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Estimates of the source parameters of gravitational-wave (GW) events produced by compact binary

mergers rely on theoretical models for the GW signal. We present the first frequency-domain model for the

inspiral, merger, and ringdown of the GW signal from precessing binary black hole systems that also

includes multipoles beyond the leading-order quadrupole. Our model, PhenomPv3HM, is a combination of

the higher-multipole nonprecessing model PhenomHM and the spin-precessing model PhenomPv3 that

includes two-spin precession via a dynamical rotation of the GWmultipoles. We validate the new model by

comparing to a large set of precessing numerical-relativity simulations and find excellent agreement across

the majority of the parameter space they cover. For mass ratios < 5 the mismatch improves, on average,

from ∼6% to ∼2% compared to PhenomPv3 when we include higher multipoles in the model. However,

we find mismatches ∼8% for a mass-ratio-6 and highly spinning simulation. We quantify the statistical

uncertainty in the recovery of binary parameters by applying standard Bayesian parameter estimation

methods to simulated signals. We find that, while the primary black hole spin parameters should be

measurable even at moderate signal-to-noise ratios (SNRs) ∼30, the secondary spin requires much larger

SNRs ∼200. We also quantify the systematic uncertainty expected by recovering our simulated signals with

different waveform models in which various physical effects—such as the inclusion of higher modes and/or

precession—are omitted and find that even in the low-SNR case (∼17) the recovered parameters can be

biased. Finally, as a first application of the new model we analyze the binary black hole event GW170729.

We find larger values for the primary black hole mass of 58.25þ11.73
−12.53 M⊙ (90% credible interval). The lower

limit (∼46 M⊙) is comparable to the proposed maximum black hole mass predicted by different stellar

evolution models due to the pulsation pair-instability supernova (PPISN) mechanism. If we assume that the

primary black hole in GW170729 formed through a PPISN, then out of the four PPISN models we consider

only the model of Woosley [1] is consistent with our mass measurements at the 90% confidence level.

DOI: 10.1103/PhysRevD.101.024056

I. INTRODUCTION

The second-generation gravitational-wave (GW)

detectors—Advanced LIGO [2] and Virgo [3]—have so

far published observations of 11 compact binary mergers

from the first two observing runs [4], including one binary

neutron star merger that was also observed across the

electromagnetic spectrum [5]. The third observing run is

currently underway, with further sensitivity improvements

planned in the coming years [6]. GW observations have

already begun to constrain models of the formation and rates

of stellar-mass compact binary mergers [7] and allowed for

strong-field tests of the general theory of relativity [8].

Models for the GW signal, parametrized in terms of the

properties of the system (such as masses, spins, and

orientation), are compared with detector data to infer the

source properties of GW events. The GW signal is

commonly expressed in a multipole expansion where we

denote terms beyond the leading-order quadrupole contri-

bution as “higher-order multipoles.” These higher-order

multipoles are typically much weaker than the dominant

quadrupolar multipole, but grow in relative strength for

systems that are more asymmetric in mass. Past studies

have shown that for events where the signal contains

measurable power in the higher multipoles, parameter

estimates can be biased when using only a dominant-

multipole model. Conversely, it is also true that for some

systems we are able to measure the source parameters more

accurately using a higher-multipole model [9–14].

Another important physical effect is spin precession,

where couplings between the orbital and spin angular
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momenta can cause the orbital plane to precess and thus

cause modulations of the observed GW [15,16]. In terms of

the GW multipoles, precession mixes together different

orders (m multipoles) of the same degree (l multipoles),

complicating a simple description of the waveform [17–

24]. By not taking into account precession and higher-order

multipoles in our waveform models we may not be able to

confidently detect and accurately characterize signals where

these effects are important [25–30]. These events are also

likely to be very interesting astrophysically, providing

valuable information about binary black hole (BBH) for-

mationmechanisms and hence are events with high scientific

gain that we wish to model and measure accurately.

The field of waveform modeling has seen sustained

development over almost two decades and is currently

thriving, with improvements to current methods and the

development of novel methods allowing for more accurate

and efficient models to be applied in data analysis pipelines

[10,31–54]. In this work we take a step towards including

as many important physical effects as possible in wave-

form models by constructing the most physically complete

phenomenological model to date. We present a frequency-

domain model for the GW signal from the inspiral, merger,

and ringdown of a BBH system. The BHs are allowed to

precess and we also model the contribution to the GW signal

from higher-order multipoles. This combines the progress

made in two earlier models: a precessing-binary model that

includes accurate two-spin precession effects during the

inspiral [55,56] (PhenomPv3 [50]), and an approximate

higher-multipole aligned-spin model (PhenomHM [10]).

Figure 1 demonstrates the improved accuracy that is

achievable by our new model, PhenomPv3HM, compared

to other existing models that include the effect of spin

precession, but not higher-order multipoles. We compare

the observed GW signal predicted by our new model

against a high-mass-ratio, precessing numerical relativity

(NR) simulation
1
(thick grey line). We plot the GW signal

observed at an inclination angle
2
of π=2 rad to emphasize

the effect of precession. We use all multipoles in the range

2 ≤ l ≤ 4 when computing the NR GW polarizations.

We compute the mismatch (defined in Sec. III A)

between three different precessing waveform models and

the NR waveform, and average over all possible orienta-

tions. The top panel shows the optimal waveform (in blue)

when we use SEOBNRv3 [43] and the middle panel shows

(in orange) the result when we use PhenomPv3. In this

context the optimal waveform maximizes the overlap over

coalescence time, template phase, and polarization angle,

and the intrinsic parameters are fixed to the values from the

NR simulation. As shown in Ref. [50], SEOBNRv3 and

PhenomPv3 have overlaps of ∼99% and ∼98%, respec-

tively, to this NR waveform when only the l ¼ 2 multi-

poles are considered. When we include higher-order

multipoles in the NR waveform we find that the overlap

drops to only ∼92% and ∼93%, respectively. This is an

example where the exclusion of higher multipoles in

template models can lead to unacceptable losses in sig-

nal-to-noise ratio (SNR). The bottom panel shows, in

green, the best-fitting PhenomPv3HM template. We

find remarkable agreement, even through the inspiral,

merger, and ringdown stages. The overlap is now 99%

and the subtle modulation visible is accurately captured

by our model. It is useful to point out here that, in

FIG. 1. Comparison of the detector response strain hðtÞ viewed
at an inclination angle of π=2. Solid grey: NR simulation (SXS:

BBH:0058). We use a mass-ratio q≡m1=m2 ¼ 5, precessing

BBH simulation with a dimensionless-spin magnitude of χ1 ¼
0.5 generated with a total mass of 80 M⊙. The NR signal contains

all of the l; m modes up to and including l ¼ 4. Top panel, blue:

Precessing model SEOBNRv3 [58], with the (ð2;�2Þ, ð2;�1Þ)
modes in the coprecessing frame. Middle panel, orange: Precess-

ing model PhenomPv3 [50] with only the 2;�2 modes in the

coprecessing frame. Bottom panel, green: Precessing model

presented here, PhenomPv3HM, with the ðl;jmjÞ¼ðð2;2Þ;
ð2;1Þ;ð3;3Þ;ð3;2Þ;ð4;4Þ;ð4;3ÞÞ modes in the coprecessing frame.

The orientation-averaged mismatch 1 − M̄ (see Sec. III A) is 8%

for the top panel, 7% for the middle panel, and 1% for the bottom

panel. We only plot the last ∼7 GW cycles for clarity but the

behavior is qualitatively the same throughout the 29-orbit inspiral

(∼60 GW cycles).

1
The NR waveform is SXS:BBH:0058 from the SXS public

catalogue [57]. It has a mass ratio of q ¼ 5 with spin on the
larger BH directed in the orbital plane with a dimensionless
spin magnitude of χ1 ¼ 0.5.

2
Here we define the inclination as the angle between the orbital

angular momentum and the line of sight at the beginning of the
waveform.
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PhenomPv3HM, the higher multipole and the precession

elements of the model have not been calibrated to NR

simulations, but when this is done we expect the accuracy

to improve further.

The rest of the paper is organized as follows. In Sec. II

we describe how our model is constructed. In Sec. III Awe

compare our model against precessing NR simulations

including higher-order multipoles up to and including

l ¼ 4 to demonstrate its accuracy across the parameter

space where we have NR simulations. We also perform a

parameter estimation study to quantify the impact on

parameter recovery when using a model that includes both

higher multipoles and precession, the results of which are

presented in Sec. III B.

Finally, in Sec. III C we analyze data for the GW170729

event, publicly available at the Gravitational Wave Open

Science Center [59], which has evidence for nonzero BH

spin [4] and unequal masses [11].

II. METHOD

Our method to build a model for the GW signal from

precessing BBHs is based upon the novel ideas of

Refs. [18,23,60], where the GW from precessing binaries

can be modeled as a dynamic rotation of nonprecessing

systems. In Refs. [35,37,58] the authors used these ideas to

build the first precessing inspiral-merger-ringdown (IMR)

models.

Our goal is to derive frequency-domain expressions for

the GW polarizations h̃þ=×ðfÞ in terms of the multipoles

h̃lmðfÞ. We start from the complex GW quantity,

h ¼ hþ − ih×, in the time domain and decompose this

into spin weight −2 spherical harmonics,

hðt; λ⃗; θ;ϕÞ ¼
X

l≥2

X

−l≤m≤l

hl;mðt; λ⃗Þ−2Yl;mðθ;ϕÞ: ð1Þ

This is a function of the time t, the intrinsic source

parameters (masses and spin angular momenta of the

bodies) denoted by λ⃗, and the polar angles θ and ϕ of a

coordinate system whose z axis is aligned with the total

angular momentum J⃗ of the binary at some reference

frequency. To approximate the precessing multipoles

h
prec
l;mðtÞ we perform a dynamic rotation of the nonprecess-

ing multipoles h
non-
prec

l;mðtÞ,

h
prec
l;mðtÞ ¼

X

−l≤m0≤l

h
non-
prec

l;m0ðtÞDl

m0;m
ðαðtÞ; βðtÞ; ϵðtÞÞ: ð2Þ

We define the Wigner D matrix as Dl

m0;m
ðα; β; ϵÞ ¼

eimαdl
m0;m

ð−βÞe−im
0ϵ and the Wigner d matrix is given in

Ref. [61].

Next we transform to the frequency domain using the

stationary-phase approximation [62] under the assumption

that the precession angles modify the signal via a slowly

varying amplitude, giving us an expression for the

frequency-domain multipoles in terms of the coprecessing

frame multipoles,

h̃
prec
l;mðfÞ ¼

X

−≤l<m0≤l

h̃
non-
prec

l;m0ðfÞDl

m0;m
ðα; β; ϵÞ: ð3Þ

For brevity we omit the explicit dependence on fre-

quency for the precession angles (α, β, ϵ), but they are

evaluated at the stationary points tðfÞ ¼ 2πf=m0 [39].

The frequency-domain GW polarizations h̃þ=×ðfÞ are

defined as the Fourier transform (FT) of the real-valued

GW polarizations hþ=×ðtÞ, which we write as

h̃þðfÞ ¼ FT½ReðhðtÞÞ� ¼
1

2
ðh̃ðfÞ þ h̃�ð−fÞÞ; ð4Þ

h̃×ðfÞ ¼ FT½ImðhðtÞÞ� ¼
i

2
ðh̃ðfÞ − h̃�ð−fÞÞ: ð5Þ

To arrive at the final expression for the frequency-

domain GW polarizations we substitute Eq. (3) into

Eqs. (4) and (5), assuming f > 0 and symmetry through

the orbital plane in the coprecessing frame,
3
leading to

h̃
prec
þ ðfÞ ¼

1

2

X

l≥2

X

m0>0

h̃
non-
prec

l;m0ðfÞ
Xl

m¼−l

ðAl

m0;m
þ ð−1ÞlA�l

−m0;m
Þ;

ð6Þ

h̃
prec
× ðfÞ¼−

i

2

X

l≥2

X

m0>0

h̃
non-
prec

l;m0ðfÞ
Xl

m¼−l

ðAl

m0;m
− ð−1ÞlA�l

−m0;m
Þ:

ð7Þ

To shorten the expression we define the auxiliary matrix

Al

m0;m
≡

−2
Yl;mD

l

m0;m
and omit the explicit angular depend-

ence of
−2
Yl;m and the precession angles in Dl

m0;m
. The

summation over l and m0 are over the modes included in

the coprecessing frame. Here we use the PhenomHMmodel

[10], which contains the ðl; jm0jÞ ¼ ðð2; 2Þ; ð2; 1Þ; ð3; 3Þ;
ð3; 2Þ; ð4; 4Þ; ð4; 3ÞÞ modes.

Due to precession the properties of the remnant BH in

the precessing system are different to those in the equiv-

alent nonprecessing system. We use the same prescription

as described in Sec. III C of Ref. [50] to include the in-

plane-spin contribution to the spin of the remnant BH. This

modified final spin vector changes the ringdown spectrum

of the aligned-spin multipoles.

Last, we note that the models for the three ingredients

(the nonprecessing model, the precession angles, and the

BH remnant model) are independent in our construction,

3
This leads to the simplification h̃l;m0ðfÞ ¼ ð−1Þlh̃�

l;−m0ð−fÞ.
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and can therefore each be updated when any of them are

improved.

III. WAVEFORM ASSESSMENT

A. Mismatch computation

The standard metric to assess the accuracy of GW signal

models is to calculate the noise-weighted inner product

between the template model and an accurate signal wave-

form. As our signal we use NR waveforms from the

publicly available SXS catalogue [57,63,64] generated

using the NR injection infrastructure in LALSuite [65].

From this catalogue we select the precessing configurations

with the highest numerical resolution. This set contains 90

systems with q ∈ ½1; 6�; however, the majority of cases

have q ≤ 3. We have two cases at q ¼ 5 and one case at

q ¼ 6. There are six cases that have at least one BH with

a dimensionless spin magnitude jχj > 0.5, whereas the

majority of cases have jχj ≤ 0.5.
4
For the exact list of NR

configurations and specific details on how the mismatch

calculations were performed we refer the reader to

Ref. [50], where we presented an identical analysis but

restricted the signals to contain the l ¼ 2 multipoles.

Since PhenomPv3 is constructed from PhenomD it

only has the l ¼ jmj ¼ 2modes in the coprecessing frame,

and therefore we expect this model to perform poorly when

the contribution to the signal due to higher modes is not

negligible. As PhenomPv3HM is constructed from

PhenomHM and contains the ðl; jmjÞ ¼ ðð2; 2Þ; ð2; 1Þ;
ð3; 3Þ; ð3; 2Þ; ð4; 4Þ; ð4; 3ÞÞ modes in the coprecessing

frame, we expect it to outperform PhenomPv3. In

the NR signal we include multipoles with l ∈ ½2; 4�
to be consistent with the highest modeled l mode in

PhenomPv3HM.

We use the expected noise curve for Advanced LIGO

operating at design sensitivity [66]
5
with a low-frequency

cutoff of 10 Hz. Due to the presence of higher modes the

orbital phase of the binary is no longer degenerate with the

phase of the observed waveform, which means the standard

method to analytically maximize over the template phase is

not applicable. It is possible, however, to analytically

maximize over the template polarization using the sky-

maxed SNR derived in Ref. [28]. In our match calculation

we analytically maximize over the template polarization

and relative time shift and numerically optimize over the

template orbital reference phase and frequency. Finally, we

average the match, weighted by the optimal SNR, over the

signal orbital reference phase and polarization angle. See

Sec. III A in Ref. [50] for details.

Figure 2 shows the orientation-averagedmismatch [50] as

a function of the total mass of the binary for an inclination

angle ι ¼ π=3. Here ι is the angle between the Newtonian

orbital angular momentum and the line of sight at the

start frequency of the NR waveform. The first row uses

the dominant multipole-only model, PhenomPv3, and the

second row uses the new higher-multipole model,

PhenomPv3HM, presented here. We clearly see that for

q ≥ 3 it is important to include higher modes in the

template model.

In Table I we summarize the results of our validation

study by tabulating the results as the match (as opposed to

mismatch as in Fig. 2) for each model according to mass

ratio and inclination angle. Next to the mass-ratio range in

parentheses is the number of NR cases in that mass-ratio

category. Each entry in the table is calculated as follows:

for the Mtot ¼ 100 M⊙ case we average the match over

all cases in the mass-ratio category and write the minimum

and maximum match as a subscript and superscript,

respectively.

1 ≤ q ≤ 2: In this mass-ratio range both PhenomPv3

and PhenomPv3HM perform comparably, most likely due

FIG. 2. The results of the comparison between PhenomPv3

(top), PhenomPv3HM (bottom), and the precessing NR simu-

lations from the public SXS catalogue. The figure shows the

mismatch average over a reference phase and polarization

angle (1 − M̄) as a function of the total mass for an incli-

nation of ι ¼ π=3. The worst case is SXS:BBH:0165, a

short (∼6 orbits) signal with mass ratio of 1∶6 and high

precession.

4
During the concluding stages of this project the SXS

Collaboration updated their catalogue to include ∼2000 new
simulations [64]. We defer comparison to this catalogue to a
future date.

5
See Ref. [67] for a more recent reference.
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to the strength of higher multipoles scaling with the

mass ratio.

q ¼ 3: Here we start to see the importance of the higher

multipoles to accurately describe the NR signal. For ι ¼ 0,

PhenomPv3 has an average match of 0.989. However, as

the inclination angle increases, thus emphasizing more of

the higher-multipole content of the signal, the average

match drops to 0.941 and can be as low as 0.933. On the

other hand, PhenomPv3HM is able to describe the NR data

to an average accuracy of 0.984 with a minimum value of

0.974 for inclined systems.

q ¼ 5: At this mass ratio the loss in performance for

PhenomPv3 is noticeable even for low inclination values.

At ι ¼ 0 the average match is 0.973, dropping to 0.911 at

ι ¼ π=2. The match for PhenomPv3HM at ι ¼ 0 remains

high at 0.99, but reduces to 0.978 at ι ¼ π=2. Note that we

only have two NR simulations at q ¼ 5 and are thus unable

to rigorously test the model at this and similar mass ratios.

q ¼ 6: When comparing to this NR simulation we

find that both models perform substantially worse than

the q ¼ 5 cases, with even PhenomPv3 outperforming

PhenomPv3HM with matches as low as 0.898. We have

verified that we obtain matches of ∼0.97 when restricting

the NR waveform to just the l ¼ 2 multipoles, consistent

with our previous study [50]. We conclude that either our

model is outside its range of validity or that this NR

simulation is inaccurate for the higher multipoles; however,

our results are robust against NR simulations of this

configuration at multiple resolutions. This NR simulation,

SXS:BBH:0165, is exceptional for a few reasons. First, it is

a high-mass-ratio system where higher multipoles are more

important. Second, it is a strongly precessing system with

primary χ1 ¼ ð0.74; 0.19;−0.5Þ and secondary χ2 ¼
ð−0.19; 0.;−0.23Þ spin vectors. Finally, it is also very

short, only containing ∼6.5 orbits. We encourage more

NR simulations in this region by different NR codes to

(i) cross-check the results and (ii) populate this region with

more data with which to test and refine future models.

We conclude from our study that PhenomPv3HM

greatly improves the accuracy for precessing BBHs for

systems with mass ratios up to 5∶1. We expect to be able to

greatly improve the accuracy and extend towards higher

mass ratios by further calibrating the higher-order multi-

poles and precession effects to NR simulations.

B. Parameter uncertainty

One of the main purposes of a waveform model is to

estimate the source parameters of GWevents. With models

we can quantify the expected parameter uncertainty as a

function of the parameter space [68–76]. Instead of a

computationally intense systematic parameter estimation

campaign, we have chosen to focus on one configuration

and study in detail the dependency of parameter recovery

on SNR. We wish to study a system where both precession

and higher modes are important and, guided by previous

studies [25,26,77], we chose to study a double precessing

spin, mass-ratio 3 BBH signal with a total mass of 150 M⊙

in the detector frame. Starting at a frequency of 10 Hz, this

system produces a waveform with about 20 GW cycles and

merges at a frequency of about 120 Hz. See Table II for

specific injection values, where ðθJN ;ϕÞ define the direc-

tion of propagation in the source frame, (α; δ) are the right
ascension and declination of the source, and ψ is the

polarization angle.

We simulate this fiducial signal with PhenomPv3HM

and recover its parameters using the parallel-tempered

Markov chain Monte Carlo algorithm implemented

as LALInferenceMCMC in the publicly available

LALInference software [78] with PhenomPv3HM as

the template model. We perform three separate, zero-noise

injections to investigate how our results depend on the

injected SNR. Specifically, we inject the signal at lumi-

nosity distances of 3000, 1500, and 300 Mpc, correspond-

ing to a three-detector network SNR of 17, 35, and 176,

respectively. We use the design sensitivity noise curves

for the LIGO Hanford, LIGO Livingston, and Virgo

detectors [66].

We present our results by tabulating the median and 90%

credible interval on binary parameters in Table II and

source-frame parameters in Table III. We also plot the 90%

TABLE I. Match results from Sec. III A. We quote the mean value of the match for each inclination angle

considered (ι ∈ ½0; π=3; π=2� rad) and averaged over all cases in the mass-ratio category for the Mtot ¼ 100 M⊙

case. The subscript and superscript are the minimum and maximum values of the match for the mass-ratio category

considered.

Waveform Model PhenomPv3 PhenomPv3HM

Mass Ratio (#) 0 π=3 π=2 0 π=3 π=2

1 ≤ q ≤ 2 (72) 0.9980.999
0.993 0.9890.996

0.977 0.9820.993
0.967 0.9970.999

0.993 0.9930.996
0.986 0.9870.992

0.972

q ¼ 3 (15) 0.9890.999
0.974 0.9590.967

0.950 0.9410.946
0.933 0.9930.997

0.985 0.9870.993
0.975 0.9840.989

0.974

q ¼ 5 (2) 0.9730.978
0.968 0.9410.951

0.931 0.9110.925
0.897 0.9900.990

0.989 0.9710.975
0.966 0.9780.989

0.968

q ¼ 6 (1) 0.863 0.919 0.939 0.950 0.914 0.898
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credible interval as a function of the injected SNR for a few
chosen parameters in Figs. 3, 4, and 5. In the high-SNR
limit the uncertainty on the parameters should decrease
linearly with SNR, i.e., as 1=ρ [79], which is shown as a
dashed black line in these figures.
In the following discussion we change our convention

for the mass ratio to q≡m2=m1 ∈ ½0; 1� and will abbre-
viate the width of the 90% credible interval of parameter X
at a SNR of ρ as C

ρ
90%

ðXÞ.

1. Masses

Figure 3 shows the source-frame mass parameters: the

primary mass msrc
1
, secondary mass msrc

2
, chirp massMsrc

c ,

total mass Msrc
total, and mass ratio q. We find good scaling

with respect to 1=ρ for all source-frame mass parameters.

Table III shows the injection and recovered values. Even

at the high total masses we consider here we find that

the chirp mass is still the best-measured parameter with

C17

90%
ðMsrc

c Þ ¼ 4.63 M⊙ and C176

90%
ðMsrc

c Þ ¼ 0.61 M⊙. The

total mass is the next-best-measured mass parameter with

low- and high-SNR accuracies of C17

90%
ðMsrc

totalÞ ¼ 13.8 M⊙

and C176

90%
ðMsrc

totalÞ ¼ 2.55 M⊙, respectively. We find that the

primary mass can be measured to an accuracy of

C17

90%
ðmsrc

1
Þ ¼ 16.57 M⊙ for low SNR and C176

90%
ðmsrc

1
Þ ¼

3.13 M⊙ for high SNR. For the secondary mass we find

TABLE II. Injection parameters and results from parameter estimation of simulated signals. We quote the median

and 90% credible interval.

Parameter Injection value ρ ¼ 17.6 DL ¼ 3000 ρ ¼ 35.2 DL ¼ 1500 ρ ¼ 176 DL ¼ 300

mdet
1
=M⊙

112.500 102.98þ13.38
−12.26 107.71þ7.96

−7.43 112.38þ1.73
−1.75

mdet
2
=M⊙

37.500 40.62þ5.92
−5.29 39.00þ2.88

−2.66 37.55þ0.54
−0.52

Mdet
total=M⊙

150.000 143.64þ11.28
−9.74 146.78þ6.48

−5.94 149.93þ1.49
−1.46

Mdet
c =M⊙

54.940 55.08þ3.37
−3.20 55.05þ1.69

−1.69 54.95þ0.36
−0.34

q 0.333 0.39þ0.11
−0.08 0.36þ0.05

−0.04 0.33þ0.01
−0.01

θ1= rad 1.052 1.14þ0.36
−0.37 1.10þ0.27

−0.19 1.05þ0.04
−0.04

θ2= rad 2.090 1.73þ1.01
−1.21 2.04þ0.72

−1.09 2.09þ0.14
−0.12

Δϕ12= rad 1.571 2.82þ3.11
−2.49 1.79þ3.42

−1.35 1.58þ0.24
−0.24

θJN= rad 1.050 1.62þ0.60
−0.73 1.21þ0.92

−0.23 1.05þ0.03
−0.03

cosðϕÞ 1.000 −0.04þ1.03
−0.96 0.46þ0.54

−1.46 1.00þ0.00
−0.01

α= rad 1.047 4.235þ0.124
−3.213 1.070þ3.277

−0.036 1.047þ0.004
−0.004

δ= rad 1.047 −1.020þ2.098
−0.125 1.025þ0.037

−2.155 1.047þ0.004
−0.004

ψ= rad 1.047 1.52þ0.66
−0.76 1.28þ0.80

−0.39 1.05þ0.04
−0.04

χeff 0.200 0.204þ0.129
−0.136 0.201þ0.070

−0.074 0.200þ0.016
−0.017

χp 0.700 0.681þ0.186
−0.285 0.705þ0.098

−0.105 0.699þ0.020
−0.024

jχ1j 0.806 0.77þ0.15
−0.27 0.80þ0.07

−0.09 0.81þ0.02
−0.02

jχ2j 0.806 0.45þ0.47
−0.40 0.59þ0.35

−0.42 0.80þ0.13
−0.11

DL=Mpc see heading 3086.50þ739.44
−571.98 1465.76þ177.84

−157.87 300.12þ7.14
−6.94

TABLE III. Source-frame injection parameters and results from parameter estimation of simulated signals. We

quote the median and 90% credible interval.

ρ ¼ 17 ρ ¼ 34 ρ ¼ 176

Parameter Inj. Rec. Inj. Rec. Inj. Rec.

msrc
1
=M⊙ 74.56 67.60þ8.22

−8.35
87.789 84.28þ5.36

−5.24
105.724 105.54þ1.55

−1.58

msrc
2
=M⊙ 24.853 26.60þ3.95

−3.55
29.263 30.48þ2.47

−2.21
35.241 35.27þ0.51

−0.50

Msrc
total=M⊙ 99.413 94.35þ6.64

−7.16
117.052 114.82þ3.97

−3.96
140.965 140.80þ1.28

−1.27

Msrc
c =M⊙ 36.412 36.11þ2.29

−2.34
42.872 43.04þ1.31

−1.28
51.631 51.61þ0.31

−0.30

DL=Mpc 3000 3086.50þ739.44
−571.98

1500 1465.76þ177.84
−157.87

300 300.12þ7.14
−6.94

z 0.509 0.52þ0.10
−0.08

0.281 0.28þ0.03
−0.03

0.064 0.065þ0.001
−0.001
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C17

90%
ðmsrc

2
Þ ¼ 7.5 M⊙ and C176

90%
ðmsrc

2
Þ ¼ 1.01 M⊙ for low

and high SNR, respectively. Finally, we are able to constrain

the mass ratio to C17

90%
ðqÞ ¼ 0.19 and C176

90%
ðqÞ ¼ 0.02.

2. Spins

Figure 4 shows the primary and secondary spin magni-

tude jχ1j; jχ2j, the effective aligned-spin χeff , and the

effective precessing-spin χp parameters.

With the exception of jχ2j we find good agreement with

the 1=ρ scaling. This suggests that for jχ2j the two weaker

injections do not have high enough SNRs for the posterior

distribution function for this parameter to be approximated

by a Gaussian [79]. That being said, we do observe the 90%

width decrease with SNR, albeit at a slower rate. At SNRs

of 17 and 34 we find that we are not able to place strong

constraints on jχ2jwith C
17

90%
ðjχ2jÞ¼0.87 andC34

90%
ðjχ2jÞ ¼

0.77. However, at the high SNR of 176 we begin to

constrain the spin magnitude at the level of C176

90%
ðjχ2jÞ ¼

0.24, approximately the same level of uncertainty as χeff at

a SNR of 17. This is consistent with the study of non-

precessing binaries in Ref. [80], which concluded that the

secondary spin will not be measurable for SNRs below

∼100, but our results suggest that this carries over to

precessing systems.

The primary spin magnitude is measured with much

higher precision than the secondary spin magnitude.

However, constraining this parameter to a 90% width of

less than 0.2 requires a SNR of ∼30. This parameter does

follow the 1=ρ scaling very well and for high-SNR cases we

estimate the statistical uncertainty to be C176

90%
ðjχ1jÞ ¼ 0.04.

Of the effective spin parameters the effective aligned

parameter χeff is the best-measured quantity. This is closely

related to the leading-order spin effect in post-Newtonian

(PN) theory [81,82] appearing at 1.5PN order. For all three

SNRs the median value is always within 10−3 of the true

value, with the uncertainties ranging from C17

90%
ðχeffÞ ¼

0.265 to C176

90%
ðχeffÞ ¼ 0.033.

Turning towards the effective precession spin parameter

χp, at the lowest SNR we find that the marginalized

posterior for χp has a median value of 0.681, close to

the true value but with a wide uncertainty of C17

90%
ðχpÞ ¼

0.47, spanning almost half of the full range. The evolution

of the median value does not change significantly with

increasing SNR; however, our measurement uncertainty

does decrease with increasing SNR, as expected, and we

find C35

90%
ðχpÞ ¼ 0.203 for the medium-SNR case and

C176

90%
ðχpÞ ¼ 0.044 for the high-SNR case.

Figure 5 shows the spin orientation parameters. θ1 and θ2
are the polar angles of the primary and secondary spin

vectors with respect to the orbital angular momentum at the

reference frequency. The angle Δϕ12 is the angle between

the primary and secondary spin vectors projected onto

the instantaneous orbital plane at the reference frequency.

FIG. 3. 90% credible intervals for the source-frame mass

parameters as a function of injected SNR.

FIG. 4. 90% credible intervals for the BH spin magnitudes and

effective spin parameters as a function of injected SNR.

FIG. 5. 90% credible intervals for the BH spin orientation

parameters as a function of injected SNR.
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This angle is particularly useful when characterizing

precessing binaries as Δϕ12 ¼ 0 or Δϕ12 ¼ π are resonant

spin configurations (if other conditions on the mass-ratio

and spin magnitudes are met) [83].

We find that θ1 has good SNR scaling with C17

90%
ðθ1Þ ¼

0.73 rad (∼42 deg) and C176

90%
ðθ1Þ ¼ 0.08 rad (∼5 deg).

Furthermore, θ2 and Δϕ12 are measured much less accu-

rately and require SNRs of ∼60 and ∼100 to achieve

statistical uncertainties of ∼1 rad (∼60 deg), respectively.

However, in the event of a high-SNR signal we that find we

are able to constrain θ2 to C176

90%
ðθ2Þ ¼ 0.26 rad (∼15 deg)

and Δϕ12 to C176

90%
ðΔϕ12Þ ¼ 0.48 rad (∼28 deg).

In summary, we find that the primary spin magnitude jχ1j
and polar angle θ1 can be constrained at a SNR of ∼30,

while the secondary spin magnitude jχ2j and polar angle θ2
as well as the information about the relative orientation of

the spin vectors Δϕ12 are not constrained until we reach a

SNR of ∼200.

3. Waveform systematics

Parameter estimation on a GW event with a waveform

model that does not include relevant physics effects could

result in biased results. To quantify the size of the bias due

to neglecting higher modes and/or precession for this signal

we repeat our parameter estimation analysis with four

additional models.

The waveform models we use are listed in Table IV,

where we mark whether or not each model contains

precession and/or higher modes. PhenomD is the baseline

model upon which the other Phenom models used in this

work are built. We include two different precessing models

—PhenomPv2 and PhenomPv3—to gauge systematics

on precession. PhenomHM includes higher modes but is a

nonprecessing model, and finally we include the precessing

and higher-mode model PhenomPv3HM presented in this

article.

Our results are presented in Fig. 6. From left to right the

columns show the one-dimensional marginalized posterior

distributions for mdet
1
, mdet

2
, χeff , and χp. The rows from top

to bottom show the results for the low (ρ ¼ 17), medium

(ρ ¼ 34), and high (ρ ¼ 176) SNR injections. The true

value is shown as a vertical dashed black line. For all SNRs

we find biases in the recovered masses for all models other

than PhenomPv3HM, i.e., the model that was used to

produce the synthetic signal. This suggests that real GW

signals that are similar to this injection require analysis with

models that contain both the effects of precession and

higher modes. For the high-SNR case, multimode poste-

riors are found for the PhenomD case. For χeff we find that

for the low-SNR injection the true value is within the 90%

credible interval (CI) and therefore not considered biased;

however, as the SNR of the injection is increased we find

that χeff can become heavily biased for the two precessing

models but remains unbiased for the nonprecessing models.

For χp we find that the precessing and non-higher-mode

models (PhenomPv2 and PhenomPv3) consistently

TABLE IV. Waveform models that we use to analyze

GW170729, highlighting which physical effects are included

for each model.

Model Precession Higher modes

PhenomD [40,84] ✗ ✗

PhenomPv2 [37,85] ✓ ✗

PhenomPv3 [50] ✓ ✗

PhenomHM [10] ✗ ✓

PhenomPv3HM ✓ ✓

FIG. 6. One-dimensional marginal posterior probability distributions for detector-frame primary and secondary masses (first and

second columns, respectively), effective aligned-spin χeff , and effective precession spin χp parameters (third and fourth columns,

respectively). Each row, from top to bottom, shows results for the low (ρ ¼ 17), medium (ρ ¼ 34), and high (ρ ¼ 176) SNR injections.

The true value is marked as a vertical black dashed line. The prior is shown as a black histogram. We show results for PhenomD (red),

PhenomHM (purple), PhenomPv2 (green), PhenomPv3 (blue), and PhenomPv3HM (orange). Note that the results for χp do not show

PhenomD or PhenomHM as they are aligned-spin models only.

KHAN, OHME, CHATZIIOANNOU, and HANNAM PHYS. REV. D 101, 024056 (2020)

024056-8



favor larger values of χp as the SNR increases.

Interestingly, we also start to find large differences between

PhenomPv2 and PhenomPv3 in the high-SNR cases.

C. GW170729 analysis

Of the ten binary black hole observations reported by the

LIGO/Virgo Collaboration [4], GW170729 shows the

strongest evidence for unequal masses, making it the most

likely signal for which higher modes could impact param-

eter measurements. This motivated the study in Ref. [11],

where the authors analyzed GW170729 with two new

aligned-spin and higher-mode models (SEOBNRv4HM [41]

and PhenomHM [10]). They found that the models pre-

ferred to interpret the data as the GW signal coming from a

higher-mass-ratio system, with estimates for the mass ratio

changing from 0.62þ0.36
−0.23 for PhenomPv2 to 0.52þ0.26

−0.21 for

PhenomHM (90% credible interval). This event also has

evidence for a positive χeff , although when analyzed with

higher modes the 90% credible interval for χeff extended to

include zero. This event was also analyzed in Ref. [86] with

the aligned-spin and higher-mode model NRHybSur3dq8

[47], where the authors drew similar conclusions.

Motivated by this, we prioritize GW170729 to analyze

first with PhenomPv3HM and compare to existing results.

We use the posterior samples for PhenomHM from

Ref. [11] and for PhenomPv2 from Ref. [87]. Results

for PhenomD, PhenomPv3, and PhenomPv3HM were

computed for this work using the LALInferenceMCMC

code [88].

In Fig. 7 we show the joint posterior for the source-frame

component masses (msrc
1
, msrc

2
) in the upper left panel, the

aligned effective spin and mass ratio (χeff , q) in the upper

right panel, and finally the luminosity distance and incli-

nation angle (DL, ι) in the bottom panel. The quantitative

parameter estimates for the source properties are provided

in Table V. Our posterior on the effective precession

FIG. 7. GW170729 parameter estimation results. Top left: Component source-frame masses (msrc
1
, msrc

2
). Top right: Effective spin and

mass ratio (χeff , q). Bottom: Inclination angle and luminosity distance (ι, DL). The contour lines correspond to a credible level of 90%.
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parameter χp is consistent with previous results and

shows no significant differences due to a different choice

of precession model (between PhenomPv2 and

PhenomPv3) or including both precession and higher

modes as in PhenomPv3HM. We find that the marginal

posterior effective aligned-spin parameter χeff and lumi-

nosity distance DL are remarkably similar to the results

from PhenomHM. The posterior for the inclination angle ι

for IMPhenomPv3HM has more support for more inclined

viewing angles; however, the change is minor.

Interestingly, we find remarkably consistent results

between not only PhenomD and PhenomPv2 as discussed

in Ref. [11], but also with PhenomPv3. This indicates that

precession alone does not influence our inference for this

event. However, including precession in addition to higher

modes in the analysis does noticeably shift the posterior,

albeit not very significantly in terms of the 90% CIs, which

mostly overlap.

We find that the one-dimensional marginal posterior for

the mass ratio is pushed further towards lower mass-ratio

values (more asymmetric) when using PhenomPv3HM,

where we find q ¼ 0.47þ0.28
−0.16 (90% confidence level),

implying that including precession and higher modes

reinforces the findings of Ref. [11]. As more asymmetric

masses are favored, the estimate for the primary mass

(source frame) is shifted towards higher values and the

secondary mass is shifted towards lower values, where we

find msrc
1

¼ 58.25þ11.73
−12.53 M⊙ and msrc

2
¼ 28.18þ9.83

−7.65 M⊙.

By favoring larger mass estimates for the primary BH we

challenge formation models to describe this event through

standard stellar evolution mechanisms. In particular, our

results inform the pulsational pair-instability supernova

(PPISN) mechanism [1,89]. The population synthesis

analysis in Ref. [90] investigated the resulting distribution

of BH masses subject to different PPISN models. They

found that in three out of the four models that they

explored, the maximum BH mass is ∼40 M⊙ [91–93],

and in one of the models the maximum BH mass is

∼58 M⊙ [1]. In Fig. 8 we show the one-dimensional

marginal posterior for the source-frame primary mass result-

ing from the analysis usingPhenomPv2 (blue),PhenomHM

(orange), and PhenomPv3HM (purple). The 90% credible

interval of each result is shown as the shaded area under their

respective curves. The vertical black dashed lines denote the

maximum BH mass from the four different PPISN models

that were investigated in Ref. [90]. We do not show the

posterior for PhenomD or PhenomPv3 as these are con-

sistent with the PhenomPv2 posterior.

When using PhenomPv2 to analyze the data we find

that the maximum BH masses for all PPISN models are

consistent with the posterior. When we include nonprecess-

ing, higher modes (PhenomHM) the PPISN models that

TABLE V. Parameter estimation results for GW170729. Masses are quoted in the source frame. We quote the median and the 90%

symmetric credible interval of the one-dimensional marginalized posterior distributions.

Parameter PhenomD PhenomHM PhenomPv2 PhenomPv3 PhenomPv3HM

Primary source mass: msrc
1
=M⊙ 50.55þ14.02

−10.64 56.36þ11.08
−12.41 51.22þ16.19

−10.99 51.39þ16.35
−11.58 58.25þ11.73

−12.53

Secondary source mass: msrc
2
=M⊙ 32.18þ10.18

−8.84 29.45þ9.72
−8.36 32.43þ9.75

−9.46 31.67þ10.43
−9.27 28.18þ9.83

−7.65

Total source mass: Msrc
total=M⊙ 82.80þ15.29

−10.82 85.16þ14.00
−10.53 83.93þ14.74

−10.91 83.52þ14.94
−11.09 86.18þ13.42

−10.77

Mass ratio: q 0.64þ0.31
−0.24 0.52þ0.31

−0.18 0.63þ0.32
−0.26 0.62þ0.33

−0.26 0.48þ0.28
−0.16

Effective aligned spin: χeff 0.34þ0.19
−0.26 0.28þ0.22

−0.28 0.36þ0.19
−0.28 0.34þ0.19

−0.27 0.27þ0.21
−0.28

Effective precession spin: χp N=A N=A 0.44þ0.35
−0.29 0.44þ0.36

−0.30 0.42þ0.39
−0.29

Luminosity distance: DL=MPc 2749
þ1353

−1359
2241

þ1391

−1065
2831

þ1371

−1340
2797

þ1386

−1318
2270

þ1307

−974

Redshift: z 0.48þ0.19
−0.21 0.40þ0.20

−0.17 0.49þ0.19
−0.21 0.48þ0.19

−0.20 0.41þ0.19
−0.16

FIG. 8. One-dimensional marginal posterior distribution for the

primary source-frame mass. The posteriors for the three wave-

form models are shown: PhenomPv2 (blue), PhenomHM

(orange), and PhenomPv3HM (purple). The 90% credible

interval of each result is shown as the shaded area under their

respective curves. We also plot as vertical black dashed lines the

maximum BH mass from four different PPISN models, which

were investigated in Ref. [90]. Reference [1] predicted a

maximum mass of 58.4 M⊙, Ref. [91] predicted 40.5 M⊙, and

Refs. [92,93] both predicted 39.5 M⊙.
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predict maximum BH masses of ∼40 M⊙ [91–93] are

excluded at the following level. In the posterior, 1.3% of

samples have a mass of ≤ 40 M⊙. As noted previously,

when we include both precession and higher modes the

primary mass shifts slightly higher, resulting in 0.6% of

samples having a mass of ≤ 40 M⊙. If we assume that the

primary BH in the GW170729 binary underwent a PPISN,

then the following PPISN models [91–93] are disfavored at

greater than 90% credibility and the maximum BH mass as

predicted by Ref. [1] is consistent with our results. There

are some caveats to these results, however. In Ref. [90] the

authors used a linear fit to the PPISN model of Ref. [1] that

systematically predicted larger remnant BH masses for pre-

supernova helium (core) masses MHe > 60 M⊙ than the

model of Ref. [1] predicts. This in turn leads to larger

maximum BH masses for this particular model. However,

the size of this systematic uncertainty is unknown. Another

caveat in the analysis of Ref. [90] is that the models [92,93]

have an uncertainty of ∼5 M⊙ to account for the difference

between the gravitational and baryonic masses [94].

IV. DISCUSSION AND FUTURE

In this work we have presented the first, frequency-

domain, phenomenological IMR model for spin-precessing

BBHs that also includes the effects of subdominant

multipoles—beyond the quadrupole—in the coprecessing

frame. By comparing to a large set of precessing NR

simulations we found that our simple model is able to

accurately reproduce the expected GW signal with an

accuracy of 99% (97%) for small (high) inclinations, a

significant improvement over models that do not include

subdominant multipoles, which have accuracies of

97% (91%) for small (high) inclinations.

Precise measurements of BH spins from GW observa-

tions requires high-SNR events, in part due to the relatively

high PN order at which spin effects appear. We performed

an idealized parameter estimation analysis to quantify the

precision to which the BH spin magnitude and orientation

can be measured, ignoring any effects of systematic error

on the waveform. We found, for this particular system (see

Table II), that the primary spin parameters are more tightly

constrained than the secondary spin, as expected for an

unequal-mass system such as this. In the following dis-

cussion we remind the reader that the low-, medium-, and

high-SNR cases have corresponding values of 17, 34, and

176, respectively. The primary spin magnitude can be

constrained to a 90% CI of 0.42 for the low-SNR case

(about half the width of the physical range) and to a 90% CI

of 0.04 for the high-SNR case. The secondary spin

magnitude cannot be meaningfully constrained until the

high-SNR case, with a 90% CI of 0.24. The primary spin

polar angle shows reasonably good agreement with the

expected SNR scaling and can be constrained to ∼42 deg

(low SNR) and ∼5 deg (high SNR) at 90% CI. The

secondary spin polar angle shows poor agreement with

the expected SNR scaling and we find that it can only be

meaningfully constrained (∼15 deg) for the high-SNR

case. The azimuthal angle between the spins (Δϕ12) shows

poor scaling with SNR. We find that only the highest SNR

case was able to constrain Δϕ12 ≲ 28 deg. Our parameter

estimation study is only a point estimate for the size of the

uncertainty on binary properties and a systematic study that

explores the parameter space of precessing binaries is

required to draw more general conclusions [68,69].

However, recent work in understanding precession better

may help make such a study tractable by focusing on regions

where we expect precession to be measurable [95,96].

We have analyzed the GW event GW170729 with the

new precessing and higher-mode model. We have shown

that while the general interpretation of this event is

unchanged, we find that even small shifts in the posteriors

due to using different waveform models, with different

physical effects incorporated, can be enough to inform

astrophysical models such as the PPISN mechanism, as we

considered in this paper. If we assume that the primary BH

in the GW170729 binary underwent a PPISN, then we

disfavor the PPISN models from Refs. [91–93] at greater

than 90% credibility and our results are consistent with

Ref. [1]. See Ref. [97] for a recent investigation into the

location of the PPISN model mass gap.

Our model is analytic and native to the frequency

domain, and as such it can be readily used in likelihood

acceleration methods such as reduced-order quadrature

[98] or “multibanding” techniques [99]. This model can

be used to determine the impact on GW searches, event

parameter estimation, and population inference due to the

effects of precession and higher modes.

We expect to be able to greatly improve PhenomPv3HM

and similar models by using models for the underlying

higher-multipole aligned-spin model that have been cali-

brated to NR waveforms [100]. Likewise, a model for the

precession dynamics tuned to precessing NR simulations

will improve its performance [101]. Although our model is

a function of the seven-dimensional intrinsic parameter

space of noneccentric BBH mergers, it is not seven-

dimensional across the entire coalescence. It is true during

the inspiral, but during the pre-merger and merger we use

an effective aligned-spin parametrization. Work is under-

way to develop an NR -calibrated aligned-spin model with

the effects of two independent aligned spins [102]. In

addition, promising attempts to dynamically enhance

incomplete models via singular-value decomposition have

recently been presented [49], and the model introduced

here can easily be employed by such an automated tuning

process.

With regards to higher modes, we only included a subset

of the complete list of modes, specifically, ðl; jmjÞ ¼
ðð2; 2Þ; ð2; 1Þ; ð3; 3Þ; ð3; 2Þ; ð4; 4Þ; ð4; 3ÞÞ. We also ignored

mode mixing [103] and the asymmetry between the
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þm and −m modes, which are responsible for out-of-plane

recoils [104].

We plan to extend this model to include tidal effects, as

introduced in Refs. [105,106], as well as implement a

model for the GW suitable for neutron star–black hole

binaries where the effects of spin precession, subdominant

multipoles, and tidal effects could all become important.

The model presented here could be used as a baseline for

such a model. Finally, this model is implemented in the

LSC Algorithm Library [107].
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