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Abstract. Phase transformations in 2xxx series aluminium alloys (Al-Cu-Mg) are
investigated with an off-lattice atomistic kinetic Monte Carlo simulation incorpo-
rating the effects of strain around misfitting atoms and vacancies. Vacancy diffusion
is modelled by comparing the energies of trial states, where the system is partially
relaxed for each trial state. Only a limited precision is required for the energy of
each trial state, determined by the value of kBT . Since the change in the relax-
ation displacement field caused by a vacancy hop decays as 1/r3, it is sufficient to
determine the next move by relaxing only those atoms in a sphere of finite radius
centred on the moving vacancy. However, once the next move has been selected, the
entire system is relaxed. Simulations of the early stages of phase separation in Al-
Cu with elastic relaxation show an enhanced rate of clustering compared to those
performed on the same system with a rigid lattice. However on a flexible lattice
vacancy trapping by Mg atoms in the ternary Al-Cu-Mg system makes clustering
slower than the corresponding rigid lattice calculation.

1 Introduction

The mechanical properties of commercial aluminium alloys are manipulated
by the process of ageing the supersaturated solid solution. In the Al-4wt.%Cu
system, copper atoms cluster together on {200}Al host planes to form metastable
particles known as Guinier-Preston (GP) zones. On further ageing the GP
zones undergo a change of structure before transforming eventually into the
thermodynamically stable θ phase CuAl2, which is incoherent with the host.
In the 2xxx series of alloys, magnesium is added and the precipitation se-
quence changes. First coherent GPB zones form as 〈100〉 rods, which ripen
into laths of the orthorhombic S phase Al2CuMg [1–5].

While the observed structures of GP zones are well established[6–8], and
the effects of the addition of certain trace elements have been studied experimentally[9–
11], modelling the effect of trace elements on kinetics is a difficult problem.
Their influence may stem from the formation of complexes with vacancies,
which will reduce the rate of diffusion and of phase separation. It is also
possible that large trace element atoms may be attracted to small solute
atoms by the concomitant reduction in strain energy of the system, and in
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this way promote the formation of a co-cluster. Apart from reductions in
the total strain energy of the system through such an association there may
also be much shorter-range gains in bond energies. It follows that the in-
fluence of trace elements is inherently atomistic in nature, in that it stems
from discrete atomic interactions with point defects such as vacancies and
other solute atoms. However, misfitting atoms and vacancies interact over
large distances compared with a bond length through their elastic fields. It
is the requirement to treat both discrete atomic interactions and long-range
elastic fields on an equal footing in dilute alloys that makes the modelling of
the influence of trace elements so challenging. Our aim has been to develop
a methodology to meet this challenge. Since our methodology treats atomic
vacancies explicitly we are able to include the possibility that vacancies may
become trapped at interfaces surrounding second-phase particles, which may
lead to Brownian motion of particles as described in [12,13].

A vacancy is a centre of tensile dilation, and so it will be attracted to
regions of compressive stress. The pattern of compressive stress will follow
the underlying local composition of the system, enhancing the time spent
by a vacancy in some areas, while reducing it in others. If the pattern of
compressive stress is enhanced along particular crystallographic directions,
owing to elastic anisotropy, the increased probability of finding a vacancy in
these regions may be expected to influence the mobility of solute atoms there,
which in turn may influence the morphology of the second-phase particle.

There are three principal steps we have taken to enable us to model dif-
fusional processes atomistically with elastic interactions. Firstly we have im-
proved the kinetic Monte Carlo algorithm used to select each vacancy hop,
by developing an efficient combination of the stochastic first and second or-
der residence algorithms which outperforms the n-fold way for this problem.
This is described in detail elsewhere [14]. Secondly we have developed an iter-
ative scheme based on the Lanczos method to tridiagonalise a matrix, which
appears particularly suited to relaxing the system following a vacancy-atom
exchange. Finally, although the relaxation propagates to the boundaries of
the system, we have found that the majority of the change of the elastic
energy due to a vacancy-atom exchange can be recovered by relaxing only
those atoms in a near field region.

We demonstrate the importance of considering elastic stress effects when
performing kinetic Monte Carlo simulations. We show that the harmonic
lattice approximation is insufficient for accurately prediciting the difference in
energy between trial Monte Carlo states. However, an approximation based on
relaxing those atoms within a small sphere centred on the vacancy is enough
to determine the next move, provided that eventually the whole system is
relaxed after each move. Simulations of diffusion performed in the Al-Cu
binary alloy system show that for a fixed number of vacancy- atom exchanges,
larger clusters grow on a flexible lattice owing to the reduction in elastic
strain energy this can provide. However, it is also found that since vacancies
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are preferentially attracted to compressive regions, they can become trapped
within emerging magnesium-rich regions in an Al-Cu-Mg ternary alloy, and
this can have the opposite effect of slowing the growth rate of second-phase
particles.

2 Computational method

2.1 Kinetic Monte Carlo

In our example of vacancy diffusion, adjacent atomic configurations are linked
by a single vacancy-atom exchange event. Kinetic Monte Carlo[14–17] enables
us to associate a meaningful time with simulated stochastic events. The prob-
ability that any one of these events will be the next to occur is proportional to
the rate at which the event occurs. We have used Flynn’s approximation[18]
derived from dynamical theory to determine a rate for the transition based
on the difference in internal energy between states. The rate of migration
from state i to state j is given by

ri→j =

(

3

5

)
1/2

νD exp

(

−
〈c〉Ω∆2

kBT

)

exp

(

−
Ej − Ei

2kBT

)

(1)

where Ei is the energy of the system in state i when the system is fully re-
laxed, νD is the Debye frequency and Ω the volume of the migrating atom.
We have assumed a constant Debye frequency equal to that of pure alu-
minium, taken to be 1.19 × 1013 Hz. The parameter ∆ is the displace-
ment, expressed as a fraction of the bond length, at which the force on
the migrating atom is a maximum, and is taken to be the constant value
0.316. 1/ 〈c〉 is an effective elastic compliance. For fcc crystals it is given by
1/ 〈c〉 ≈ 2/15 (3/c11 + 2/c11−c12 + 1/c44). Only 1/2 < 110 > hops are consid-
ered. Saddle points for exchanges with the next-nearest neighbour shell of
atoms are around 2eV higher in energy and so are assumed too infrequent to
affect the kinetics.

We have constructed a set of relatively short-ranged Finnis-Sinclair poten-
tials [19] for this study, described fully in [14]. They have been parameterised
to reproduce elastic constants, the cohesive energy and lattice parameters of
the pure metals, and we use a simple interpolation scheme for the parameters
of the potentials for interactions between dissimilar atoms.

2.2 Lanczos Method for relaxation

An efficient algorithm for finding relaxed states is required because there may
be many millions of configurations generated during a kinetic Monte Carlo
simulation of the early stages of diffusional phase separation by a vacancy
mechanism. Consider first the harmonic lattice approximation. The energy
may be expanded as a Taylor series about the current configuration which
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may be represented by a vector x0 describing the positions of each of the
N atoms in the system:

E (x0 + u) = E (x0) +
∂E

∂x

∣

∣

∣

∣

x0

· u +
1

2
u ·

∂2E

∂x∂x

∣

∣

∣

∣

x0

u (2)

The vector u is a displacement from the current configuration x0, which is
assumed to be small in magnitude. We identify the first derivative of the
energy as (minus) the 3N dimensional force f = − ∂E/∂x|

x0
and the second

as the matrix of force constants D = ∂2E/∂x∂x
∣

∣

x0
. These two derivatives are

evaluated analytically at the current configuration x0 using the interatomic
potentials.

Equation (2) has a minimum with respect to u given by

u = D−1f (3)

The change in energy brought about by making this displacement from the
current configuration is obtained by substituting (3) into (2), giving ∆E =
−1/2f · D

−1f.
For the aluminium-copper alloys of interest to this study the displace-

ments of atoms near a vacancy are relatively large and sensitive to the local
atomic structure. We have found the difference in energy between harmoni-
cally relaxed states to be in error, compared to fully relaxed states, by the
order of 0.1eV. Since this is the same order as the total energy difference be-
tween states, counting both chemical bond energy changes and elastic energy
changes, the harmonic relaxation approximation is seen to be unsuitable for
this study.

To implement an anharmonic relaxation we have found that significant
computational gains may be made if an algorithm derived from the Lanczos
method of tridiagonalizing a matrix [20] is employed. The strategy is to find
an approximate solution to (3) and displace atoms through this vector. The
force and force constant matrix elements are then recalculated and further
displacements constructed until the system energy has converged to an ac-
ceptable tolerance. Restarting the calculation in this way not only prevents
error accumulation, allowing a machine precision solution if desired, but also
side-steps the known problems associated with keeping the Lanczos basis
vectors orthonormal.

The Lanczos method is perhaps most familiar in solid state physics in the
context of calculating local densities of electronic or vibrational states [21].
Our use of the method here is quite different, namely we are generating an
approximate solution for u in (3) for which ∆E has converged. The method
constructs a new orthonormal basis set of vectors. After m such basis vectors
have been generated, the subspace they span is known as the Krylov subspace:
Km (D, f) =

{

f,Df, . . . ,Dm−1f
}

.



Diffusional phase transformations with long-range interactions 5

The representation of D in this basis is the tridiagonal m × m matrix
Tm.

define Tm : Tm ≡ ΦT
mDΦm =

















α0 β1

β1 α1 β2

β2 α2
. . .

. . .
. . . βm−1

βm−1 αm−1

















(4)

where the columns of the 3N × m matrix Φm are the m generated basis
vectors {φ0, φ1, . . . , φm−1} each of dimension 3N . This matrix spans the same
subspace as Km (D, f).

The coefficients α and β and the basis vectors φ are found by the Lanczos
algorithm, which is an iterative process ( see e.g [20] ) requiring only matrix-
vector multiplies:

φ−1 = 0 , φ0 =
1

|f|
f

βm+1φm+1 = Dφm − αmφm − βmφm−1 (5)

where αm = φm · Dφm

and βm =

{

φm−1 · Dφm , m > 0
|f| , m = 0

We may obtain approximate solutions for ∆E and u in the subspace
Km (D, f). The predicted relaxation energy at this stage is

∆Em = −1/2 |f|
2 [

T−1
m

]

00
(6)

[

T−1
m

]

00
is the element in the top left hand-corner of the inverse of the matrix

Tm. The predicted displacement at this level is um = |f|ΦmT−1
m e0, where e0

is the m-dimensional unit vector [1, 0, 0, ...0]
T
. The iterative procedure of (5)

can be halted when ∆Em has converged, and then the displacement vector
may be found.

We note that the displacement vector may be constructed directly from
(5) as the basis vectors are constructed, in a manner analogous to that used by
the method of Conjugate Gradients. However, we use an alternative method
for calculating the displacement vector which is an iterative scheme using
the change in energy at level m. Our method does require storing the basis
vector set Φm , but we believe this extra cost to be offset by the improve-
ment in convergence available by the method of section 2.3. We expand the
displacement in the m generated basis vectors: um =

∑m−1
j=0 γjφj . The or-

thonormality condition of the basis vectors φm and (5) gives

γ0 = −
2∆Em

β0
, γ1 =

β0 − γ0α0

β1
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γk = −
γk−2βk−1 + γk−1αk−1

βk
(7)

As seen in (5), the initial vector φ0 is a unit vector in 3N dimensional
space in the direction of the force f . Each successive multiplication by D

in (5) enables the relaxation to spread further from the centres where the
forces in f are located. Since the change in the relaxation energy associated
with a vacancy hop decays rapidly with distance from the vacancy, a rapidly
convergent estimate of the relaxation energy may be obtained, together with
a good approximation to u. Thus there is a sound physical basis for our
choice of the Lanczos method to relax the system for each trial vacancy-atom
exchange.

2.3 Improving the solution

We have found that the efficiency of the convergence of the Lanczos proce-
dure can be improved by storing and reusing information generated during
previous relaxations. The values of α and β found during the tridiagonali-
sation process can improve the estimate of the energy change after only m
levels have been performed. By substituting this improved energy into (7) to
(??), the displacement vector is also improved.

The change in energy after m levels can be written as a continued fraction
( see e.g. Heine in [21] ). From (6) we write

∆Em =
−1/2β

2
0

α0 −
β2

1

α1 −
β2

2

...

αm−1 − β2
m

(8)

Going to another level m + 1 does not affect the previously found coeffi-
cients α and β, but can improve the energy estimate by adding to the end
of the continued fraction. It would be possible to improve the estimate of
the energy change if we could terminate the continued fraction at level m
with something which better represents the tail of the fraction. It is found
numerically that averages a and b constructed from the coefficients α and
β converge to constant values, but that even after thousands of levels the
values for α and β rapidly oscillate about these averages. As a first choice, a
quadratic terminator constructed from the averages could be used to replace
the tail of the continued fraction at level m, by substituting β2

m in (8) with
β2

m/t, where:

a =
1

m

m−1
∑

j=0

αj , b =
1

m

m
∑

j=1

βj , t = a−
b2

t
=

a

2



1 +

√

1 −

(

2b

a

)2


(9)
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The form for the quadratic terminator in (9) is valid because the discriminator
is always positive.

While it is possible to ensure convergence in these averages by going to
enough levels, we are looking for a displacement vector estimated from only
the first few basis vectors. Too many levels of the procedure gives a well-
converged solution only to the harmonic problem of (3). We find ∆Em has
typically converged to 0.1% when Tm is constructed to level m= 6 to 12.
Note that the numerical errors at this level remain small. This is why we
have no need for renormalisation of the basis set Φm. We are trying to find
a displacement vector which will minimise the system energy on a weakly
anharmonic potential energy surface. To converge to the true minimum we
calculate the force and matrix elements at the current atom displacement, call
the Lanczos procedure of 5 to generate a better solution and move the atoms.
Starting from an initial position x0 , this produces a succession of estimates
for the local energy minimum x0,x0 + ũ(0),x0 + ũ(0) + ũ(1), . . ., where ( )
denotes an approximated value. The displacement vectors are generated by:

D|
x0

ũ(0) ≈ f|
x0

D|
x0+ũ

(0) ũ
(1) ≈ f|

x0+ũ
(0) (10)

. . .

We are using the Newton-Raphson method to approach the solution, so
the input forces f|

x0
, f|

x0+ũ
(0) ,. . . diminish in magnitude quadratically. How-

ever, the input matrices D|
x0

,D|
x0+ũ

(0) , . . . change only slightly as the the
position of the atoms is updated, reflecting the weakly anharmonic nature of
the potentials near the minimum position.

As a function of the number of levels m, information about the extreme
eigenvalues converges faster than information about the eigenvalues in the
middle of the spectrum.[21] Therefore, it is possible to estimate the limits of
the eigenvalue spectrum from a finite number of values of α and β. Long-range
elastic interactions are determined by the properties of the lower limit of the
spectrum. The short-range displacement field around a vacancy is determined
primarily by the first few levels of the continued fraction. By attaching a
terminator to the continued fraction not only are we able to describe long-
range elastic interactions but we also embed a finite cluster centred on the
vacancy in an infinite medium characterised by average elastic properties.
This embedding also influences the short-range displacement field around
the vacancy.

The values of the coefficients α and β to level m′ are stored, and they
are over-written by new values as they are generated until the criterion for
convergence of the relaxation energy is satisfied. Subsequently we wish to
calculate the change in the relaxation energy when a vacancy is exchanged
with a neighbour. Convergence of the change in the elastic relaxation energy
is attained with a smaller number, m, of exact levels. To calculate the change
in the elastic relaxation we use the following continued fraction, where we
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note that the first m pairs of coefficients α and β are those computed for the
displaced vacancy, the remaining m′ − m pairs of coefficients α and β are
those stored and not over-written, and t is the terminator of (9), averaged
over all m′ coefficients:

∆Ẽm =
−1/2β

2
0

α0 −
β2

1

...

αm−1 −
β2

m

αm −
β2

m+1

...

αm′
−1 −

β2
m′

t

(11)

The improved estimate for the energy change calculated using 11 is sub-
stituted in (7) to get an improved estimate for the displacement vector. Note
that since the values of α and β are exact to level m, the projection of this new
estimate on the true solution to (3) is greater than that available previously,
even though it is within the same Krylov subspace Km (D, f).

This algorithm can be efficiently coded in parallel. A domain decompo-
sition is used to construct the elements of D . The matrix elements do not
then need to be broadcast to perform the matrix-vector multiply in (5).

2.4 Short-range relaxation region

The displacement field around a point defect scales in magnitude as 1/r2 ,
where r is the distance from the defect. Starting from a fully relaxed system of
atoms, a single atom-vacancy exchange is performed to construct a new trial
configuration. The additional displacement field introduced by this exchange
will be dipolar, and so scale as 1/r3. This displacement is short-ranged and
so the greatest contribution to the elastic energy change due to an exchange
will come from the minor corrections of the positions of the atoms close to
the exchange event.

As we are undertaking a Monte Carlo simulation, it is necessary that the
energies be accurate only to within a fraction of the thermal energy. At 300K,
this energy is 0.025eV. We need an approximation method which can reliably
make estimates of the energy difference between states to within about 1meV.

A good approximation to the elastic energy change is found by pinning all
atoms more than a fixed radius R distant from the original vacancy location,
and only relaxing those within. If this is done, after relaxation only those
atoms immediately exterior to the sphere will still have a finite net force
acting on them. The error in the elastic energy will be due to the failure of
the embedding external medium to respond to the change in shape of the
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interior and vice-versa. This energy error will be positive, and scale as 1/R3.
However, if a second virtual state is considered, it too will have an error
of roughly the same size. All virtual states will therefore have a systematic
component to the error due to the non-propagation of the force dipole to
infinite range. An additional error component will be due to the coupling of
the inhomogeneities in the far field and the force dipole. As larger near field
regions are assumed, this error component will tend to zero. As this error
must be kept small compared to the thermal energy, we have determined our
cut-off range R to be three times the range of the potential, covering a sphere
of 754 lattice sites plus the original vacancy position.

The systematic error component may be removed without affecting the
statistical likelihood of selecting a given state. This error will appear in the
free energy as a constant additional term, and so in the rate as a constant mul-
tiplier. If after the move the system is allowed to relax fully, then a comparison
may be made between exact and approximate energies. This difference can
be ascribed to the systematic error, and so the rates may be corrected. If the
system is relaxed after every move, the energy of the previously visited con-
figuration will always be stored exactly, so that the rates may be corrected
even before the exchange is made.

The difference in energy between elastically relaxed states made using
the short-range approximation is shown in figure 1. It can be seen that if
a sufficiently large relaxation region is chosen the magnitude of the energy
error can indeed be made sufficiently small. Note that our relaxation region is
larger than that used previously [22–24], and that we can achieve very small
errors in the energy difference by ensuring that the whole system is relaxed
before each move is performed. We have chosen to use a relaxation region of
754 atoms about the original vacancy location, which produces errors in the
energy of the order of 1meV.

3 Clustering in the Al-Cu and Al-Cu-Mg systems

The alloy compositions we have studied are listed in table 1. We have cho-
sen a supercell of 10976 atoms (14 × 14 × 14 fcc unit cells) run for at least
one hundred thousand vacancy exchanges. The traces for the flexible lattice
calculations each took about one month of computation on four Sun Ultra-
SPARC III 900MHx Processors. For this reason these simulations were done
once only. We have modelled natural ageing, that is to say ageing at room
temperature ( 300K ) as opposed to artificial ageing at elevated temperatures.
This is to provide a large driving force for clustering. We have also chosen to
use a single vacancy in these diffusion simulations.

3.1 Effect of elastic strain on vacancy diffusion

Only one type of transition, a nearest neighbour vacancy-atom exchange, is
permitted in this simulation. The time taken for the same number of va-
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Fig. 1. Errors introduced using the short-range relaxation region, with cut-off re-
gions encapsulating 248 and 754 atom sites centred on the original vacancy position.
The vertical axis shows the frequency of errors. It is seen that the probability of
the difference in energy between relaxed states being in error by more than 0.001eV
becomes very small with the larger cut-off region

Table 1. Aluminium alloy compositions

alloy aluminium copper magnesium
at.% (wt.%) nAl at.% (wt.%) nCu at.% (wt.%) nMg

1 98 (95.4) 10755 2 (4.6) 220
2 97.8 (95.2) 10733 2 (4.6) 220 0.2 (0.2) 22
3 97.5 (95.0) 10700 2 (4.6) 220 0.5 (0.4) 55
4 96 (91.1) 10536 4 (8.9) 439
5 95.8 (90.9) 10514 4 (8.9) 439 0.2 (0.2) 22
6 95.5 (90.6) 10481 4 (8.9) 439 0.5 (0.4) 55
7. 94.0 (86.9) 10316 6 (13.1) 659

cancy moves with and without atomic relaxation is shown in figure 2. In the
case of the Al-Cu alloys, we find that running the simulation on a flexible
lattice increases the real time taken for a given number of exchanges. On
a flexible lattice, the real time simulated is roughly 10%-20% greater over
100000 exchanges, reflecting a commensurate decrease in the mean vacancy
hopping rate. In more familiar terms the mobility of the vacancy is reduced
on a flexible lattice. The origin of this reduction must be that the relaxations
in a flexible lattice produce a greater variability in the configurational energy
of the system as the vacancy migrates. In a flexible lattice the vacancy is
attracted to certain sites, where it spends longer periods of time.

In the case of Al-Cu-Mg alloys, the time differences in the flexible and
rigid lattices are even more pronounced, with the time simulated being 5
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Fig. 2. Effect of performing the simulation on a flexible lattice on the real time
simulated. Times shown are the simulated real time (in seconds) for a sequence of
100000 vacancy moves

times greater with 0.2% Mg (alloys 2,5), and around 10 times greater with
0.5% Mg (alloys 3,6). Note that steep steps in the plot are seen in the flex-
ible lattice calculation when Mg is present, indicating that the vacancy is
trapped temporarily. In the rigid lattice calculation these steps are absent in
these early stages, although steps do appear later when there is significant
clustering [14].

3.2 Effect of elastic strain on clustering

Al-Cu We now consider the short-range ordering of copper atoms. We know
from separate Monte Carlo simulations using the same potentials that L10

and L12 type intermetallic structures, rather than the θ phase, are prefer-
entially generated. There are nCu copper atoms in the system. At any time,
there will be a certain number of pairs of copper atoms into pairs separated
by a < 100 > vector, n<100>. Our short-range order parameter, sroCu, mea-
sures how close we are getting to this low energy intermetallic phase Al3Cu,
with structure L12: sroCu = n<100>/

(

1/2 × 6 × ncu

)

We can investigate how the clustering is affected by the lattice being flex-
ible by plotting this short-range order parameter as a function of the real
time simulated. In figure 3 we plot the evolution of the short- range ordering
of copper atoms in Al-Cu on a flexible and on a rigid lattice. The traces
corresponding to the rigid lattice calculations are much less computationally
expensive than those on a flexible lattice, and so have been generated by av-
eraging over five independent simulation runs. The order parameter is found
as the average over fixed time intervals, evenly spaced on the logarithmic real
time scale.
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It is clear that at all three alloy compositions simulated there is a marked
increase in the rate of ordering of copper atoms on a flexible lattice, despite
the reduction of the vacancy mobility seen in figure 2. The speed of diffus-
ing copper atoms is determined by the product of the vacancy mobility and
the force driving their motion. Therefore there must be an additional driv-
ing force for clustering on a flexible lattice as compared with a rigid lattice.
Once clustering has initiated somewhere in the system it will bias the motion
of other copper atoms towards the cluster along lobes of compressive stress
surrounding the cluster. The additional driving force must more than com-
pensate the reduction of the vacancy mobility to produce the increased rate
of ordering of copper atoms on a flexible lattice.

Fig. 3. Ordering in the Al-Cu system. These simulations were performed with a
single vacancy in a periodic supercell of 10976 lattice points, with zero external
stress, at a simulated temperature of 300K. The simulations comprised approxi-
mately 200,000 vacancy moves for alloys 1 and 7 and 250,000 moves for alloy 4.
The order parameter is defined in the text. The lines are to guide the eye

Al-Cu + 0.2 at.% Mg Copper atoms are expected to be centres of ten-
sion, and magnesium atoms centres of compression in an aluminium matrix.
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Therefore, there will be an attractive elastic interaction between Cu and Mg
atoms on a flexible Al lattice. We might therefore expect to see Cu atoms
segregating to Mg rich regions. However, the rate at which such a process
occurs may be reduced by vacancies becoming trapped by Mg atoms. This
trapping may be expected to occur more effectively on a flexible lattice where
the motion of vacancies is biased by the elastic fields of Mg atoms, and more
stable vacancy-Mg atom complexes may form through elastic relaxation.

In figure 4 we examine the effect of adding microalloying quantities of
Mg atoms to Al-Cu alloys on the clustering of Cu and Mg atoms. The
degree of clustering of magnesium atoms may be followed by defining an
order parameter for the evolution of close packed clusters of magnesium
atoms: sroMg = n<1/2

1/20>/
(

1/2 × 12 × nMg

)

where n<1/2
1/20> is the number

of (Mg − Mg)<1/2
1/20> pairs, and nMg is the number of magnesium atoms

present in the system. It can be seen that the rate of ordering of copper
atoms is still enhanced on a flexible lattice in the presence of 0.2 at.% Mg.
But, the rate of clustering of magnesium atoms is reduced on a flexible lattice
until later times.

Al-Cu + 0.5 at.% Mg In figure 5 the effect of adding a higher concentration
of Mg is simulated. With the higher Mg content it is no longer the case that
the rate of ordering of copper atoms on a flexible lattice is enhanced.

It is seen that again the Mg atoms are clustering at a later time when the
simulation is run with a flexible lattice. However, when it occurs the degree
of clustering of Mg is enhanced at this higher Mg concentration.

3.3 Association of vacancies with Mg atoms

The number of magnesium atoms surrounding each vacancy is plotted as a
function of time for rigid and flexible lattices in figure 6. On a rigid lattice we
see that the number of magnesium atoms around a vacancy increases with
time, but that this is not the case on a flexible lattice, at least for real times
of up to 1000s. On the rigid lattice, magnesium clusters are forming, and the
vacancies are associated with these clusters.

4 Conclusions

We have presented a method to rapidly evaluate transition rates for possible
vacancy moves incorporating atomistic elastic relaxation, by approximating
the saddle points as a function of the internal energy of the initial and final
states. We found that the harmonic lattice approximation was insufficient for
measuring the tiny difference in the elastic relaxation energy between possible
vacancy moves. However a scheme based on relaxing only the local region
around the vacancy was capable of reducing errors in the system energy
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Fig. 4. Ordering in the Al-Cu-0.2%Mg system. These simulations used the same
parameters as those in figure 3, and the traces were generated in the same way. The
degree of clustering of Mg atoms is measured by the short range order parameter
defined in (??). We see that there is some clustering of Mg atoms, and ordering of
Cu atoms, present on both rigid and flexible lattices. The rate of ordering of copper
atoms is significantly increased on the flexible lattices. The clustering of magnesium
atoms seems to occur at later times on a flexible lattice as compared with a rigid
lattice

to an acceptable fraction of the thermal energy. This short-range scheme
was found to be successful for evaluating the transition energies for possible
vacancy moves, although a full atomistic relaxation was required after the
move was decided.

The Lanczos method is particularly suitable for atomic relaxation after a
single vacancy move, as each iteration effectively spreads the relaxation region
further from the atoms experiencing a force around the vacancy. Although
the relaxations remain time- consuming, our use of this relaxation scheme has
enabled us to model hundreds of thousands of vacancy moves while keeping
the system atomistically relaxed.

The rate at which phase separation can occur in alloys is proportional to
the mobility of vacancies and to the driving force for diffusion. Both of these
may be affected by performing the simulation on a rigid lattice rather than
on a flexible lattice. We have seen in figure 2 that the vacancy mobility is
quite different on flexible and rigid lattices. Vacancies may be attracted to
impurities through long-range elastic fields, and may form complexes that are



Diffusional phase transformations with long-range interactions 15

Fig. 5. Ordering in the Al-Cu-0.5%Mg system. These simulations used the same
parameters as those in figure 4, and the traces were generated in the same way.
Again the magnesium atoms are seen to cluster at later times on a flexible lattice
than were seen on the rigid lattice. However, here the clustering of Mg atoms is
more extensive, and the clustering of copper atoms reduced

more stable on a flexible lattice than on a rigid lattice. As a result the vacancy
mobility may be reduced significantly on a flexible lattice. The exclusion of
elastic relaxation in a rigid lattice has the effect of smoothing the configu-
rational potential energy surface, especially in those regions of configuration
space where vacancies would have become trapped if elastic interactions had
been included.

However, we also saw in figure 3 that the rate of ordering of copper atoms
is lower in a rigid lattice than in a flexible lattice. The apparent paradox is
resolved by noting that there is a reduced driving force for ordering of copper
atoms on a rigid lattice, where bonds are constrained to remain longer than
they would be in a relaxed lattice, and this more than outweighs the greater
vacancy mobility in a rigid lattice.

A small concentration ( 0.2 - 0.5 at. % ) of magnesium atoms added to the
system are rapidly precipitated out of solution in a rigid lattice, owing to the
very high energy compressed bonds around each Mg atom. In a flexible lattice
the solubility of Mg is enhanced somewhat, and instead their principal action
is to reduce severely the vacancy mobility. Mg atoms are especially trapping
in a flexible lattice as the compression in the lattice around each atom is
alleviated by the formation of a Mg–vacancy pair.
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Fig. 6. The proportion of atoms surrounding the vacancy which are magnesium.
On a rigid lattice (left) the number of magnesium atoms surrounding a vacancy
increases with time. This, together with the clustering of magnesium atoms seen
in figs 4 and 5 shows that on a rigid lattice magnesium clusters are forming, and
the vacancies are associated with them. On a flexible lattice (right) the number of
magnesium atoms around a vacancy is not increasing
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