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Abstract

Background—Intention-to-treat analysis requires all randomised individuals to be included in

the analysis in the groups to which they were randomised. However, there is confusion about how

intention-to-treat analysis should be performed in the presence of missing outcome data.

Purpose—To explain, justify and illustrate an intention-to-treat analysis strategy for randomised

trials with incomplete outcome data.

Methods—We consider several methods of analysis and compare their underlying assumptions,

plausibility, and numbers of individuals included. We illustrate the intention-to-treat analysis

strategy using data from the UK700 trial in the management of severe mental illness.

Results—Depending on the assumptions made about the missing data, some methods of analysis

that include all randomised individuals may be less valid than methods that do not include all

randomised individuals. Further, some methods of analysis that include all randomised individuals

are essentially equivalent to methods that do not include all randomised individuals.

Limitations—This work assumes that the aim of analysis is to obtain an accurate estimate of the

difference in outcome between randomised groups, not to obtain a conservative estimate with bias

against the experimental intervention.

Conclusions—Clinical trials should employ an intention-to-treat analysis strategy, comprising a

design that attempts to follow up all randomised individuals, a main analysis that is valid under a

stated plausible assumption about the missing data, and sensitivity analyses which include all

randomised individuals in order to explore the impact of departures from the assumption

underlying the main analysis. Following this strategy recognises the extra uncertainty arising from

missing outcomes and increases the incentive for researchers to minimise the extent of missing

data.
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1 Introduction

Intention-to-treat (ITT) analysis is essential in avoiding bias in the analysis of randomised

trials [1]. The ITT principle states that all individuals randomised in a clinical trial should be

included in the analysis, in the groups to which they were randomised, regardless of any

departures from randomised treatment. By following this principle, data analysts preserve

the benefit of randomisation in creating treatment groups that do not differ systematically on

any factors except those assigned in the trial, whereas not following the ITT principle risks

introducing selection bias.

One implication of the ITT principle is that investigators should aim to collect outcome data

on all randomised individuals. It is essential to maximise the extent of outcome data

collected by careful trial design, including appropriate eligibility criteria, attention to the

burden of data collection on participants, and by energetic measures to remain in contact

with participants and regain contact with lost participants. Further information is given by

[2–4].

Despite investigators' best efforts, missing outcome data are common. From a statistical

perspective, any analysis of a clinical trial with incomplete outcome data makes untestable

assumptions. For example, it is often assumed that the data are missing at random (MAR),

which means that missing data are equal in distribution to observed data, conditional on

other variables included in the analysis [5]. Some analyses may make the stronger

assumption that the data are missing completely at random (MCAR), which means that

missing data are unconditionally equal in distribution to observed data. It is essential that the

assumptions made are transparent and plausible, based on knowledge of the trial and the

subject matter area.

A recent report by the Committee on National Statistics (CNSTAT) for the US National

Academy of Sciences clarifies many of the design and analysis issues [4]. In particular, it

stresses the importance of careful pre-specification of the causal estimands of primary

interest (Recommendation 1); choosing designs that minimise treatment withdrawal

(Recommendation 2); pre-specification of statistical methods and their assumptions in a way

that can be understood by clinicians (Recommendation 9); and collecting ancillary data that

are associated with reasons for missing values, and/or intensively following up a sample of

non-respondents (Recommendation 15). It describes analysis methods for trials with

incomplete data, focusing on methods that assume MAR (chapter 4). It then argues

forcefully for analyses that explore the sensitivity of the results to departures from MAR

(Recommendation 16), and extensively describes how such sensitivity analyses could be

performed (chapter 5), although methodology for sensitivity analysis is noted as requiring

more statistical research (Recommendation 20).

However, there is confusion about how the ITT principle should be applied in the presence

of missing outcome data. A strict view would hold that no analysis with missing outcome

data can be described as ITT, but such an unattainable standard is unhelpful. The

explanatory paper to the 2001 revision of the CONSORT statement suggested acceptance of

an analysis of observed data: “Although those participants [who drop out] cannot be

included in the analysis, it is customary still to refer to analysis of all available participants

as an intention-to-treat analysis” [6]. On the other hand, Hollis and Campbell argued that

“Complete case analysis, which was the approach used in most trials, violates the principle

of intention to treat” [7]. Often, ITT is taken to require imputation: the European Medicines

Agency wrote “The statistical analysis of a clinical trial generally requires the imputation of

values to those data that have not been recorded…” [8], and Altman wrote “No analysis

option is ideal here; there is, in effect, a choice between omitting participants without final
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outcome data or estimating (imputing) the missing outcome data” [9]. In new advice, the

European Medicines Agency takes a more relaxed view: “Full set analysis generally requires

the imputation of values or modelling for the unrecorded data” [10], and the 2010

CONSORT checklist no longer includes the “widely misused” phrase “intention to treat

analysis” [11], and instead separately asks whether the analysis was by original assigned

groups and what numbers were included in the analyses.

To resolve this confusion, we recently proposed a four-point ITT analysis strategy for trials

with incomplete outcome data [12]:

1. Attempt to follow up all randomised individuals, even if they withdraw from

allocated treatment.

2. Perform a main analysis that is valid under a plausible assumption about the

missing data and uses all observed data

3. Perform sensitivity analyses to explore the impact of departures from the

assumption made in the main analysis.

4. Account for all randomised individuals, at least in the sensitivity analyses.

The aim of this paper is to detail the rationale underpinning this strategy and to illustrate its

application. We assume that interest lies in testing and estimating the effect of treatment

assignment on clinical outcomes over all randomised individuals: this is the ‘ITT estimand’

or the ‘ITT treatment effect’ and is usually the most clinically- and policy-relevant estimand

in large-scale randomised trials. We do not consider: other possible estimands discussed in

the CNSTAT report, relating to subsets who adhere to treatment; estimating the causal effect

of treatment itself, although this may be a useful ancillary analysis [13]; or estimating the

effect of treatment assignment on a composite outcome that includes missingness as one

component (common in HIV trials aimed at comparing HIV RNA levels for antiretroviral

drugs, where missing values are taken as failures [14], but difficult to interpret clinically).

Throughout the paper, we consider an outcome either measured at just one time point, or

measured repeatedly where interest lies mainly in the treatment effect at the last time. Our

arguments would apply equally when interest lies in an average outcome such as the area

under the curve. We mainly discuss quantitative outcomes, and consider other outcome

types in the discussion. Our focus is on missing values in the outcome, although in our

example we also deal with missing values of baseline variables.

The paper is organised as follows. In Section 2, we describe various commonly used

methods of analysis, and their underlying assumptions. Section 3 details the rationale

underpinning the four points of the ITT analysis strategy. Section 4 shows why the ITT

analysis strategy does not require all randomised individuals to be included in the main

analysis. Section 5 uses the UK700 trial in mental health to exemplify the ITT analysis

strategy, and then to illustrate the argument in Section 4. We conclude with a discussion in

Section 6.

2 Methods and assumptions

In this section, we discuss various methods of analysis, noting whether they include all

randomised individuals and elucidating their underlying assumptions.

2.1 Last observation carried forward

Last observation carried forward (LOCF) replaces missing final outcomes by the last

observed outcome (which could be the baseline value of the outcome). While it is widely
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used [15], and attractive because it usually allows all individuals to be included in the

analysis, it has been widely criticised [16– 21].

The assumption underlying LOCF is often mis-stated. When the analysis is an unadjusted

comparison of means or proportions, LOCF is unbiased if, in each randomised group, the

mean of the unobserved values of the final outcome equals (in expectation) the mean of the

last observed outcomes in the individuals who drop out. We call this the LOCF assumption.

When the analysis is covariate-adjusted, the LOCF assumption is conditional on covariates.

LOCF does not require the data to be MCAR, although some authors claim that it does [17,

18]: MCAR would instead require the missing data to be equal to the observed data in

expectation at the final time point [5].

If the LOCF assumption is false, bias in LOCF analyses can arise in various ways. If there is

a treatment effect at intermediate times but not at the final time, then carrying forward

intermediate values can artifactually create a treatment effect at the final time. If unobserved

outcomes improve over time, then LOCF tends to favour treatment groups with less drop-

out, while if unobserved outcomes deteriorate over time, then LOCF tends to favour

treatment groups with more drop-out.

LOCF validly estimates weighted averages of subgroup-specific means at different time

points [22], but the weights may differ between randomised groups, so this parameter lacks

clinical interest and causal interpretation [19]. LOCF is also sometimes defended as being

conservative: for conditions that tend to improve over time, it is indeed likely to be

conservative for arm-specific mean outcomes, but its bias for the estimated treatment effect

is not necessarily in a conservative direction [20]. An appropriate justification of LOCF

should argue that average unobserved outcomes within each randomised group do not

change over time; we have never seen such a justification. Instead, analysts more commonly

attempt to justify LOCF by the stability over time of observed outcomes, which is not a

sufficient argument [21].

2.2 Missing=failure

In some clinical areas, it is common to assume that missing values represent failures. This is

only possible when the outcome is categorical (usually binary): for example, in smoking

cessation studies (e.g. [23]). ‘Missing=failure’ is the same as LOCF when the outcome is a

measure of improvement observed at just one time point.

Like LOCF, ‘missing=failure’ makes it easy to include all randomised individuals in the

analysis. However, the underlying assumption needs to be carefully justified. In particular,

‘missing=failure’ logically implies that every success is actually observed, often a rather

implausible assumption. If the assumption is false then ‘missing=failure’, like LOCF, gives

conservative estimates of outcomes within randomised groups, but not necessarily a

conservative estimate of the difference between groups, especially if the amounts of missing

data, or their reasons, differ between randomised groups.

2.3 Complete-case analysis

In a trial with outcome measured at one time point, a complete-case analysis typically

involves a simple outcome comparison between groups or an analysis of covariance in

which the outcome is regressed on randomised group, adjusted for baseline variables. These

analyses are valid under the assumption that response is MAR given randomised group or

given randomised group and baseline, respectively, and can be viewed as likelihood-based.

In a trial with outcome measured repeatedly, a complete-case analysis would typically

exclude any individual whose outcome was not observed at the final follow-up time.
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Excluding individuals whose outcome is observed at intermediate follow-up times is clearly

inappropriate. However, in a survey of 35 such trials, 17 used a complete-case analysis [15].

Likelihood-based analysis of all observed data is preferable.

2.4 Likelihood-based methods

A likelihood-based analysis fits a suitable statistical model to all the observed data. Often

this would be a linear mixed model [24]. Likelihood-based analyses (including Bayesian

analyses) implicitly assume that the data are MAR, unless the missing data mechanism is

explicitly modelled. In the case of a trial with outcome measured repeatedly, this means that

missing data are equal in distribution to observed data, conditional on the baseline and

follow-up variables included in the analysis [5]. With non-monotone missing data patterns,

the MAR assumption can be hard to interpret [25].

2.5 Multiple imputation

Multiple imputation (MI) is a broadly applicable technique for handling missing data [26,

27]. MI is usually able to include all randomised individuals in the analysis. Briefly, missing

data are imputed more than once, in a way that reflects the uncertainty about the missing

values. In Rubin's formulation, each imputed data set is analysed by standard methods, and

the point estimates and standard errors are combined to provide inferences that reflect the

uncertainty about the missing values [26]. Standard implementations of MI [28–32] assume

MAR, although in principle MI may be performed under other missing data mechanisms.

Other formulations of MI may provide more accurate standard errors in some less-standard

settings, but are not available in standard software [33].

Many MI analyses can be viewed as computationally convenient approximations to

likelihood-based analyses based on the observed data [34]. For example, if the variables

used in imputing the missing data correspond to the variables in the analysis model and a

(multivariate) Normal assumption is made in both analyses, then a MI analysis approximates

a likelihood-based analysis. The quality of the approximation is determined by the Monte

Carlo error inherent in MI analysis, which decreases as the number of imputations increases

[35].

In some cases, an MI procedure can be improved by including in the imputation model

‘auxiliary variables’ that are not in the analysis model [36, Chapter 4]: auxiliary variables in

a randomised trial might be secondary outcomes or compliance summaries. MI then

produces estimates of the treatment effect that are genuinely different from a likelihood-

based analysis, by incorporating information on individuals with missing outcome but

observed values of auxiliary variables. However, in our experience, the contribution to such

an analysis of individuals missing the outcome of interest is moderate unless correlations

between the outcome and one or more auxiliary variables are substantial [37].

2.6 Illustration

Three different assumptions are explored in Figure 1, which depicts mean outcomes in one

arm of a randomised trial. Higher outcomes are assumed to be worse. Individuals with

complete data (the solid line) start with mean outcome 10 and improve by a mean of 2 units

at time 1, with this improvement sustained at time 2. Individuals who drop out after time 1

started with a better mean outcome and also had a mean improvement of 2 units at time 1. A

LOCF analysis (depicted in the left-hand panel) assumes that this mean improvement was

sustained up to time 2. An analysis based on MCAR (such as a complete-case analysis)

assumes that individuals who drop out after time 1 are similar to completers at time 2, which

in this example corresponds to their improvement being transient (middle panel). An

analysis based on MAR (such as a likelihood-based analysis) assumes that the missing
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outcomes at time 2 can be predicted using the relationship in completers between outcomes

at the three times. Suppose that this relationship is E[Y2∣Y0, Y1] = α + βY1 with β = 0.5,

where (Y0, Y1, Y2) are the three outcomes. The observed mean difference between

completers and dropouts at time 1 is 2 units, so the MAR assumption implies a mean

difference of 2 × β = 1 unit at time 2 (right-hand panel).

3 ITT analysis strategy

Having discussed common analyses and their assumptions, we now discuss the rationale for

the four-point ITT analysis strategy.

3.1 Attempt to follow up all randomised individuals, even if they withdraw from allocated
treatment

This point refers to the design of trials in which patients may withdraw from their allocated

treatment during the trial. Some trials do not attempt to follow up patients after treatment

withdrawal. This has four serious disadvantages. First, it is contrary to the spirit of the ITT

principle. Second, it means that all observed data are ‘on-treatment’ and so standard

analyses based on observed data attempt to estimate an ‘on-treatment’ effect and not the ITT

treatment effect [36]. (If the ‘on-treatment’ effect is really of interest then a different

approach to the design and analysis may be appropriate [4].) Third, it often makes MAR less

plausible, because individuals who stop trial treatment are often more highly selected than

those who are simply lost to follow-up. Fourth, even if it introduces no bias, it can reduce

the power of the trial if treatment effects are long-lasting [38].

We therefore believe that no primary analysis of such a trial should be described as ITT.

Instead, trials should attempt to follow up all randomised individuals, including those who

withdraw from treatment (an ‘ITT design’) [39, 40]. Individuals who have withdrawn from

trial treatment tend to be harder to follow up, but if at least some data are collected, then

analysis based on MAR can allow for treatment withdrawals and can attempt to estimate the

ITT treatment effect [36, 41].

3.2 Perform a main analysis that is valid under a plausible assumption about the missing
data and uses all observed data

This point emphasises the importance of assumptions. Any trial report should state the

assumption made about the missing data in the main analysis – for example, MAR or the

LOCF assumption – and give reasons why the assumption is plausible [42].

We require the inclusion of all observed outcome data. Analyses that exclude some observed

outcome data would not be acceptable without strong rationale such as doubt over the

integrity of the data. In particular, complete-case analysis of repeated measures data (Section

2.3) would not be consistent with the ITT analysis strategy.

The controversial point here is that we do not require the inclusion of all randomised

individuals in the main analysis – that is, we do not require inclusion of individuals with no

outcome measures – because the validity of an analysis is determined by whether its

assumptions are correct: a valid estimate of the ITT estimand is consistent with the ITT

principle. Thus, analyses of all observed data (such as mixed models) should be acceptable

if the MAR assumption is reasonably plausible in the clinical context. Harmful

consequences of requiring the inclusion of all randomised individuals in the main analysis

are given in Section 4. Of course, analyses that do include all randomised individuals are

acceptable if they make a plausible assumption: for example, in a smoking cessation trial, it

might be plausible to assume that all individuals with missing outcomes are still smoking.
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3.3 Perform sensitivity analyses to explore the impact of departures from the assumption
made in the main analysis

All analyses with missing data make untestable assumptions, so it is always important to

perform sensitivity analyses exploring the impact of departure from the assumptions [43,

44]. Appropriate sensitivity analyses should address departures from the assumptions that

are relevant for the estimand at hand in an accessible way.

Unfortunately, many sensitivity analyses used in practice are inappropriate. For example, in

one survey, the most common form of sensitivity analysis was LOCF when the primary

analysis adopted a complete-case analysis [15]. Agreement between the results of LOCF and

complete-case analysis is not necessarily reassuring because the assumptions underlying the

two methods could both be wrong, and so both results could be biased. Figure 2 illustrates

this problem. Although LOCF and MCAR impute the missing values at time 2 in different

ways, they both impute the same mean value, 7. It would be wrong to derive reassurance

from this agreement. In fact, an MAR analysis would impute a different value, 6.

Instead, a ‘principled’ sensitivity analyses should move smoothly away from the

assumptions underpinning the primary analysis, in a way that is clinically plausible and

accessible to those interpreting and using the study results. Kenward et al. describe the

procedure thus: “It is necessary to properly parameterise the set of models considered by

means of one or more continuous parameters and then to consider all or at least a range of

models along such a continuum” [45]. For example, one might define a parameter δ equal to

the difference between the mean of the observed data and the mean of the unobserved data,

adjusted for other observed variables. Under an MAR analysis, δ is assumed to be zero. A

sensitivity analysis would consider plausible alternative values of δ. It is important to

consider the possibility that δ differs across randomised groups: for example, missing data

after a psychological intervention may be further from MAR than after no intervention [46].

This idea underlies computational [47–49] and graphical [50, 51] approaches to sensitivity

analysis.

We have focussed here on sensitivity analyses to the untestable assumptions about the

missing data; it is also important to verify testable assumptions, such as a Normality

assumption for outcome data, or the way baseline covariates are entered in the model [4],

although estimated treatment effects are usually far more robust to departures from testable

than untestable assumptions.

3.4 Account for all randomised individuals, at least in the sensitivity analyses

A key feature of a principled sensitivity analysis as described above is that all individuals

must be included in the analysis. For example, if δ ≠ 0 so that missing values differ from

observed values, then a complete-case analysis is no longer acceptable. Thus, although an

analysis based on MAR need not include all randomised individuals, analyses assuming

departures from MAR must include them.

This point provides a key link with previous conceptions of intention-to-treat analysis:

inclusion of all randomised individuals is important, but the place of that inclusion is in the

sensitivity analysis.
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4 Harmful consequences of requiring inclusion of all randomised

individuals in the main analysis

4.1 Implausible assumptions

We compare LOCF and likelihood-based analyses (noting that complete-case analysis of a

trial with outcome measured at one time point is effectively a likelihood-based method). The

different assumptions underlying these methods were described in Section 3. The methods

also differ in which randomised individuals are included: if the baseline observation is

complete then LOCF includes all individuals in the analysis, but likelihood-based methods

exclude individuals who provide no post-baseline outcome data.

The MAR assumption is often seen as a natural starting point for analysis [17, 52]. A

stronger belief in MAR than other assumptions led Molenberghs et al. to write, “A

likelihood based ignorable analysis should be seen as a proper way to accommodate

information on a patient with postrandomization outcomes, even when such a patient's

profile is incomplete” and “This fact, in conjunction with the use of treatment allocation as

randomized rather than as received, shows that [a mixed model analysis] is fully consistent

with ITT” [17]. These authors do not explain what they mean by ITT, but seem to be

arguing that if an analysis is suitable, it must conform to ITT.

We avoid blanket statements about the plausibility of particular assumptions: this must

instead be determined in each trial using subject-matter knowledge. However, in some trials,

MAR is more plausible than the LOCF assumption. In such trials, an MAR-based analysis

excluding individuals who provide no post-baseline outcome data would be preferable to an

LOCF analysis including them. Thus requiring inclusion of all randomised individuals in the

main analysis would invite analysts to adopt a less plausible assumption.

4.2 Unnecessary complexity

We now describe two situations where simple analyses that do not include all randomised

individuals are approximately equivalent to, and make the same assumption as, more

complex analyses that do include all randomised individuals.

First, when a likelihood-based analysis is used, baseline values of the outcome can be

included either as a covariate or as an outcome [53, 54]. For example, a trial with outcome

measured at baseline and one follow-up time can use either an analysis of covariance

(ANCOVA) or a mixed model with baseline and follow-up as a bivariate outcome. These

methods give identical point estimates and very similar standard errors when the baseline is

complete [53]. They also give very similar results when the baseline is incomplete, provided

a suitably modified ANCOVA avoids dropping individuals with missing baselines [55, 56].

However, the analysis using baseline as an outcome includes all individuals with the

outcome observed at baseline or follow-up, whereas the analysis using baseline as a

covariate includes only those individuals with the outcome observed at follow-up.

Second, MI may be a computationally convenient alternative to a likelihood-based analysis

(Section 2.5), and it typically includes all individuals in the analysis; but in the absence of

strong auxiliary variables, MI may be inferior to likelihood-based analysis unless the

number of imputations is large enough to minimise Monte Carlo error. However, authors'

desire to include all randomised individuals in the analysis favours MI: for example, in a

trial of a web-based self-help intervention for problem drinkers, the authors claimed “We

then performed intention-to-treat analysis, using multiple imputation to deal with loss to

follow-up” [57].

White et al. Page 8

Clin Trials. Author manuscript; available in PMC 2013 February 01.

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t



In both cases, requiring all randomised individuals to be included in the analysis would

invite analysts to adopt an unnecessarily complex analysis, with consequent greater

opportunity for human error.

5 Case study: the UK700 trial

We use the UK700 trial to illustrate both the ITT analysis strategy and the arguments of

Section 4. This trial compared intensive case management with standard case management

for 708 people with severe mental illness living in the community [58]. We here consider

two outcomes: psychopathology score (CPRS) and satisfaction with services (SAT), which

were measured in interviews at baseline, year 1 and year 2. A third outcome, days in hospital

for mental health reasons (HOS), was recorded at baseline and year 2 from hospital notes

and therefore had few missing values. Key variables are summarised in Table 1.

Missing data in CPRS occurred mainly when individuals did not attend interviews at years 1

and 2. Missing data in SAT occurred additionally because the variable was not included in

early versions of the baseline interview and because some interviews were incomplete (SAT,

unlike CPRS, came near the end of the interview). Missing data patterns are summarised in

Table 2.

5.1 ITT analysis strategy for UK700

For point 1, attempts were made to follow up all randomised individuals.

For point 2, we need a plausible assumption for a main analysis. In this mental health

setting, individuals with missing values may have worse psychopathology and greater

dissatisfaction than observed individuals, and their psychopathology and dissatisfaction may

have worsened over time. Thus neither the LOCF assumption nor MAR seems entirely

satisfactory. The published analysis was based on an MAR assumption, and we follow that

here, recognising that sensitivity analysis to departures from MAR will be essential. We can

make the MAR assumption more plausible (and possibly gain precision) by including in the

analyses the third outcome, HOS, which was more completely observed than CPRS and

SAT: this will be done in a sensitivity analysis. The assumption underlying LOCF cannot be

amended to account for HOS.

The chosen main analysis is therefore a mixed model for CPRS or SAT, using all the

observed data at all three time points, and adjusted for trial centre and the baseline value of

the outcome variable. Covariate effects varied by year (that is, the model included

interactions between year and covariates); treatment effects also varied by year but were

absent at baseline. Outcome covariance matrices were unstructured but equal across arms.

The estimated intervention effect (95% confidence interval) was -0.39 units (-2.40 to +1.62)

on CPRS and -0.35 (-1.15 to +0.45) on SAT.

For the SAT analysis, 101 randomised individuals have missing baseline values but one or

more observed outcomes. Suitable methods for including these individuals in the analysis

can be surprisingly simple, because the role of baseline covariates in randomised trials is

only to increase power and not to remove confounding [55]. Thus mean imputation methods,

which are inappropriate for missing covariates in non-randomised studies [59], are

appropriate for missing baseline values in randomised trials, provided that the imputed

values respect the independence of baseline values and randomised group [55]. In the

analysis described above, missing baseline values of SAT were imputed by the centre-

specific mean of the observed baseline values.
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For point 3, we require sensitivity analyses exploring the impact of departures from the

MAR assumption: we illustrate them for the CPRS outcome. The main analysis assumed

that δ = 0, as defined in Section 3.3. Positive values of δ indicate that missing individuals

have worse psychopathology than observed individuals, which seems the likely direction of

departure from MAR in a mental health context. Let f1 and f0 be the fractions of individuals

with missing outcome at the final time in the intervention and control arm respectively: in

the UK700 data, f1 = 0.12 and f0 = 0.20. The sensitivity analysis is done by adding a

quantity Δ to the treatment effect estimated under the MAR assumption, where Δ = f1δ if
data depart from MAR in the intervention arm only, Δ = −f0δ if data depart from MAR in

the control arm only, and Δ = (f1 − f0)δ if data depart from MAR in the same way in both

arms. We allow δ to take values from 0 to 10: since the standard deviation of CPRS is 14

(Table 1), this represents a fairly wide range. We make the approximation that the standard

error of the parameter estimate is unaffected by the sensitivity analysis: other work, the

subject of a future report, shows that this approximation works well over a wide range of δ.
More generally, we could allow δ to take values δ0 and δ1 in the intervention and control

arm respectively, so that Δ = f1δ1 − f0δ0. A fuller treatment of sensitivity analysis, including

expert elicitation of the range of values for δ, is given in [60].

Figure 3 shows how the estimated intervention effect varies in the sensitivity analyses.

Departures from MAR have more impact in the control arm than in the intervention arm,

because f0 > f1. Under MAR, the trial showed no significant benefit of intervention; for this

conclusion to be changed would require missing CPRS values to average some 8 points

(more than half a standard deviation) more than the observed values in the control arm only,

which seems relatively implausible.

A second sensitivity analysis used MI with auxiliary variables to make better use of the

observed data and to make the MAR assumption somewhat more plausible. The auxiliary

variables were the baseline and follow-up values of the other two outcomes (HOS and CPRS

for SAT; HOS and SAT for CPRS). MI was implemented by the MICE algorithm

[28,61,62]. Monte Carlo error was reduced by using 1000 imputed data sets [63]. The

estimated intervention effect (95% confidence interval) was -0.43 units (-2.43 to +1.58) on

CPRS and -0.40 (-1.20 to +0.39) on SAT, which show much less difference from the main

results than does the sensitivity analysis in Figure 3.

For point 4, all randomised individuals are included in this set of analyses, because each

missing individual contributes to one of the quantities f1 or f0.

5.2 Comparison of different analyses

We performed further mixed model, LOCF and MI analyses to illustrate the arguments of

Section 4.

We first consider results ignoring the year 1 data (Table 3, top part), thus illustrating results

for a trial with outcome measured at one time point. ANCOVA with mean-imputed missing

baselines and a mixed model with baseline as outcome give almost identical results for

CPRS and very similar results for SAT; greater differences are expected for SAT since it has

more missing values at baseline. MI, using a basic imputation model including all variables

from the analysis model, gave results very similar to the other methods. However, these

three analyses that give similar results, and rest on similar assumptions, include very

different numbers of individuals in the analysis.

We next consider analyses using data from all three time points (Table 3, lower part). The

LOCF estimate differs substantially from all the other estimates for CPRS and has smaller

standard error than the other methods, because its implicit assumption allows more
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information to be drawn from individuals with missing data: this suggests that greater

caution needs to be attached to LOCF analyses. Mixed model analysis of available cases

gives very similar estimates whether baseline is included as a covariate or as an outcome.

MI using a basic imputation model agrees closely with mixed model analysis of available

cases, and MI using the extended imputation model of Section 5.1 shows small changes as

noted there. Again, methods based on the same missing data assumption – mixed models on

available cases, whether with baseline as outcome or covariate, and MI using the basic

imputation model – give very similar answers, as theory suggests, despite including very

different numbers of individuals.

These results illustrate that the choice of assumption matters far more than how many

individuals are included in the analysis.

6 Discussion

We believe that excessive focus on including all individuals in the analysis of randomised

trials with missing outcomes can lead to a choice of analysis that rests on implausible or

unnecessarily complex imputation. In the ITT analysis strategy, we have therefore proposed

that the main focus in choosing the analysis should be the plausibility of its assumptions,

while inclusion of all randomised individuals is a requirement only for sensitivity analyses.

Our approach has been to obtain the best possible estimate of the intervention effect. Some

analyses, particularly LOCF, are popular because they are believed to be conservative, but

this is misguided [20]. It is hard to be sure that an analysis is conservative without

attempting to compare it with an unbiased estimate of the intervention effect. We believe

that conservatism is best achieved by attempting unbiased estimation but appropriately

allowing for the uncertainty due to the missing data [46].

We have discussed incomplete quantitative outcomes. Our proposal for an ITT analysis

strategy applies equally well with other outcomes. However, some different modelling

issues arise. For trials with repeatedly measured incomplete binary outcomes, when interest

lies in a treatment effect on the log odds scale, complications arise because of the

differences between ‘population-averaged’ and ‘subject-specific’ approaches [64]. The goal

of ITT analysis is usually a population-averaged odds ratio, which can be directly estimated

by generalised estimating equations and multiple imputation, but not by mixed models,

which directly estimate the subject-specific odds ratio. For trials with time-to-event

outcomes, the missing data are the censored outcomes, and in practice the plausible

assumption about the missing data is nearly always that censoring is non-informative

(similar to an MAR assumption). Methods for sensitivity analysis to informative censoring

are not well developed.

Our considerations have led us to propose a framework for ITT analysis with missing data

that complements and extends the CNSTAT report [4]. We believe that if trialists follow this

framework then there is scope for considerable improvement in the appropriateness,

consistency, and reporting of ITT analyses when outcomes are missing. However, the best

approach to missing data is always to design and conduct the trial to maximise data

collection [2, 3]. A careful ITT analysis strategy, and in particular an appropriate sensitivity

analysis, recognises the increase in uncertainty that arises from missing outcomes, and

therefore increases the incentive for researchers to maximise their data completeness.
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Figure 1.
Mean profiles in one arm of a hypothetical randomised trial for individuals who have

complete data (solid line) and those who drop out at time 1 (dashed line), illustrating three

possible assumptions for missing data at time 2 (dotted line).
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Figure 2.
Mean profiles in one arm of a hypothetical randomised trial for individuals who have

complete data (solid line) and those who drop out at time 1 (dashed line), showing how

LOCF and MCAR can agree without necessarily being correct.
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Figure 3.
UK700 trial: sensitivity analysis for departures from MAR. The basic analysis is the mixed

model with CPRS as outcome and baseline CPRS as covariate using available cases. The

parameter δ is the difference between missing and observed CPRS, adjusted for baseline

CPRS, in one or both arms. Vertical bars are 95% confidence intervals.
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Table 1

UK700 trial: data summary

Variable % missing Values Mean SD

Centre 0% 0/1/2/3

Randomised group (standard/intensive) 0% 0/1

CPRS: psychopathology score

 baseline 0.4% 18.8 12.7

 year 1 16.2% 17.2 13.1

 year 2 16.0% 18.3 13.8

SAT: satisfaction score 1

 baseline 19.4% 18.9 4.8

 year 1 27.8% 17.2 4.7

 year 2 30.8% 16.9 4.8

HOS: days in hospital for mental health reasons over past 2 years

 baseline 0.1% 108.9 112.6

 year 2 4.1% 73.3 117.8

1
Higher values denote lower satisfaction.
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