,n

∣∣
Mrt

g,n

)

for some coefficients an,I ∈ Q. Using the exact sequence

An
(
PEkg,n

∣∣
Mg,n\Mrt

g,n

)
→ An

(
PEkg,n

)
→ An

(
PEkg,n

∣∣
Mrt

g,n

)
→ 0

it follows that there exists a cycle Bn not supported over Mrt
g,n such that

(B.18) Ln =
[
H
k
g,n

]
+
∑

I

an,I [EI ] + Bn ∈ An
(
PEkg,n

)
.
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Moreover, from Proposition B.5, one has Bn = 0 when n ≤ k.
It remains to show that an,I = |I| for all n and I. Applying (πi)∗ to

(B.18) for some 1 ≤ i ≤ n− 1 and using Lemma B.6 gives

cLn−1 =
(
(c− 1) + an,{i}

) [
H
k
g,n−1

]
+ c

∑

I : i/∈I

an,I
[
EI
]
+ (πi)∗ Bn

where c := k(2g − 2)− (n− 2). By induction, this is equal to

cLn−1 = c
[
H
k
g,n−1

]
+ c

∑

I

∣∣I
∣∣ [EI

]
+ cBn−1 ∈ An−1

(
PEkg,n−1

)

where the loci E
I

⊂ PEkg,n−1 are as in (B.7). By Lemma B.8, we may
determine an,I by simply comparing coefficients. We deduce

(c− 1) + an,{i} = c and an,I =
∣∣I
∣∣ for I : i /∈ I.

One has
∣∣I
∣∣ = |I| for I with i /∈ I. Applying (πi)∗ to (B.18) for all 1 ≤ i ≤

n−1 shows that an,I = |I| in all cases except possibly for I = {1, . . . , n−1}.
To find an,I with I = {1, . . . , n−1}, consider the n-dimensional test space

T from Lemma B.7. The restriction of (B.18) to T gives

k(2g − 2) = T · Ln = (c− 1) + an,{1,...,n−1}.

Thus, an,{1,...,n−1} = n− 1. Theorem B.1 follows. �

Proof of Theorem 1.1. The only case left to be discussed is k = 2 and n =
4g − 5, since all other cases are covered by Theorem B.1. For this case, the
hypothesis (B.1) does not hold, and Lemma B.2 fails. Indeed, as discussed

after Lemma B.2, the locus H
2
g,m ⊂ PE2

g,1 with m = (4g − 6) from (B.2)
consists of two equidimensional components. Consequently, the extra locus

EI := γ∗ H
2
g,m with I = {1, . . . , n− 1} from (1.3) decomposes as

(B.19) EI = E′
I ∪ E

ab
I ⊂ PE2

g,4g−5

with E′
I parametrizing quadratic differentials which generically are not squa-

res of abelian differentials, and Eab
I parametrizing squares of abelian differ-

entials. For both components, the general element has a genus g component
and a rational tail containing all marked points, and the quadratic differen-
tial vanishes with order exactly 4g − 6 at the preimage of the node on the
genus g component.

Consider the intersection (B.5) for k = 2 and n = 4g−5. The argument in

Lemma B.3 shows that the component E′
I is inside (B.5) but not in H

2
g,4g−5.

Next, we argue that this holds for the component Eab
I as well.

Consider first the case g = 2. To show that

(B.20) Eab
I ⊂ π−1

3

(
H

2
2,2

)
,

it is enough to show that Ẽab
I := π3

(
Eab
I

)
⊂ H

2
2,2. For this, let Ê

ab
I ⊂ PE2

2,4

be the closure of the locus consisting of elements of PE2
2,4 having a genus 2
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component with two rational tails, and the square of an abelian differential
vanishing at both nodes on the genus 2 component. In particular, the nodes
on the genus 2 component are hyperelliptic conjugates, and each rational
tail has two marked points. We argue that one has an inclusion ι̂ as in the
following diagram:

Êab
I H

2
2,4 PE2

2,4

Ẽab
I H

2
2,2 PE2

2,2.

ι̂

π3,4

ι̃

The vertical maps are induced by the map π3,4 obtained by forgetting the last
two marked points. The inclusion ι̂ induces the desired inclusion, denoted ι̃
in the diagram.

To prove that ι̂ is an inclusion, we need to show that on the general

element (C,P1, . . . , P4, µ) of Ê
ab
I , there exists a twisted quadratic differential

of type µ satisfying the conditions of the incidence variety compactification.
For this, we consider a twisted quadratic differential τ which agrees with
µ on the genus 2 component of C (hence has zeros of order two at the
preimage of each node on the genus 2 component), and on each rational
component, has a pole of order 6 at the node and simple zeros at the two
marked points. Let Γ be the dual graph of C, and consider the order on Γ
assigning the maximum level to the genus 2 vertex, and equal lower level to
the two rational vertices, as suggested by this figure:

2

Then τ is compatible with this order of Γ, and satisfies the conditions re-
quired by the incidence variety compactification. In particular, the global
2-residue condition holds. Note that there is no quadratic differential on a
rational curve with a pole of order 6, with two simple zeros, and with zero 2-
residue at the pole (see [CG, §3.1], and reference therein to [GT, Thm 1.10]).
However, the condition [BCG+2, Def. 1.4(4)(v)] holds, since one can assume
that τ has equal 2-residues at the nodes on the two rational tails. Hence
the global 2-residue condition is satisfied. It follows that ι̂ is an inclusion,
hence ι̃ is an inclusion, and (B.20) holds.

For g ≥ 3, the argument is quite similar. One considers a locus Êab
I

in PE2
g,4g−4 as for g = 2, defined as the closure of the locus consisting of

elements of PE2
g,4g−4 having a genus g component with a rational tail with 2

marked points and a rational tail with 4g−6 marked points, and the square
of an abelian differential vanishing at the nodes on the genus 2 component

with order 2 and 4g − 6, respectively. To show that Êab
I is in H

2
g,4g−4,

one argues that there exists a twisted quadratic differential τ on a general
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element (C,P1, . . . , P4g−4, µ) of Ê
ab
I satisfying the conditions of the incidence

variety compactification. The restriction of such a τ to the two rational tails
has poles of order 6 and 4g − 2 at the two nodes, respectively, and simple
zeros at all marked points. One checks that the conditions of the incidence
variety compactification are satisfied with respect to the three-level order on
the dual graph of C suggested by this figure:

g

...

Contrary to the case g = 2, the two rational tails are not at the same level.
Since the aspect of such a τ on the rational tail with more marked points
has zero 2-residue at the pole, the condition [BCG+2, Def. 1.4(4)(v)] holds.

Showing that Eab
I is in ρ−1

4g−5

(
H

2
g,1

)
and not in H

2
g,4g−5 for g ≥ 2 is easier

and similar to the arguments used for Lemma B.3. Then the proof continues
in a similar way to the proof of Theorem B.1. We sketch here the main
points. The arguments used for Proposition B.4 and Lemma B.6 remain
valid for this case. The test space T from Lemma B.7 can be replaced
by two analogous n-dimensional test spaces T1, T2 ⊂ PE2

g,n such that all
quadratic differentials in T1 are not squares of abelian differentials, and all
quadratic differentials in T2 are squares of abelian differentials. Using these

two test families, one shows that the class of H
2
g,4g−5, the classes of the loci

EI for all |I| < n − 1, and the classes of each of the two components from
(B.19) are independent in A4g−5

(
PE2

g,4g−5

)
, as in Lemma B.8. Finally, one

shows that EI is included in (B.5) with multiplicity equal to |I| for all I as
in the final steps of the proof of Theorem B.1, whence the statement. �

Remark B.9. When k ≥ 2 and n = k(2g − 2), the locus H
k
g,m ⊂ PEkg,1

with m = (k(2g − 2)− 1) from (B.3) consists of two equidimensional com-

ponents. Consequently, the extra locus E := EI = γ∗ H
k
g,m with I =

{1, . . . , n− 1} from (1.3) decomposes as

E = E′ ∪ Eab ⊂ PEkg,k(2g−2)

such that the general element of E′ has a genus g component, a rational
tail containing all marked points, and a k-differential vanishing with order
exactly k(2g−2)−1 at the preimage of the node on the genus g component;
and the general element of Eab has a genus g component, a rational tail
containing all marked points, and the k-th power of an abelian differential
vanishing with order k(2g − 2) at the preimage of the node on the genus
g component. As in the proof of Theorem 1.1, both components of E are
contained in the intersection (B.5), although E′ appears with multiplicity
|I| = k(2g−2)−1, while Eab with multiplicity k(2g−2). Hence (1.5) holds.
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ification of strata of abelian differentials. Duke Math. J., 167(12):2347–2416,
2018. ↑8, ↑46, ↑47, ↑48, ↑51, ↑52, ↑54

[BCG+2] M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, and M. Möller. Strata of
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