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This article proposes a fully nonparametric kernel method to account for observed covariates in regression

discontinuity designs (RDD), which may increase precision of treatment effect estimation. It is shown that

conditioning on covariates reduces the asymptotic variance and allows estimating the treatment effect at

the rate of one-dimensional nonparametric regression, irrespective of the dimension of the continuously

distributed elements in the conditioning set. Furthermore, the proposed method may decrease bias and

restore identification by controlling for discontinuities in the covariate distribution at the discontinuity

threshold, provided that all relevant discontinuously distributed variables are controlled for. To illustrate

the estimation approach and its properties, we provide a simulation study and an empirical application to

an Austrian labor market reform. Supplementary materials for this article are available online.
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1. INTRODUCTION

The regression discontinuity design (RDD) has received

tremendous attention inmany fields, for example, labormarkets,

political economy, health, education, psychology, criminology,

as a credible approach to identifying causal effects without hav-

ing to resort to fully randomized experiments. Hahn, Todd, and

van der Klaauw (2001) formalized the assumptions required to

identify causal effects in the RDD and provided nonparamet-

ric (local linear) estimators. Porter (2003) complemented their

work by alternative estimators. Lee and Card (2008) consid-

ered the case when the forcing variable is discrete. McCrary

(2008) proposed a test for the manipulation of the running vari-

able related to the continuity of its density function. Imbens

and Lemieux (2008), van der Klaauw (2008), and Lee and

Lemieux (2010) surveyed the applied and theoretical litera-

ture on the RDD. Imbens and Kalyanaraman (2012) discussed

optimal bandwidth selection in terms of squared error loss,

while Calonico, Cattaneo, and Titiunik (2014) proposed meth-

ods for robust inference alongwith optimal bandwidth selection.

Dong (2014) presented an alternative to some of the identifying

assumptions in Hahn, Todd, and van der Klaauw (2001).

In this article, the regression discontinuity approach is

extended to incorporate covariates in a fully nonparametric

way. Our estimator is based on a local nonparametric regres-

sion approach, that is, kernel-based estimation, which allows

deriving closed-form expressions for bias and variance. (An

alternative approach could use global nonparametric methods

such as sieves or polynomials of increasing order. However,

such global methods, which are capable of fitting regression

curves at many points by means of extrapolation, may perform

poorly in the RDD, where a good fit is only needed at the treat-

ment threshold, see Gelman and Imbens (2018). Extrapolation

from far-away data points is also inherent in linear regression

where one linearly controls for covariates.) Consider the setup

of the RDD: D is a binary treatment indicator, Y is the outcome

variable of interest, and Z is the “forcing variable” with a known

threshold z0 at which the treatment probability Pr(D = 1|Z) is
discontinuous. There are various motivations for accounting for

covariates, denoted by X . A first reason is variance reduction,

which is well known for the parametric case. But gains in preci-

sion can also be achieved in the nonparametric setup, as flexibly

including covariates and averaging them out in an appropriate

way reduces the asymptotic variance of the estimated treatment

effect. We show that under mild regularity conditions, incor-

porating covariates permits estimating the treatment effect at

the rate for one-dimensional nonparametric regression, that is,

n− 2
5 (where n is the sample size), irrespective of the dimen-

sion of the continuously distributed elements in X . Hence,

the curse of dimensionality does not apply due to smoothing

over X .

Second, as pointed out by Imbens and Lemieux (2008),

covariates may mitigate small sample biases in cases where

the number of observations close to the threshold z0 is small

such that one has to include observations in the estimation that

are further apart and may potentially differ in X . Controlling

for X might eliminate some of the bias that is introduced by
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observations further away from the threshold, as illustrated by

Black, Galdo, and Smith (2007). However, biases related to

unobserved characteristics cannot be accounted for.

Third, we also permit for situations where the density f (X |Z)
is discontinuous at z0, which may point to a failure of the RDD

assumptions, see Lee (2008), such that the simple RDD esti-

mator is generally inconsistent. Our approach nevertheless

identifies a local treatment effect in cases in which X contains

all variables that (i) are imbalanced around the threshold and (ii)

affect the outcome variable. With this respect, our contribution

distinguishes itself from a more recent article on RDD with

covariates by Calonico et al. (2018), who assume f (X |Z) to
be continuous at z0. Under that stronger identifying condition

not needed here, Calonico et al. (2018) discussed potential

precision gains when linearly (rather than nonparametrically

as in our method) controlling for X and provided methods for

optimal bandwidth selection and robust inference.

One example for f (X |Z) being discontinuous at z0 is “clas-

sical confounding” where manipulation of Z at the threshold

is selective with respect to characteristics that may also affect

the outcome, see, for instance, Urquiola and Verhoogen (2009).

If all confounding characteristics are observed in the data, our

method yields the treatment effect on compliers at the threshold.

See also van der Klaauw (2008) for confounding in the context

of dynamic treatment assignment, where observed earlier treat-

ment eligibility or participation (X) jointly affects the (current)

forcing variable Z andY . As a further example, consider the case

when Z not only affects D, but also further variables that affect

Y . This may occur in spatial RDDs where Z is based on distance

to geographical borders. Eugster et al. (2017), for instance, use

the (mainly French and German) language border within admin-

istrative units of Switzerland to estimate the effects of culture

on unemployment. The authors consider a measure of the “taste

for leisure” as one particular indicator of culture. However, in

addition to this treatment variable, further community-based

covariates that are likely affected by culture also change discon-

tinuously at the border. Controlling for X is therefore necessary

as Z would otherwise violate the exclusion restriction with

respect to Y at the threshold through its influence on X . Identi-

fication of a causal effect is, however, only obtained if X are not

“bad controls” which are affected by unobservables that also

influence Y .

The remainder of this article is organized as follows.

Section 2 discusses the identification of the treatment effect in

the presence of covariates. Section 3 proposes two estimators

and examines their properties and shows that one of them

achieves the n− 2
5 convergence rate. Section 4 provides a sim-

ulation study that (among others) illustrates the implications

of confounding related to observed covariates at the threshold

when applying RDDwith and without controlling forX . Section

5 presents an empirical application to Austrian labor market

reform previously considered by Lalive (2008) to estimate the

effect of age-dependent eligibility to unemployment benefits

on unemployment duration. As employees at risk of becoming

unemployed might negotiate the exact date of dismissal with

their employers, manipulation at the age threshold is a concern.

We therefore control for a range of labor market-relevant char-

acteristics that are potential confounders and find our results to

differ from RDD without X . Section 6 concludes.

2. RDD WITH COVARIATES

We define causal effects using the potential-outcome notation

in the framework known as the Neyman–Fisher–Rubin causal

model. (See Neyman (1923), Fisher (1935), and Rubin (1978).)

Following the setup of Hahn, Todd, and van der Klaauw (2001),

let Di ∈ {0, 1} be a binary treatment variable, let Y 0
i , Y

1
i be the

individual potential outcomes, andY 1
i − Y 0

i the individual treat-

ment effect. The potential outcomes as well as the treatment

effects Y 1
i − Y 0

i are permitted to vary across individuals, that is,

no constant treatment effect is assumed. Let Zi be a variable that

influences the treatment variable in a discontinuous way.

In the literature, two distinct designs are examined: the sharp

design where Di changes for everyone at a known threshold z0,

and the fuzzy design where Di changes only for a subset of indi-

viduals. In the sharp design (Trochim 1984), participation status

is given by a deterministic function of Z, for example,

Di = 1(Zi ≥ z0). (1)

This implies that all individuals change program participation

status exactly at z0. The fuzzy design, on the other hand, permits

D to also depend on other factors but assumes that the treatment

probability changes discontinuously at z0:

lim
ε→0

E [D|Z = z0 + ε] − lim
ε→0

E [D|Z = z0 − ε] �= 0. (2)

Note that the fuzzy design includes the sharp design as a special

case when the left-hand side of (2) is equal to one. For this rea-

son, the subsequent discussion mostly focuses on the more gen-

eral fuzzy design. (Battistin and Rettore (2008) introduced the

mixed sharp fuzzy design as a special case of the fuzzy design.)

See Hahn, Todd, and van der Klaauw (2001) for more details.

Identification is feasible under the continuity of the mean

potential outcomes at z0 and relies on comparing the observed

outcomes of those individuals to the left of the threshold with

those to the right. In addition to continuity of E[Y d |Z = z] in

z at z0 for d = {0, 1}, Hahn, Todd, and van der Klaauw (2001)

considered two alternative identifying assumptions:

HTK1: Y 1
i − Y 0

i ⊥⊥Di|Zi for Zi near z0 (3)

or

HTK2:
{

Y 1
i − Y 0

i ,Di(z)
}

⊥⊥Zi near z0 and there exists e > 0

such that Di(z0 + ε) ≥ Di(z0 − ε) for all 0 < ε < e. (4)

Assumption (3) is a local selection on observables assump-

tion and identifies the average treatment effect at the threshold:

E[Y 1 − Y 0|Z = z0]. Assumption (4) is an instrumental vari-

ables assumption that identifies a local average treatment effect

(LATE) for a local group of compliers at the threshold:

lim
ε→0

E[Y 1 − Y 0|D(z0 + ε) > D(z0 − ε),Z = z0].

In the sharp design, everyone is a complier at z0 and assumption

(3) is meaningless (i.e., has no identifying power) such that one

needs assumption (4). In the fuzzy design, one typically invokes

(4), since the conditional independence assumption (3) does not

permit treatment selection based on individual gains Y 1
i − Y 0

i .

It is worth mentioning that Dong (2014) recently showed that

alternatively to (4), identification of the LATE is obtained by

making a continuity assumption of Z in the neighborhood of
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z0. (Continuity of Z implies the smoothness of mean potential

outcomes conditional on compliance behavior and of the shares

of subgroups defined upon compliance at the threshold, which

is sufficient for identification.)

In the following, we introduce observed covariates Xi and

assume that (4) is valid conditional on X . As an example,

suppose that there exists a liberalized education market in

which schools may charge tuition fees, and that by law classes

must be split if the number of students surpasses a particular

threshold. As argued in Urquiola and Verhoogen (2009) for the

case of Chile, schools close to the threshold might adjust tuition

fees, thereby causing discontinuities in the admitted students’

socioeconomic characteristics such as household income and

parents’ education. Assume that the latter variables also affect

the outcome of interest, for example, students’ educational

degree, which implies a violation of HTK2 when assessing the

educational effect of class size. However, if household income,

parents’ education, and all other variables imbalanced at the

threshold and affecting the outcome are observed, (4) holds con-

ditional on Xi. (Whether it is plausible to assume that all imbal-

anced covariates affecting the outcome are observed depends on

the empirical problem and the richness of data. In the context of

Urquiola and Verhoogen (2009), for instance, ambition might

(in addition to parents’ education and household income) play

a role for selectively (re)placing students into particular class

sizes. One would therefore want to condition on a rich set

of socio-economic household characteristics and personality

traits, for example, provided by means of a household survey.)

By an analogous reasoning as in HTK, and further assumptions

made precise below, it follows immediately that the treatment

effect on the local compliers conditional on X is identified as

lim
ε→0

E
[

Y 1 − Y 0 |X,D(z0 + ε) > D(z0 − ε),Z = z0
]

=
m+(X, z0) − m−(X, z0)

d+(X, z0) − d−(X, z0)
, (5)

where m+(X, z) = limε→0 E[Y |X,Z = z+ ε] and m−(X, z) =
limε→0 E[Y |X,Z = z− ε] and d+(X, z) and d−(X, z) defined

analogously with D replacing Y .

In this article, however, we focus on identifying and estimat-

ing the unconditional effect

lim
ε→0

E
[

Y 1 − Y 0 |D(z0 + ε) > D(z0 − ε),Z = z0
]

, (6)

that is, the effect on all compliers without conditioning on X .

We identify this effect by first controlling for X and thereafter

averaging over X . There are at least three reasons, why esti-

mating the unconditional effect (6) is interesting (or even more

interesting than the conditional effect (5)). First, for the purpose

of evidence-based policy-making a small number of summary

measures can be more easily conveyed to policy makers and the

public than a large number of estimated effects at every value

of X . Second, unconditional effects can be estimated more pre-

cisely than conditional effects. Third, the definition of uncon-

ditional effects does not depend on the variables included in

X . (This, of course, is only true if X exclusively contains pre-

treatment variables.) One can therefore consider different sets

of control variables X and still estimate the same object, which

is useful for examining robustness of the results to the set of

control variables. See also Frölich (2007).

For showing identification of the unconditional effect (6), we

first introduce some further notation. Let Nε be a symmetric

ε neighborhood about z0 and partition Nε into N+
ε = {z : z ≥

z0, z ∈ Nε} and N−
ε = {z : z < z0, z ∈ Nε}. According to their

reaction to the instrument z over Nε we can partition the popu-

lation into four subpopulations:

τi,ε = a if Di(z) = 1 ∀z ∈ N
−
ε and Di(z) = 1 ∀z ∈ N

+
ε

τi,ε = n if Di(z) = 0 ∀z ∈ N−
ε and Di(z) = 0 ∀z ∈ N+

ε

τi,ε = c if Di(z) = 0 ∀z ∈ N
−
ε and Di(z) = 1 ∀z ∈ N

+
ε

τi,ε = d if Di(z) = 1 ∀z ∈ N−
ε and Di(z) = 0 ∀z ∈ N+

ε .

These subpopulations are a straightforward extension of the

LATE concept of Imbens and Angrist (1994). The first group

contains those units that will always be treated (if Z ∈ Nε), the

second contains those that will never be treated (if Z ∈ Nε), and

the third and fourth group contains the units that are treated only

on one side of z0. (In the appendix, we also consider a pos-

sible fifth group of indefinite units, for which no left-limit of

Di(z) may exist. We assume this group to not exist, that is, we

require that all units have well-defined left-limits of Di(z).) We

will assume that the fourth group, that is, the “defiers,” has mea-

sure zero for ε sufficiently small. Note that in the sharp design,

everyone is a complier for any ε > 0.

Under the following assumption, we can identify the treat-

ment effect for the local compliers, that is, for those who switch

fromD = 0 to 1 at z0. (The conditions in Assumption 1 are very

similar, but a little weaker, to a conditional-on-X version of (4).)

It is assumed throughout that the covariates X are continuously

distributed with a Lebesgue density. This assumption is made

for convenience to ease exposition, particularly in the deriva-

tion of the asymptotic distributions later on. Discrete covari-

ates can (at the expense of more cumbersome notation) easily

be included in X , as the derivation of the asymptotic distribu-

tion only depends on the number of continuous regressors in

X , while discrete variables do not affect the asymptotic prop-

erties. In fact, identification does not require any continuous X

variables. Only Z has to be continuous near z0, but could have

masspoints elsewhere.

Assumption 1. For a symmetric neighborhood Nε about z0
and for almost every X

(i) Existence of compliers

limε→0 Pr(τε = c|Z ∈ Nε ) > 0

(ii) Monotonicity

limε→0 Pr(τε = c|Z ∈ Nε ) + Pr(τε = a|Z ∈ Nε ) +
Pr(τε = n|Z ∈ Nε ) = 1

(iii) Independent IV

limε→0 Pr(τε = t|X,Z ∈ N+
ε ) − Pr(τε = t|X,Z ∈

N−
ε ) = 0 for t ∈ {a, n, c}

(iv) IV Exclusion

limε→0 E[Y
1|X,Z ∈ N+

ε , τε = t] − E[Y 1|X,Z ∈ N−
ε ,

τε = t] = 0 for t ∈ {a, c}
limε→0 E[Y

0|X,Z ∈ N+
ε ,

τε = t] − E[Y 0|X,Z ∈ N−
ε , τε = t] = 0 for t ∈ {n, c}

(v) Common support

limε→0 Supp(X |Z ∈ N+
ε ) = limε→0 Supp(X |Z ∈ N−

ε )

(vi) Density at threshold

FZ (z) is differentiable at z0 and fZ (z0) > 0

Journal of Business & Economic Statistics, October 2019738



limε→0 FX |Z∈N+
ε
(x) and limε→0 FX |Z∈N−

ε
(x) exist and

are differentiable in x with pdf f+(x|z0) and f−(x|z0),
respectively.

(vii) Bounded moments

E[Y 1|X,Z] and E[Y 0|X,Z] are bounded away from ±
infinity a.s. over Nε

Concerning notation, f+(x, z0) = f+(x|z0) f (z0) refers to the
joint density of X and Z whereas f+(x|z0) refers to the condi-

tional density of X .

This assumption requires that in a neighborhood about

z0, the threshold acts like a local instrumental variable.

Assumptions 1(i) to (iv) are instrumental variable assump-

tions for a binary instrument, as discussed, for example, in

Imbens (2001). The monotonicity assumption 1(ii) rules out

defiers at the threshold z0, while 1(i) requires the existence

of compliers. We note that 1(i) and 1(ii) could be relaxed

to a local version of the compliers-defiers assumption of de

Chaisemartin (2017), which allows for defiers under particular

conditions, at the cost of identifying the effects only for a subset

of compliers (the so-called “comvivors”). Assumptions 1(iii)

and 1(iv) represent the exclusion restriction, conditional on X .

Assumption 1(v) requires common support because we need to

integrate over the support of X in (7). (If this assumption is not

satisfied, one can redefine (7) by restricting it to the common

support.) Assumption 1(vi) implies positive density at z0, such

that observations close to z0 exist.

We also assume the existence of the limit density functions

f+(x|z0) and f−(x|z0) at the threshold z0. So far, we do not

assume anything about their continuity with respect to z. In other

words, the conditional density could be discontinuous, that is,

f+(x|z0) �= f−(x|z0), in which case controlling for X is impor-

tant for identification and thus consistent estimation, or it could

be continuous, that is, f+(x|z0) = f−(x|z0), in which case iden-
tification does not hinge on controlling for observed covariates.

The latter may, however, reduce the variance of the point esti-

mator, as discussed below. (Note that Assumption 1 is some-

what stronger than needed for identification. Assumptions (1i)

to (1iv) could be replaced with other assumptions that identify

the local treatment effect conditional on X . For instance, if local

compliers and local defiers had the same treatment effect, one

could drop the monotonicity assumption. In addition, the exis-

tence of a density function for X is not needed.)

Assumption (1vii) requires the conditional expectation func-

tions to be bounded from above and below in a neighborhood of

z0. It is invoked to permit interchanging the operations of inte-

gration and taking limits via the dominated convergence the-

orem. (This assumption is certainly stronger than needed and

could be replaced with some other smoothness conditions on

E[Y d |X,Z] in a neighborhood of z0.)

Theorem 1 (Identification of complier treatment effect).

Under Assumption 1, the local average treatment effect γ

for the subpopulation of local compliers is nonparametrically

identified as

γ = lim
ε→0

E
[

Y 1 − Y 0 |Z ∈ Nε, τε = c
]

=
∫ (

m+(x, z0) − m−(x, z0)
)

· f+(x|z0 )+ f−(x|z0 )
2

dx
∫

(d+(x, z0) − d−(x, z0)) · f+(x|z0 )+ f−(x|z0 )
2

dx
. (7)

Proof. See the appendix. �

Under Assumption 1, the treatment effect for the local

compliers is identified as a ratio of two integrals, as shown in

Theorem 1. The numerator in (7) is the intention-to-treat (ITT)

effect of Z onY , weighted by the conditional density of X , at z0.

(In the limit, the density of X conditional on Z being within a

symmetric neighborhood around z0 is given by
f+(x|z0 )+ f−(x|z0 )

2
.)

The denominator in (7) gives the effect of Z on D, that is, the

fraction of compliers, at z0. Thus, the ratio of integrals gives

the ITT effect multiplied with the inverse of the number of

compliers, corresponding to the LATE at z0.

The ratio of integrals expression in (7) is obtained by applying

iterated expectations to

E[Y 1 − Y 0 |Z ∈ Nε, τε = c]

to obtain

=
∫

E[Y 1 − Y 0 |X = x,Z ∈ Nε, τε = c] · fX |Z∈Nε,τε=c (x) dx.

(8)

Clearly, the density f (X |Z ∈ Nε, τε = c) among the local com-

pliers is not identified since the type τε is unobservable. How-

ever, by applying Bayes’ theorem to f (X |Z ∈ Nε, τε = c) and

replacing the first term in (8) with ( 5) (before taking limits), sev-

eral terms cancel out andwe obtain after various calculations the

expression (7), which relies on observed variables only. See the

supplementary appendix for detailed derivations. We thereby

have identified the average effect. Similarly, we could identify

quantile treatment effects by combining the previous derivations

with the reasoning in Frölich and Melly (2013) and Frandsen,

Frölich, and Melly (2012).

So far, we have identified the treatment effect for the compli-

ers in the fuzzy design. Without restrictions on treatment effect

heterogeneity, it is impossible to identify the effects for always-

and never-participants since they would never change treatment

status in a neighborhood of z0. However, in the sharp design,

everyone is a complier at z0, that is, d
+(x, z0) − d−(x, z0) = 1,

and the expression (7) simplifies to

lim
ε→0

E
[

Y 1 − Y 0 |Z ∈ Nε

]

=
∫

(

m+(x, z0) − m−(x, z0)
)

·
f+(x|z0) + f−(x|z0)

2
dx. (9)

The estimand (9) in the sharp design is identical to the numerator

of (7). The following discussion focusses on the estimation of

(7), where the numerator and denominator of (7) are analyzed

separately. Therefore, the asymptotic distribution of ( 9) in the

sharp design is immediately obtained by using the results for

the numerator of (7) only. We also note that the estimands (7)

and (9) bear some resemblance to the partial means estimator of

Newey (1994). Both the numerator and denominator of (7) have

a partial means form, in that averages over the covariates X are

taken, at the left and the right limit at z0.

Instead of generalizing assumption (4) to permit for further

covariates X , we could alternatively start from the conditional

independence assumption (3). To conserve space, we, however,

do not analyze this in much detail since most applied work

either uses a sharp design (where (3) is meaningless) or other-

wise refers to (4 ). Consider an extension of (3) by including
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covariates X :

Y 1
i − Y 0

i ⊥⊥Di|Xi,Zi for Zi near z0. (10)

Analogously to the derivations in Hahn, Todd, and van der

Klaauw (2001) it follows that

E[Y 1 − Y 0|X,Z = z0] =
m+(X, z0) − m−(X, z0)

d+(X, z0) − d−(X, z0)
.

Similarly to the derivations for Theorem 1, one can show that

the unconditional treatment effect for the population near the

threshold is

E[Y 1 − Y 0|Z = z0] =
∫

m+(x, z0) − m−(x, z0)

d+(x, z0) − d−(x, z0)

·
f+(x|z0) + f−(x|z0)

2
dx. (11)

This expression differs from (7) and (9) in that it is an integral

of a ratio and not a ratio of integrals. The results derived in

Section 3 therefore do not apply to (11). In addition, expres-

sion (11) may be difficult to estimate in small samples as the

denominator can be close to zero for some values of x. (This

problem is of much less concern for estimators of (7) and (9)

as those are based on a ratio of two integrals and not on an

integral of a ratio. For those estimators the problem of very

small denominators for some values of X averages out.)

Instead of using (10), one might be willing to strengthen the

latter assumption to

Y 1
i ,Y 0

i ⊥⊥Di|Xi,Zi for Zi near z0. (12)

This permits identifying the treatment effect as

E
[

Y 1 − Y 0|Z = z0
]

=
∫

(E [Y |D = 1,X = x,Z = z0] − E [Y |D = 0,X = x,Z = z0])

·
f+(x|z0) + f−(x|z0)

2
dx,

where E[Y |D,X,Z = z0] can be estimated by a combination

of the left- and right-hand side limits. This approach does not

exclusively rely on comparing observations across the threshold

but also uses variation within either side of the threshold. The

estimand has a similar structure as (7) and (9) and the estimation

properties derived later could easily be extended to this case.

3. ESTIMATION

A straightforward estimator of (7) is

γ̂ =
∑n

i=1

(

m̂+(Xi, z0) − m̂−(Xi, z0)
)

· Kh
(

Zi−z0
h

)

∑n
i=1

(

d̂+(Xi, z0) − d̂−(Xi, z0)
)

· Kh
(

Zi−z0
h

) , (13)

where m̂ and d̂ are nonparametric estimators and Kh(u) is a ker-

nel function. For the sharp design (9) the estimator simplifies

to
∑

(m̂+(Xi, z0) − m̂−(Xi, z0) ) · Kh( Zi−z0h
)

∑

Kh(
Zi−z0
h

)
.

For practical convenience, we will mostly work with prod-

uct kernel functions below. Product kernel functions also have

the advantage that one can easily incorporate discrete X in the

spirit of Racine and Li (2004). Define κ and κ̄ as univariate

kernel functions, where κ is a second-order kernel (assumed

to be symmetric and integrating to one) and κ̄ is a kernel

of order λ ≥ 2. The following kernel constants for κ will be

used later: µl =
∫ ∞
−∞u

lκ (u)du and µ̄l =
∫ ∞
0
ulκ (u)du and µ̃ =

µ̄2

2
− µ̄2

1. (With symmetric kernel µ̄0 = 1
2
.) Furthermore define

µ̈l =
∫ ∞
0
ulκ2(u)du. (For the Epanechnikov kernel with support

[−1, 1], that is, K(u) = 3
4
(1 − u2)1(|u| < 1) the kernel con-

stants are µ0 = 1, µ1 = µ3 = µ5 = 0, µ2 = 0.2, µ4 = 6/70,

µ̄0 = 0.5, µ̄1 = 3/16, µ̄2 = 0.1, µ̄3 = 1/16, µ̄4 = 3/70. The

kernel constants for κ̄ are defined as ηl =
∫ ∞
−∞u

l κ̄ (u)du and

η̇l =
∫ ∞
−∞u

l κ̄2(u)du. The kernel function κ̄ being of order λ

means that η0 = 1 and ηl = 0 for 0 < l < λ and ηλ �= 0.)

We will consider two different choices for Kh(u) in (13). The

conventional choice would be to use a positive (i.e., second

order) and symmetric kernel

Kh (u) =
1

h
κ (u). (14)

However, as shown below, the use of this “naive” kernel function

(14) leads at best to a convergence rate of n− 1
3 of (13).

As an alternative, we consider a boundary kernel

Kh (u) = (µ̄2 − µ̄1 |u|) ·
1

h
κ (u) (15)

in (13), and we will see that this leads to a convergence rate

of n− 2
5 of (13), that is, the rate of univariate nonparametric

regression. This is achieved through smoothing with implicit

double boundary correction. (See, for example, Jones (1993) or

Jones and Foster (1996) for similar boundary kernels, or Gasser

and Müller (1979), Gasser, Müller, and Mammitzsch (1985),

Müller (1991) or Tenreiro (2013) for a more general discussion

on various forms of boundary kernels or boundary corrections

including the derivation of optimal boundary kernels for density

estimation, estimation of distribution functions, or estimation

of nonparametric curves, etc.)

In the following, we will refer to estimator (13) with kernel

function (14) as γ̂naive. Estimator (13) with kernel function (15)

is denoted as γ̂RDD. Because of the asymptotic properties derived

below we recommend the use of γ̂RDD.

In either case, estimation proceeds in two steps and requires

nonparametric first step estimates of m+, m−, d+, and d−. (In

the sharp design (9), d+ and d− are not estimated but set to 1

and 0, respectively.) These can be estimated nonparametrically

by considering only observations to the right or the left of z0,

respectively. Since this corresponds to estimation at a boundary

point, local linear regression is suggested, which is known to

display better boundary behavior than conventional Nadaraya–

Watson kernel regression. m+(x, z0) is estimated by local linear

regression as the value of a that solves

argmin
a,b,c

n
∑

j=1

(

Yj − a− b
(

Z j − z0
)

− c′
(

X j − x
))2 · K jI

+
j ,

(16)

where I+j = 1(Z j > z0) and a product kernel is used

K j = K j(x, z0) = κ

(

Z j − z0

hz

)

·
L

∏

l=1

κ̄

(

X jl − xl

hx

)

, (17)
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where L is the dimension of X , and κ and κ̄ are univariate kernel

functions with κ a second-order kernel and κ̄ a kernel of order

λ ≥ 2.

A result derived later will require higher-order kernels (i.e.,

λ > 2) if the number of continuous regressors is larger than

3. For applications with at most three continuous regressors, a

second-order kernel will suffice such that κ̄ = κ can be chosen.

Note that three different bandwidths hz, hx, h are used. h is the

bandwidth in the matching estimator (13) to compare observa-

tions to the left and right of the threshold, whereas hz and hx
determine the local smoothing area for the local linear regres-

sion in (16), which uses observations only to the right or only

to the left of the threshold. We need some smoothness assump-

tions as well as conditions on the bandwidth values. (Note that

the above setup includes global linear regression for the special

case where all bandwidth values are set to infinity. In this case,

the estimator (16) corresponds to a linear regression using only

data points to the right; and analogously on the left-hand side.

While a bandwidth value of infinity minimizes variance it could

lead to a large bias if the true regression curve is nonlinear.

The estimator analyzed below seeks to minimize mean squared

error, that is, the sum of the squared bias and variance.)

Assumption 2.

(i) IID sampling: The data {(Yi,Di,Zi,Xi)} are iid from R ×
R × R × R

L

(ii) Smoothness:

- m+(x, z), m−(x, z), d+(x, z), d−(x, z) are λ times con-

tinuously differentiable with respect to x at z0 with λth

derivative Hölder continuous in an interval around z0,

- f+(x, z) and f−(x, z) are λ − 1 times continuously dif-

ferentiable with respect to x at z0 with (λ − 1)th deriva-

tive Hölder continuous in an interval around z0,

- m+(x, z), d+(x, z), and f+(x, z) have two continuous

right derivatives with respect to z at z0 with second

derivative Hölder continuous in an interval around z0,

- m−(x, z), d−(x, z), and f−(x, z) have two continuous

left derivatives with respect to z at z0 with second

derivative Hölder continuous in an interval around z0,

(iii) the univariate Kernel functions κ and κ̄ in (17) are sym-

metric, bounded, Lipschitz, integrate to one and are zero

outside a bounded set; κ is a second-order kernel and κ̄ is

a kernel of order λ,

(iv) Bandwidths: The bandwidths satisfy h, hz, hx → 0 and

nh → ∞ and nhz → ∞ and nhzh
L
x → ∞.

(v) Conditional variances: The left and right limits of the

conditional variances limε→0 E[(Y − m+(X,Z))2|X,Z =
z+ ε] and limε→0 E[(Y − m−(X,Z))2|X,Z = z− ε] exist

at z0.

3.1 Properties of γ̂naive

With these preliminaries, we consider the properties of γ̂naive and

γ̂RDD. The estimator γ̂naive is, in essence, a combination between

local linear regression in the first step and Nadaraya–Watson

regression in the second step. Although this estimator appears

to be the most obvious one for estimating (7), it has worse sta-

tistical properties than γ̂RDD in the sense that it achieves a lower

rate of convergence. This is due to the missing boundary correc-

tion in the second step.

Proposition 1 (Asymptotic properties of γ̂naive). Under

Assumptions 1, 2, and 3, the bias and variance terms of γ̂naive,

which is the estimator (13) with kernel function (14), are of

order

Bias(γ̂naive) = O
(

h+ h2z + hλ
x

)

var(γ̂naive) = O

(

1

nh
+

1

nhz

)

.

For the sharp design (9), the same results apply. The exact

expressions for bias and variance are given in the appendix.

From this result it can be seen that the fastest rate of con-

vergence possible for γ̂naive by appropriate bandwidth choices is

n− 1
3 . (In the special case where the density is continuous, that

is, f−(x|z0) = f+(x|z0), the bias term with respect to the band-

width h is O(h2) such that a convergence rate of n− 2
5 is possi-

ble. In this article, we focus on the estimator proposed in the

next section, though, because it can obtain n− 2
5 rate irrespec-

tive of whether the density is continuous or not.) It is straight-

forward to show asymptotic normality for this estimator, but

the (first-order) approximation may not be very useful in prac-

tice as it would be dominated by the bias and variance terms

O(h) andO( 1
nh
). The terms corresponding to the estimation error

of m̂+(x, z0), m̂
−(x, z0), d̂

+(x, z0), d̂
−(x, z0) would be of lower

order and thus ignored in the first-order approximation. The bias

and variance approximation thus obtained would be the same

as in a situation wherem+(x, z0),m
−(x, z0), d

+(x, z0), d
−(x, z0)

were known and not estimated. Hence, such an approximation

might not be very accurate in small samples. A more useful

approximation can be obtained by retaining also the lower order

terms. However, it seems more promising to use γ̂RDD instead.

3.2 Properties of γ̂RDD

The estimator γ̂RDD is based on (13), but uses the boundary ker-

nel (15) in the second smoothing step, instead of (14). It thereby

attains the convergence rate of a one-dimensional nonparametric

regression estimator, irrespective of the dimension of X . It thus

obtains the fastest convergence rate possible and is not affected

by a curse of dimensionality. This is achieved by smoothing

over all regressors X and by an implicit boundary adaptation

with respect to Z. (In addition, the bias and variance terms due

to estimating m+,m−, d+, d− and due to estimating the density

functions
f−(x|z0 )+ f+(x|z0 )

2
by the empirical distribution functions

converge at the same rate.)

We derive the asymptotic distribution of this estimator and

show that the asymptotic variance becomes smaller the more

covariates X are included. For the optimal convergence result

further below, we need to be specific about the choice of the

bandwidth values.

Assumption 3. The bandwidths satisfy the following

conditions:

lim
n→∞

√
nh5 = r < ∞

lim
n→∞

hz

h
= rz with 0 < rz < ∞

lim
n→∞

h
λ/2
x

h
= rx < ∞.
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This assumption ensures that the bias and standard deviation

of the estimator converge at rate n− 2
5 to zero, that is, at the rate

of a univariate nonparametric regression. Note that the last con-

dition of Assumption 3 provides an upper bound on hx, whereas

Assumption (2iv) provides a lower bound on hx. Suppose that

hx depends on the sample size in the following way:

hx ∝ nζ ,

then the bandwidth conditions of Assumptions 2 and 3 together

require that

−
4

5L
< ζ ≤ −

2

5λ
. (18)

This implies that hx converges at a slower rate to zero than h and

hz when L ≥ 4, that is, when X contains four or more continuous

regressors. Therefore, a necessary condition for Assumptions 2

and 3 to hold jointly is that − 4
5L

< − 2
5λ

or equivalently λ > L
2
.

As further discussed below, this requires higher-order kernels

if X contains four or more continuous regressors, where as con-

ventional kernels are sufficient otherwise. Assumption 3 is suffi-

cient for the bias and variance to converge at the univariate non-

parametric rate, which is summarized in the following theorem.

Theorem 2 (Asymptotic distribution of γ̂RDD).

(a) Under Assumptions 1 and 2, the bias and variance terms of

γ̂RDD, which is the estimator (13) with kernel function (15),

are of order

Bias(γ̂RDD) = O
(

h2 + h2z + hλ
x

)

var(γ̂RDD) = O

(

1

nh
+

1

nhz

)

(b) Under Assumptions 1, 2, and 3, the estimator is asymptot-

ically normally distributed and converges at the univariate

nonparametric rate
√
nh (γ̂RDD − γ ) → N (BRDD,VRDD) ,

where BRDD

=
r

Ŵ

µ̄2
2 − µ̄1µ̄3

4µ̃ f (z0)

∫

(

m+(x, z0) − m−(x, z0) − γ
(

d+(x, z0)

− d−(x, z0)
))

(

∂2 f+

∂z2
(x, z0) +

∂2 f−

∂z2
(x, z0)

)

dx

+
rr2z

Ŵ

µ̄2
2 − µ̄1µ̄3

2µ̃

∫ (

∂2m+(x, z0)

∂z2
−

∂2m−(x, z0)

∂z2

− γ
∂2d+(x, z0)

∂z2
+ γ

∂2d−(x, z0)

∂z2

)

f−(x, z0) + f+(x, z0)

2 f (z0)
dx

+
rr2xηλ

Ŵ

∫ L
∑

l=1

{

∂λm+(x, z0)

λ! · ∂xλ
l

+
λ−1
∑

s=1

∂sm+(x, z0)

∂xsl
ω+
s

−
∂λm−(x, z0)

λ! · ∂xλ
l

−
λ−1
∑

s=1

∂sm−(x, z0)

∂xsl
ω−
s

}

f−(x, z0) + f+(x, z0)

2 f (z0)
dx

−
γ rr2xηλ

Ŵ

∫ L
∑

l=1

{

∂λd+(x, z0)

λ! · ∂xλ
l

+
λ−1
∑

s=1

∂sd+(x, z0)

∂xsl
ω+
s

−
∂λd−(x, z0)

λ! · ∂xλ
l

−
λ−1
∑

s=1

∂sd−(x, z0)

∂xsl
ω−
s

}

f−(x, z0) + f+(x, z0)

2 f (z0)
dx,

where Ŵ =
∫

(d+(x, z0) − d−(x, z0)) · f−(x|z0 )+ f+(x|z0 )
2

dx

and ω+
s = { ∂λ−s f+(xi,z0 )

s!(λ−s)!·∂xλ−s
l

− ∂λ−1 f+(x0,z0 )

∂x
λ−1

1

· ( ∂λ−2 f+(x0,z0 )

∂x
λ−2

l

)−1

(λ−2)!
(λ−1)!s!(λ−1−s)!

∂λ−1−s f+(xi,z0 )

∂xλ−1−s
l

}/ f+(xi, z0) and ω−
s defined

analogously

and VRDD

=
µ̄2

2µ̈0 − 2µ̄2µ̄1µ̈1 + µ̄2
1µ̈2

Ŵ24µ̃2 f 2(z0)
×

⎛

⎜

⎜

⎝

1

rz

∫

(

f+(x, z0) + f−(x, z0)
)2

×
(

σ 2+
Y (x, z0) − 2γ σ 2+

YD (x, z0) + γ 2σ 2+
D (x, z0)

f+(x, z0)

+
σ 2−
Y (x, z0) − 2γ σ 2−

YD (x, z0) + γ 2σ 2−
D (x, z0)

f−(x, z0)

)

dx

+
∫

{

m+(x, z0) − γ d+(x, z0) − m−(x, z0) + γ d−(x, z0)
}2

·
(

f+(x, z0) + f−(x, z0)
)

dx

⎞

⎟

⎟

⎠

,

where σ 2+
Y (X, z) = limε→0 E[(Y − m+(X,Z))2|X,Z =

z+ ε] and σ 2+
YD (X, z) = limε→0 E[(Y − m+(X,Z))(D−

d+(X,Z))|X,Z = z+ ε] and σ 2+
D (X, z) = limε→0 E[(D−

d+(X,Z))2|X,Z = z+ ε] and analogously for σ 2+
Y

(X, z), σ 2+
YD (X, z), and σ 2+

D (X, z).

For the sharp design (9), the same results are obtained but the

formulas are simpler. d+ and d− are not estimated but set to 1

and 0, respectively. This implies that Ŵ = 1 and the terms σ 2+
D ,

σ 2−
D , σ 2+

YD , σ
2−
YD and all derivatives of d+(x, z0) and d

−(x, z0) are

zero.

Note that Assumption 3 is stronger than needed for the

results of Theorem 3. For obtaining n− 2
5 convergence weaker

rate conditions would suffice. In other words, it would not be

needed that the ratios of the bandwidths converge to a well-

defined limit point. Assumption 3 permits obtaining concise

and explicit expressions for bias and variance, though. We also

see that undersmoothing is permitted: For a choice of r = 0 in

Assumption 3, the limit bias term is zero, that is, BRDD = 0.

Such undersmoothing is convenient, for example, for develop-

ing test statistics. (We thank a referee for pointing this out.)

Part (18) of Assumption 3 requires that λ > L
2
to control the

bias due to smoothing in the X dimension. If X contains at most

three continuous regressors, a second order kernel λ = 2 can be

used. Otherwise, higher order kernels are required to achieve an

n− 2
5 convergence rate. Instead of using higher order kernels, one

could alternatively use local higher order polynomial regression

instead of local linear regression (16). However, when the num-

ber of regressors in X is large, this could be inconvenient to

implement in practice since a large number of interaction and

higher order terms would be required, which could give rise to

problems of local multicollinearity in small samples and/or for

small bandwidth values. On the other hand, higher order kernels

are very convenient to implement when a product kernel (17) is

used. Higher order kernels are only necessary for smoothing in

the X dimension but not for smoothing along Z.
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When a second-order kernel is used and X contains at most

three continuous regressors, the bias term BRDD simplifies to

r

Ŵ

µ̄2
2 − µ̄1µ̄3

4µ̃ f (z0)

∫

(

m+(x, z0) − m−(x, z0) − γ
(

d+(x, z0)

− d−(x, z0)
))

(

∂2 f+

∂z2
(x, z0) +

∂2 f−

∂z2
(x, z0)

)

dx

+
rr2z

Ŵ

µ̄2
2 − µ̄1µ̄3

2µ̃

∫ (

∂2m+(x, z0)

∂z2
−

∂2m−(x, z0)

∂z2

− γ
∂2d+(x, z0)

∂z2
+ γ

∂2d−(x, z0)

∂z2

)

·
f−(x, z0) + f+(x, z0)

2 f (z0)
dx

+
rr2xµ2

2Ŵ

∫ L
∑

l=1

{

∂2m+(x, z0)

∂x2l
−

∂2m−(x, z0)

∂x2l

− γ
∂2d+(x, z0)

2 · ∂x2l
+ γ

∂2d−(x, z0)

2 · ∂x2l

}

·
f−(x, z0) + f+(x, z0)

2 f (z0)
dx.

It remains to be discussed how the bandwidth values h, hz,

and hx should be chosen in practice. It is beyond the scope of

this article to develop a data-driven bandwidth selector, and we

therefore limit ourselves to a procedure that is rate optimal, that

is, satisfies Assumptions 2 and 3 as n increases to infinity. The

first part of Assumption 3 suggests to choose h proportional to

n− 1
5 , which corresponds to the rate for univariate nonparametric

regression. A simple procedure is to choose h via (least-square)

cross-validation with respect to a nonparametric regression of

Y on Z (outside of a neighborhood around z0), which is known

to provide a bandwidth that converges at the desired rate. (At

the same time it is known that the bandwidth obtained by cross-

validation converges only very slowly to the true optimal band-

width. Nevertheless, many applied researchers proceed by using

the bandwidth obtained from cross-validation and then examine

the sensitivity of the final estimation results to changes in the

bandwidth values by reestimating with various multiples and/or

fractions of the original bandwidth values.)

With an estimate for h, we can choose hz = hwhich is permit-

ted by Assumptions 2 and 3. If X contains at most three contin-

uous regressors, we can also choose hx = h. On the other hand,

if L ≥ 4, then hx should converge at a slower rate than h and hz.

Assumptions 2 and 3 give us some leeway in the exact choice

of hx. If we would like to make the bias small (for reasons dis-

cussed in the next section), we would choose the lower bound of

(18) to set hx = c1 · n− 4
5L

+δ for a small positive δ and some pos-

itive constant c1. This contrasts with the choice for h which is

given as h = c2 · n− 1
5 . We do not know the optimal c1 and c2, but

since we only aim for a rate optimal choice, we can set c1 = c2

to obtain hx = c1 · n− 4
5L

+δ = c1n
− 4

5L
+δ · n 1

5 n− 1
5 such that

hx = n
1−4/L+5δ

5 · h.

We can thus use the bandwidth h obtained via cross-validation

and multiply it with n
1−4/L+5δ

5 for some small δ to obtain the

(larger) bandwidth value for hx. Having estimated γ̂RDD with

these bandwidths, one would usually examine the robustness of

the results to the bandwidths values.

3.3 Variance Reduction Through the Use of Control

Variables

In most of the discussion so far, it was permitted that f (x|z) is
discontinuous at z0 such that controlling for X allows reducing

bias. In the case where f (x|z) is continuous, controlling for X is

still helpful: It can reduce the variance of the estimator, which

is shown in the following theorem. Suppose that the covariates

are identically distributed on both sides of the threshold (i.e.,

f (x|z) is continuous) such that γ is identified with and with-

out controlling for any X . In this case, one could use γ̂RDD with

X being the empty set. This estimator is henceforth denoted

as γ̂noX . Alternatively, one could use a set of control variables

X in the estimator, which we denote as γ̂RDD as before. Sup-

pose that both estimators are consistent for γ . As shown below,

γ̂noX generally has a larger asymptotic variance than γ̂RDD. (We

would like to point out that the result in Theorem 4 only refers

to the variance. While we find that covariates reduce variance,

we do not have a corresponding result for the bias. Hence, in

certain situations, asymptotic bias could possibly increase and

we, therefore, cannot rule out that the inclusion of covariates X

in certain cases could even increase MSE if in such situations

an increase in squared bias is larger than the decrease of vari-

ance due to the inclusion of X .) On the other hand, an ordering

of squared biases seems impossible under general conditions.

However, by Assumption 3 we can set r = 0, that is, choose a

bandwidth sequence such that the ratio of the squared bias to

variance converges to zero. Such undersmoothing implies that

the asymptotic bias BRDD is zero and the mean squared error is

thus identical toVRDD.With such undersmoothing, we only need

to analyze the asymptotic variance. As outlined below, there are

precision gains by controlling for X even if the RDD estimator

would be consistent without covariates.

For stating Theorem 3 in a concise way, some further notation

is required. Let w
+(X, z) = limε→0 E[Y − γD|X,Z = z+ ε]

be the right limit of the difference between Y and γD,

and w
+(z) = limε→0 E[Y − γD|Z = z+ ε] be the cor-

responding expression without conditioning on X . (This

also contains the sharp design (9) as a special case,

where w
+(X, z) = limε→0 E[Y − γ |X,Z = z+ ε] and

w
−(X, z) = limε→0 E[Y |X,Z = z− ε].) Define the variance of

w
+(X, z0) as V

+ =
∫

{w+(x, z0) − w
+(z0)}2 f (x|z0)dx. Define

w
−(X, z),w−(z) andV− analogously as the left limits. Theorem

3 shows that there is a reduction in variance if V+ �= 0 and/or

V− �= 0.

To gain some intuition, note thatV+ is the variance of the con-

ditional expectation ofY given X plus the variance of the condi-

tional expectation of γD given X minus the covariance between

these two terms. Hence,V+ is usually nonzero if X is a predictor

of Y and/or of D. On the other hand,V+ andV− are zero only if

X neither predictsY nor D. (This discussion excludes the unrea-

sonable case where it predicts both but not Y − γD.) Define

further the covarianceC as
∫

(w+(x, z0) − w
+(z0))(w

−(x, z0) −
w

−(z0)) f (x|z0)dx. For the case where V+ and V− are both

nonzero, we define the correlation coefficient R = C√
V+V− . Now,

we can state the result in terms of the variances and the

correlation coefficient, which also depends on the bandwidth

sequences. The variance of γ̂RDD is a function of smoothing in

the Z dimension via h and hz. The γ̂noX estimator only depends
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on hz since there is no smoothing in the second step. A natu-

ral choice would thus be h = hz. (The variance of γ̂RDD can be

reduced even further relative to γ̂noX by choosing hz < h, but

this would be more of a technical trick than a substantive result.)

This implies rz = 1 in Assumption 3. Using this notation, the

difference in the asymptotic variances can be written as

VRDD − VnoX =
{

rz − 2

2
V+ +

rz − 2

2
V− − rzC

}

×
(

µ̄2
2µ̈0 − 2µ̄2µ̄1µ̈1 + µ̄2

1µ̈2

Ŵ2µ̃2 f (z0)rz

)

or, if V+ and V− are both nonzero, as = { rz−2

2
V+ + rz−2

2
V− −

rzR
√
V+V−}( µ̄2

2µ̈0−2µ̄2µ̄1µ̈1+µ̄2
1µ̈2

Ŵ2µ̃2 f (z0 )rz
), as derived in the appendix.

This implies the following.

Theorem 3. Let γ̂RDD be the estimator (13) with kernel

function (15) using the set of regressors X , and let γ̂noX be the

estimator with X being the empty set. Denote the asymptotic

variance of γ̂noX by VnoX and assume that both estimators con-

sistently estimate γ and satisfy Assumptions 2 and 3. Assume

further that the distribution of X is continuous at z0, that is,

f+(X, z0) = f−(X, z0) a.s.

(a) If V+ = V− = 0 then

VRDD = VnoX .

(b) Under any of the following conditions

VRDD < VnoX ,

- if V+ = 0 and V− �= 0 or vice versa and rz < 2

- or if V+ �= 0 and V− �= 0 and R ≥ 0 and rz < 2

- or if V+ �= 0 and V− �= 0 and −1 < R < 0 and

rz < 2 1+R
1−R2 .

- or if V+ �= 0 and V− �= 0 and R = −1 and rz < 1.

Hence, if, in case (a) of Theorem 3, where X has no predictive

power neither for Y nor for D, the asymptotic variances are the

same. On the other hand, if X has predictive power either for

Y or for D and one uses the same bandwidths for both estima-

tors (hz = h), the RDD estimator with covariates has a strictly

smaller variance. (In the sharp design (9), X cannot have predic-

tive power for D (conditional on Z), hence predictive power for

Y is needed.) This holds in all cases except for the very implausi-

ble scenario where w
+(X, z0) and w

−(X, z0) are negatively cor-

related with a correlation coefficient of −1. In most economic

applications, however, one would rather expect a positive corre-

lation.

(γ̂RDD has a smaller variance than γ̂noX as it exploits the avail-

able information more effectively. Consider, for simplicity, the

sharp design. γ̂noX estimates the conditional mean of Y left and

right of the threshold. In terms of iterated expectations, the left

limit of the mean of Y at the threshold could be estimated as

the left limit of the mean of Y conditional on X averaged out

with respect to the distribution of X , using only data points to

the left of the threshold. In contrast, γ̂RDD estimates the left limit

of the mean of Y conditional on X , but then takes averages with

respect to the distribution of X in the neighborhood of z0. In

the case where the distribution of X is continuous at z0, that is,

f+(X, z0) = f−(X, z0), the estimator γ̂RDD uses the data points

Xi in the left and in the right neighborhood of z0 to estimate

f (X, z0), whereas γ̂noX uses only the data on one side of the

threshold. This implies that γ̂RDD uses more information in the

estimation of the empirical distribution functionF (X, z0), which

leads to the variance reductions in Theorem 3.

Theorem 3 can easily be extended to show that the RDD esti-

mator with a larger regressor set X, that is, where X ⊂ X, has

smaller asymptotic variance than the RDD estimator with X .

(The proof is analogous and is omitted.) Hence, one can com-

bine specific covariates for eliminating bias with adding further

covariates to reduce variance. The more variables are included

in X the smaller the variance will be.)

4. SIMULATIONS

This section presents a simulation study to investigate the

finite sample performance of the suggested method in the con-

text of the sharp and fuzzy RDD. Starting with the former, we

consider the following data-generating process (DGP):

Z,U,V,W ∼ N (0, 1) independently of each other,

D = I{Z > 0}, X1 = αD+ 0.5U, X2 = αD+ 0.5V,

Y = D+ 0.5Z − 0.25DZ + 0.25Z2 + β(X1 + X2)

+
β

2
(X2

1 + X2
2 ) +W. (19)

Both the running variable Z and the unobservables U,V,W ,

which affect the covariates X1,X2 and the outcome Y , respec-

tively, are standard normally distributed. The parameter α

reflects the strength of the association between the distributions

of X1,X2 and the treatment state D. β determines the impact of

X1,X2 and their higher order terms on Y . In the simulations, we

consider various combinations of α and β. First, we set α = 0

and β = 0.4 such that the covariates affect the outcome, but

are balanced around the threshold. In this case, controlling for

X = (X1,X2) is not necessary for the consistency of RDD, but

might reduce the variance. Second, we set α = 0.2 and β = 0.4,

implying that the distribution of X differs across treatment states

at the threshold and that X affects Y .

We run 1000 simulations and consider sample sizes of

n = 1000 and 4000 to analyze RDD estimation based on the

boundary kernel γ̂RDD, see (15). Least-square cross-validation

(CV) is used to select the bandwidths for the estimation of

m+(x, z) and m−(x, z) (using local linear regression) as well

as Kh(u) required in (13), (For m+(X,Z) and m−(X,Z), the

bandwidth selector CV only uses treated and nontreated obser-

vations, respectively.) based on the np package for the statistical

software R by Hayfield and Racine (2008). In addition, we also

make use of undersmoothing and oversmoothing by taking half

or twice the CV bandwidth, respectively (CV/2, 2CV).

We compare our method to conventional RDD estimation

without covariates as implemented in the rdd package for R by

Dimmery (2016), which is based on a local linear regression ofY

on Z. We consider several bandwidths choices, namely, the val-

ues picked by the CV procedure for γ̂RDD; the method of Imbens

and Kalyanaraman (2012) (IK) for optimal bandwidth selection

in RDD; the robust inference approach of Calonico, Cattaneo,
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Table 1. Simulations—sharp RDD

γ̂RDD RDD without X γ̂RDD RDD without X

Bandwidth CV CV/2 2CV CV IK CCT LM CV CV/2 2CV CV IK CCT LM

α = 0, β = 0.4 n = 1000 n = 4000

bias 0.00 −0.00 0.00 −0.00 0.01 0.00 −0.00 −0.00 −0.00 −0.00 −0.01 −0.00 −0.01 −0.00

sdev 0.15 0.27 0.13 0.43 0.20 0.22 0.15 0.09 0.12 0.09 0.27 0.10 0.10 0.08

rmse 0.15 0.27 0.13 0.43 0.20 0.22 0.15 0.09 0.12 0.09 0.27 0.10 0.10 0.08

α = 0.2, β = 0.4 n = 1000 n = 4000

bias −0.00 −0.00 −0.01 0.18 0.18 0.18 0.17 −0.00 −0.00 −0.01 0.16 0.17 0.17 0.17

sdev 0.17 0.27 0.14 0.45 0.20 0.22 0.15 0.09 0.13 0.09 0.30 0.10 0.10 0.08

rmse 0.17 0.27 0.14 0.48 0.27 0.28 0.23 0.09 0.13 0.09 0.34 0.20 0.20 0.19

NOTE: “CV,” “CV/2,” “2CV” stands for bandwidth selection based on least-square cross-validation, as well as twice and half that value. “IK” is the optimal Imbens–Kalyanaraman
(2012) bandwidth. “CCT” is the robust inference approach of Calonico, Cattaneo, and Titiunik (2014) (CCT). “LM” is the local cross-validation approach of Ludwig and Miller (2007)
based on the median values of the running variable above and below the threshold. “bias,” “sdev,” and “rmse” report the bias, standard deviation, and root mean squared error of the
respective method.

and Titiunik (2014) (CCT) as implemented as default option in

the rdrobust package for R by Calonico, Cattaneo, and Titiunik

(2015); and the local cross-validation approach of Ludwig and

Miller (2007) (LM) based on the median values of the running

variable above and below the threshold. In all estimations, the

Epanechnikov kernel is used.

Table 1 reports the bias, standard deviation, and root mean

squared error (RMSE) of the estimators for various choices of

α, β in the sharp RDD. When setting α = 0, β = 0.4, all pro-

cedures are unbiased as expected. Under either sample size,

γ̂RDD outperforms RDD without X in terms of precision when

using the same CV bandwidth for both estimators. Further-

more, γ̂RDD with CV is in most cases also more precise than

RDD without X based on the IK, CCT, and LM bandwidths.

(Under n = 1000, α = 0, β = 0.4, the means (standard devi-

ations) of the CV, IK, CCT, and LM bandwidths for Z are

0.16 (0.06), 0.84 (0.29), 0.66 (0.11), 1.58 (0.51), respectively.

The means and standard deviations are very similar under n =
1000, α = 0.2, β = 0.4.) As expected, a smaller bandwidth

(CV/2) increases the standard deviation of γ̂RDD, while a larger

bandwidth (2CV) slightly decreases it. For n = 4000, however,

the differences in precision are quite moderate for various band-

width choices.

When setting α = 0.2 and β = 0.4, the biases of γ̂RDD are

again close to zero, while this is no longer the case for RDD

without X . For n = 1000, γ̂RDD with CV and 2CV dominates

any RDD without X in terms of bias, standard deviation, and

root mean squared error (RMSE), while γ̂RDD with CV/2 is less

precise. Under n = 4000, all three versions of γ̂RDD have a con-

siderably smaller RMSE than any RDD without X .

Second, we consider the case of a fuzzy RDD. We modify

the DGP by replacing D = I{Z > 0} in (19) with D = I{−1 +
2I{Z > 0} + 0.5U + Q > 0}, with Q ∼ N (0, 1) independently

of any other variable. D is now endogenous even at the thresh-

old due toU entering both the treatment and outcome equation.

The bandwidths used for the estimation of d+(x, z) and d−(x, z)

required for the fuzzy RDDmethod are selected in an analogous

way as for m+(x, z) and m−(x, z). We also consider fuzzy RDD

estimation without covariates based on Dimmery (2016) with

CV, IK, CCT, and LM bandwidth choices, respectively. (Under

Table 2. Simulations—fuzzy RDD

γ̂RDD RDD without X γ̂RDD RDD without X

Bandwidth CV CV/2 2CV CV IK CCT LM CV CV/2 2CV CV IK CCT LM

α = 0, β = 0.4 n = 1000 n = 4000

bias −0.01 0.00 −0.02 −0.05 −0.02 −0.01 −0.01 0.01 −0.00 0.01 −0.01 0.00 −0.01 -0.01

sdev 0.27 0.42 0.22 0.76 0.34 0.34 0.24 0.16 0.18 0.14 0.34 0.16 0.16 0.12

rmse 0.27 0.42 0.22 0.76 0.34 0.34 0.24 0.16 0.18 0.14 0.34 0.16 0.16 0.12

α = 0.2, β = 0.4 n = 1000 n = 4000

bias −0.01 −0.00 −0.03 0.25 0.27 0.27 0.27 0.01 0.01 0.00 0.25 0.28 0.27 0.27

sdev 0.28 0.52 0.23 0.67 0.33 0.34 0.23 0.15 0.20 0.15 0.39 0.16 0.16 0.12

rmse 0.28 0.52 0.23 0.72 0.43 0.43 0.36 0.15 0.20 0.15 0.46 0.32 0.31 0.30

NOTES: “CV,” “CV/2,” “2CV” stands for bandwidth selection based on least-square cross-validation, as well as twice and half that value. “IK” is the optimal Imbens–Kalyanaraman
(2012) bandwidth. “CCT” is the robust inference approach of Calonico, Cattaneo, and Titiunik (2014) (CCT). “LM” is the local cross-validation approach of Ludwig and Miller (2007)
based on the median values of the running variable above and below the threshold. “bias,” “sdev,” and “rmse” report the bias, standard deviation, and root mean squared error of the
respective method.
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n = 1000, α = 0, β = 0.4, the means (standard deviations) of

the CV, IK, CCT, and LM bandwidths for Z are 0.23 (0.07),

0.84 (0.29), 0.66 (0.11), 1.73 (0.59), respectively. The means

and standard deviations are very similar under n = 1000, α =
0.2, β = 0.4.) The results are reported in Table 2 and show a

qualitatively similar pattern as for the sharp RDD. However,

standard errors are generally larger as estimation is based on

the compliers only, which by the definition of the DGP make up

for about 65% of the population.

5. APPLICATION

As an empirical illustration of our method, we use data from

Lalive (2008), who studies a labor market program introduced

in June 1988 that extended the maximum duration of unem-

ployment benefits from 30 to 209 weeks for job seekers aged

50 or older in certain regions of Austria under particular con-

ditions. This suggests the use of a sharp RDD for assessing

the program’s effect on labor market outcomes such as unem-

ployment duration. The treatment is defined based on the age

threshold of 50. As acknowledged by Lalive (2008), however,

a concern is that employees and companies could manipulate

age at entry into unemployment, for example, by postponing a

layoff in a way that the age requirement is just satisfied. This

is a common concern in many applications. If such manipula-

tions are selective with respect to employee characteristics that

also affect labor market outcomes, conventional RDD without

covariates fails to identify the effect of the program due to con-

founding related to an imbalance of the characteristics around

the threshold. In contrast, our method remains consistent if all

labor market relevant characteristics are plausibly observed in

the data. As a word of caution, however, we would like to point

out that this cannot be taken for granted in our application.

For instance, unobserved individual characteristics like motiva-

tion, (dis-)utility from work, and self-confidence might predict

both manipulation and labor market success. To consistently

estimate the program effect by our method, it is required that

these factors do not entail confounding conditional on the socio-

economic and employment-related characteristics available in

the data (see the discussion below).

Our analysis makes use of the Austrian social security

database, which includes information on job seekers (age,

employment, unemployment, and earnings history) and the

employers (region and industry), and the Austrian unemploy-

ment register, which contains information on the place of

residence and socio-economic characteristics. The universe of

inflows into unemployment between 1986 and 1995 is covered,

and the inflow sample can be followed up until the end of

1998. We refer to Lalive (2008) for a description of sample

adjustments made to the dataset. Specifically, we consider the

female subsample in the age bracket 46 to 53 years living in a

region where the program had been introduced, consisting of

5659 observations. The outcome variable Y is unemployment

duration, measured as weeks registered at the unemployment

office. The running variable Z is distance to the age threshold of

50, measured in months divided by 12. Table 3 reports sample

means and balancing tests at the threshold for potentially labor

market relevant characteristics, which serve as X . The tests are

based on running RDD estimations with the elements in X as

outcome variables using the ‘rdd’ package, which performs

local linear regression around the threshold. Estimates, standard

errors, and p-values are reported for the IK bandwidth and half

of it. Indeed, several covariates are imbalanced around the

Table 3. Covariate sample means and balance tests at the threshold

IK IK/2

Sample mean Difference p-Value Difference p-Value

Married (binary) 0.75 0.16 0.00 0.16 0.01

Single (binary) 0.09 −0.05 0.05 −0.05 0.13

Education: medium (binary) 0.22 0.02 0.51 −0.00 0.99

Education: high (binary) 0.08 0.04 0.03 0.04 0.14

Foreign (binary) 0.02 0.01 0.37 0.01 0.59

Replacement rate 0.44 −0.01 0.01 −0.01 0.03

log wage in last job 6.15 0.12 0.00 0.18 0.00

Actual to potential work experience 0.89 0.02 0.06 0.00 0.77

White collar worker (binary) 0.32 0.16 0.00 0.15 0.00

Industry: agriculture (binary) 0.02 −0.01 0.65 0.02 0.20

Industry: utilities (binary) 0.00 0.00 0.32 0.00 0.32

Industry: food (binary) 0.05 −0.02 0.31 −0.03 0.44

Industry: textiles (binary) 0.12 0.02 0.54 −0.03 0.38

Industry: wood (binary) 0.03 0.00 0.82 0.02 0.20

Industry: machines (binary) 0.08 0.04 0.05 0.06 0.06

Industry: other manufacturing (binary) 0.11 0.03 0.31 0.04 0.33

Industry: construction (binary) 0.03 0.03 0.03 0.04 0.02

Industry: tourism (binary) 0.32 −0.03 0.46 −0.02 0.73

Industry: traffic (binary) 0.02 −0.03 0.07 −0.02 0.37

Industry: services (binary) 0.17 −0.05 0.14 −0.03 0.50

NOTE: “IK,” “IK/2” denote the optimal Imbens–Kalyanaraman (2012) bandwidth and half that value in an RDD estimation when using each of the covariates as outcome. p-Values are
based on analytic standard errors and account for clustering of age (measured in months).
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Table 4. Effect estimates

γ̂RDD RDD without X

Bandwidth h 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Treatment effect 115.31 112.74 110.76 109.71 108.64 134.25 143.67 141.41 137.99 132.55

Standard error 4.23 4.09 4.14 4.03 4.41 9.72 12.49 9.90 8.45 8.03

p-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NOTES: The bandwidths hx, hz for the first step estimates of m+ and m− entering γ̂RDD (see Section 3) are picked by least-square cross-validation. For bandwidth h on the running
variable Z in γ̂RDD and RDD without X , several values are considered as indicated in the table. Standard errors are based on bootstrapping the estimate 999 times. Sample size is 5659
observations. X includes the variables given in Table 3: marital status, education, migration status, replacement rate, log wage in last job, actual to potential work experience, white collar
worker, and industry.

threshold, which concerns among others marital status, wage

in the last job, and being a white collar worker. (To control the

family-wise error rate of multiple testing in Table 3, one may

apply the (conservative) Bonferroni correction: divide the nom-

inal level of significance by the number of tested covariates (in

our case 20) and reject an individual null hypothesis of covari-

ate balance if the corresponding p-value is even lower. For log

wage in last job and white collar worker, the null hypothesis

is rejected under either bandwidth at the nominal 5% level of

significance.) The results therefore suggest that observations

slightly above the age threshold have somewhat more favorable

labor market relevant characteristics than those slightly below.

Our RDD estimator derived from Equation (7) controls for

differences in X by giving appropriate weights to each of these

characteristics, according to their distribution about the thresh-

old. Consider, for example, the variable marital status, which

is significantly different in Table 3. On average, 75% of the

observations in the sample are married, but the (conditional)

probability of being married is discontinuous at the threshold:

The nonparametric estimates of the probability from the left

and right are 63.7% and 79.9%, respectively. In a symmetric

neighborhood about the threshold, the probability of being mar-

ried is thus 71.8%. Our method proceeds by estimating the

outcome unemployment duration for married women left and

right of the threshold and multiplying with a weight of 0.718.

An analogous approach applies to unmarried women using a

weight of 0.282. Hence, a weighted average with respect to

the fraction of married women in a symmetric neighborhood

about the threshold is taken. This removes the discontinuity in

marital status: The 63.7% married women to the left are up-

weighted with 0.718/0.637, while the 79.9% married women to

the right are down-weighted with 0.718/0.799. Accordingly, the

36.3% unmarried women to the left are down-weighted with

0.282/0.363, while those 20.1% to the right are up-weighted

with 0.282/0.201. In contrast, RDD estimation not controlling

for X compares the unemployment duration left and right of the

threshold without weighting, thereby ignoring that there are, for

example, fewer married women to the left than to the right of the

threshold.

Table 4 presents the results for γ̂RDD when using cross-

validation for the bandwidth selection of hx, hz in the first-step

estimation of m+ and m−. Different from the simulations in

Section 4, however, the covariates now contain both continuous

and discrete elements. We therefore apply the method of Racine

and Li (2004), which allows for both continuous and discrete

regressors by means of product kernels and is implemented

in the “np” package of Hayfield and Racine (2008). We use

the Epanechnikov, Wang and van Ryzin (1981), and Aitchison

and Aitken (1976) kernel functions for continuous, ordered

discrete, and unordered discrete covariates, respectively. We

consider several choices for bandwidth h in the Epanechnikov-

based boundary kernel function for the running variable in

(13): 0.1, 0.2, . . . , 0.5. We also compare the results to RDD

regression without covariates based on the “rdd” package

with the same bandwidth choice h. The standard errors of

any method are based on nonparametrically bootstrapping the

respective estimates 999 times, that is, randomly resampling the

original data with replacement and applying the estimators to

the bootstrap samples. The γ̂RDD estimates point to a substantial

increase in unemployment duration by about 110 weeks.

The results are highly significant, as the standard errors of

roughly 4 weeks are quite moderate. When using RDD without

X , both the effect of about 140 weeks and the standard error

of about 10 weeks are substantially higher. For each bandwidth

value considered, the estimates are statistically significantly dif-

ferent between the methods (at the 5% level based on bootstrap-

ping the differences in the estimates 999 times). This indicates

that there might be some confounding due to observed covari-

ates. Also the effects reported in Table 3 columns (3) and (4) of

Lalive (2008) when omitting X and either using a global RDD

model with a higher order polynomial for the running variable or

a local linear model with a very small bandwidth are somewhat

higher than γ̂RDD (122 to 126 weeks). In contrast, the effect of

103 weeks presented in column (6) of Table 3 in Lalive (2008)

is based on linearly controlling for covariates. Our somewhat

higher (and at the 5% level statistically significantly different)

estimates (when bootstrapping the differences) are likely due to

using a more flexible specification with respect to the associa-

tion of Y and X .

6. CONCLUSION

In this article, the regression discontinuity design (RDD) has

been generalized to incorporate covariates X in a fully nonpara-

metric way. Including covariates can reduce the variance and

eliminate biases if X is discontinuously distributed at the thresh-

old. It has been shown that the curse of dimensionality does not

apply and that the average treatment effect (on the local compli-

ers) can be estimated at rate n− 2
5 irrespective of the dimension of

X . For achieving this rate, a boundary RDD estimator has been

suggested. We investigated the finite sample properties of our

Frölich and Huber: Including Covariates in the Regression Discontinuity Design 747



estimator in simulations and applied it to estimate the effect of

age-dependent unemployment benefits on unemployment dura-

tion in Austrian labor market reform, where manipulation at the

threshold is a potential concern.

SUPPLEMENTARY MATERIALS

The supplementary appendix contains all proofs.

ACKNOWLEDGMENTS

This is a substantially revised version of the 2007 IZAWorking Paper 3024.
The authors have benefitted from comments by three anonymous referees, the
associate editor, and the editor.

FUNDING

Markus Frölich acknowledges financial support from the Research Center
SFB 884 ‘Political Economy of Reforms’ Project B5, funded by the German
Research Foundation (DFG).

[Received January 2015. Revised November 2017.]

REFERENCES

Aitchison, J., and Aitken, C. (1976), “Multivariate Binary Discrimination by the
Kernel Method,” Biometrika, 63, 413–420. [747]

Battistin, E., and Rettore, E. (2008), “Ineligibles and Eligible Non-Participants
as a Double ComparisonGroup in Regression-Discontinuity Designs,” Jour-
nal of Econometrics, 142, 715–730. [737]

Black, D., Galdo, J., and Smith, J. (2007), “Evaluating the Regression Discon-
tinuity Design Using Experimental Data,” Mimeo, University of Michigan,
USA. [737]

Calonico, S., Cattaneo, M. D., Farrell, M. H., and Titiunik, R. (2018), “Regres-
sion Discontinuity Designs Using Covariates,” Review of Economics and
Statistics, forthcoming. [737]

Calonico, S., Cattaneo, M. D., and Titiunik, R. (2014), “Robust Nonparametric
Confidence Intervals for Regression-Discontinuity Designs,”Econometrica,
82, 2295–2326. [736]

——— (2015), “rdrobust: An R Package for Robust Nonparametric Inference in
Regression-Discontinuity Designs,” R Journal, 7, 38–51. [745]

de Chaisemartin, C. (2017), “Tolerating Defiance? Local Average Treatment
Effects Without Monotonicity,” Quantitative Economics, 8, 367–396. [739]

Dimmery, D. (2016), Package ‘rdd’, Manual for the Statistical Software
‘R’,” The Comprehensive R Archive Network, available at https://cran.r-
project.org/web/packages/rdd/rdd.pdf [744,745]

Dong, Y. (2014), “An Alternative Assumption to Identify LATE in Regression
Discontinuity Designs,” unpublished manuscript, University of California
Irvine. [736,737]

Eugster, B., Lalive, R., Steinhauer, A., and Zweimüller, J. (2017), “Cul-
ture, Work Attitudes and Job Search: Evidence From the Swiss Language
Border,” Journal of the European Economic Association, 15, 1056–1100.
[737]

Fisher, R. (1935), Design of Experiments, Edinburgh: Oliver and Boyd. [737]
Frandsen, B., Frölich, M., and Melly, B. (2012), “Quantile Treatment Effects

in the Regression Discontinuity Design,” Journal of Econometrics, 168,
382–395. [739]

Frölich, M. (2007), “Nonparametric IV Estimation of Local Average Treatment
Effects With Covariates,” Journal of Econometrics, 139, 35–75. [738]

Frölich, M., and Melly, B. (2013), “Unconditional Quantile Treatment Effects
Under Endogeneity,” Journal of Business and Economic Statistics (JBES),
31, 346–357. [739]

Gasser, T., andMüller, H. (1979), “Kernel Estimation of Regression Functions,”
in Smoothing Techniques for Curve Estimation, Lecture Notes in Mathe-
matics 757, eds. T. Gasser, and M. Rosenblatt, Berlin: Springer, pp. 23–68.
[740]

Gasser, T., Müller, H., andMammitzsch, V. (1985), “Kernels for Nonparametric
Curve Estimation,” Journal of the Royal Statistical Society, Series B, 47,
238–252. [740]

Gelman, A., and Imbens, G. (2018), “Why High-Order Polynomials Should Not
be Used in Regression Discontinuity Designs,” Business & Economic Statis-
tics, forthcoming. [736]

Hahn, J., Todd, P., and van der Klaauw, W. (2001), “Identification and Estima-
tion of Treatment Effects with a Regression-Discontinuity Design,” Econo-
metrica, 69, 201–209. [736,737,740]

Hayfield, T., and Racine, J. (2008), “Nonparametric Econometrics: The np Pack-
age,” Journal of Statistical Software, 27, 1–32. [744,747]

Imbens, G. (2001), “Some Remarks on Instrumental Variables,” in Economet-
ric Evaluation of Labour Market Policies, eds. M. Lechner, and F. Pfeiffer,
Heidelberg: Physica/Springer, pp. 17–42. [739]

Imbens, G., andAngrist, J. (1994), “Identification and Estimation of Local Aver-
age Treatment Effects,” Econometrica, 62, 467–475. [738]

Imbens, G., and Kalyanaraman, K. (2012), “Optimal Bandwidth Choice for the
Regression Discontinuity Estimator,” The Review of Economic Studies, 79,
933–959. [736,744]

Imbens, G. W., and Lemieux, T. (2008), “Regression Discontinuity Designs: A
Guide to Practice,” Journal of Econometrics, 142, 615–635. [736]

Jones,M. (1993), “Simple Boundary Correction for Kernel Density Estimation,”
Statistics and Computing, 3, 135–146. [740]

Jones, M., and Foster, P. (1996), “A Simple Nonnegative Boundary Correction
Method for Kernel Density Estimation,” Statistica Sinica, 6, 1005–1013. [740]

Lalive, R. (2008), “How Do Extended Benefits Affect Unemployment Dura-
tion? ARegression Discontinuity Approach,” Journal of Econometrics, 142,
785–806. [737,746,747]

Lee, D. (2008), “Randomized Experiments From Non-Random Selection in
U.S. House Elections,” Journal of Econometrics, 142, 675–697. [737]

Lee, D., and Card, D. (2008), “Regression Discontinuity Inference With Speci-
fication Error,” Journal of Econometrics, 142, 655–674. [736]

Lee, D., and Lemieux, T. (2010), “Regression Discontinuity Designs in Eco-
nomics,” Journal of Economic Literature, 48, 281–355. [736]

Ludwig, J., and Miller, D. L. (2007), “Does Head Start Improve Children’s Life
Chances? Evidence from a Regression Discontinuity Design,” The Quar-
terly Journal of Economics, 122, 159–208. [745]

McCrary, J. (2008), “Manipulation of the Running Variable in the Regres-
sion Discontinuity Design: A Density Test,” Journal of Econometrics, 142,
698–714. [736]

Müller, H. (1991), “Smooth Optimum Kernel Estimators Near Endpoints,”
Biometrika, 78, 521–530. [740]

Newey, W. (1994), “Kernel Estimation of Partial Means and a General Variance
Estimator,” Econometric Theory, 10, 233–253. [739]

Neyman, J. (1923), “On the Application of Probability Theory to Agricultural
Experiments. Essay on Principles,” Statistical Science, 5, 463–480. [737]

Porter, J. (2003), “Estimation in the Regression Discontinuity Model,” Mimeo.
[736]

Racine, J., and Li, Q. (2004), “Nonparametric Estimation of Regression Func-
tions with Both Categorical and ContinuousData,” Journal of Econometrics,
119, 99–130. [740,747]

Rubin, D. (1978), “Bayesian Inference for Causal Effects: The Role of Random-
ization,” Annals of Statistics, 6, 34–58. [737]

Tenreiro, C. (2013), “Boundary Kernels for Distribution Function Estimation,”
REVSTAT-Statistical Journal, 11, 169–190. [740]

Trochim,W. (1984), Research Design for Program Evaluation: The Regression-
Discontinuity Approach, Beverly Hills: Sage Publications. [737]

Urquiola, M., and Verhoogen, E. (2009), “Class-Size Caps, Sorting, and the
Regression-Discontinuity Design,” The American Economic Review, 99,
179–215. [737,738]

van der Klaauw, W. (2008), “Breaking the Link Between Poverty and Low Stu-
dent Achievement: An Evaluation of Title I,” Journal of Econometrics, 142,
731–756. [736,737]

Wang,M., and van Ryzin, J. (1981), “A Class of Smooth Estimators for Discrete
Distributions,” Biometrika, 68, 301–309. [747]

Journal of Business & Economic Statistics, October 2019748

https://cran.r-project.org/web/packages/rdd/rdd.pdf
xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods

xinndods
Sticky Note
Marked set by xinndods




