Including the effect of gravitational light bending in X -ray profile modelling

D. A. Leahy and L. Li
Department of Physics, University of Calgary, 2500 University Dr. N. W., Calgary, Alberta T2N 1N4, Canada

Accepted 1995 July 25 . Received 1995 July 25 ; in original form 1995 May 26

Abstract

The purpose of this work is to generalize pulse shape modelling to include the effect of light bending due to general relativity. A simple analytical formula is found to describe the light-bending effect accurately, and is incorporated into the emission model for calculation of the pulse shapes from rotating accreting neutron stars. Leastsquares fittings are performed to a subset of pulsars studied by Leahy. The fittings with light bending show significant improvement over the fittings without light bending, and the resulting derived emission region geometry gives narrower rings, as expected on theoretical grounds. The model is also applied to the transient pulsar EXO $2030+375$. The relation between the luminosity and the properties of the emission rings is studied. For this pulsar we conclude that some effect other than changing emission ring size is responsible for the change in pulse shape.

Key words: relativity - pulsars: individual: EXO $2030+375$ - stars: neutron - X-rays: stars.

1 INTRODUCTION

Under current theories, X-ray pulsars are assumed to be rotating magnetic neutron stars. A binary X-ray pulsar derives its energy from gravitational potential energy released when matter is accreted on to the surface of the neutron star. The presence of a magnetic field around a neutron star strongly influences the accretion mechanism. In the case of a dipole field, the inflowing material will follow the field lines to the neutron star surface and arrive on a region the shape of a ring around each of the magnetic poles. From the interaction of the inflowing material with the magnetosphere of the neutron star, a theoretical estimate of the size of the accretion region can be obtained. The radius of the polar cap on the surface of a neutron star is typically $10^{-1}-10^{-2} R_{*}\left(R_{*}\right.$ is the radius of the neutron star). This gives a very small polar cap angle of $0.57-5^{\circ} 7$ (Mészáros 1992). This estimate of the accretion region is much smaller than the results from the simple emission model of Leahy (1991).

By fitting the calculations of the emission model to the observed pulse profiles, Leahy (1991) made the first attempt to establish a detailed viewing geometry of the neutron star. The model assumes two emission rings on the surface of the neutron star, each centred about a magnetic axis of the neutron star. The two magnetic axes can be offset by an angle θ_{0}. The emission from the two rings is assumed to be uniform, and the flux is taken to be one of the following two
analytical functions:
$I\left(\theta^{\prime}\right) \cos \theta^{\prime}=A \cos ^{2} \theta^{\prime}$,
$I\left(\theta^{\prime}\right) \cos \theta^{\prime}=A \cos ^{4} \theta^{\prime}$.
These two equations are simple approximations (Leahy 1990) to the theoretical calculations of Mészáros \& Nagel (1985) for emission by a slab of magnetized plasma. This model was applied to 20 X-ray pulsars. The derived emission regions were relatively large.

Bulik et al. (1992) fitted spectra in 16 pulse phase bins for $4 \mathrm{U} 1538-52$, calculating a filled polar cap model with a radiative transfer code. They also found large polar caps, an offset, and significant differences between the caps.

Riffert et al. (1993) used a similar geometry model as Leahy (1991), but took into account corrections from the relativistic light bending near the neutron star. Least-squares fits were performed to three selected pulsars. They assumed the emission regions to have identical shape and size at both magnetic poles, and chose some cap and ring sizes to do the calculations. The best-fitting sizes were significantly smaller compared to the best fits of the non-relativistic model of Leahy (1991). Based on these calculations, they concluded that the relativistic model is more consistent with the theoretical estimates.

In this paper, we find a simple analytical formula to describe accurately the light-bending effect due to general relativity. Through this simple formula, the light-bending
effect is incorporated into the emission model. The lightbending model is applied to seven pulsars to find the best fits. After the light-bending effect is included into the model, the fittings of the model with the observations are improved, and quite different geometry parameters are derived.

2 GRAVITATIONAL LIGHT BENDING

Deflection of light in a gravitational field is presently one of the three experimentally measurable consequences of general relativity. The other two are (1) the redshift, and (2) the perihelion precession of Mercury. Modifications to the gravitational field strength due to general relativity become important when considering the properties of compact objects like neutron stars. Indeed, it is largely for this reason that compact objects are of such great theoretical interest.

In neutron stars, the neutrons are degenerate and provide the necessary opposition to the gravity forces. Based on this theory, the mass and radius of a neutron star can be estimated from the models of the equation of state. For the current models (Shapiro \& Teukolsky 1983), the radius of a neutron star, r_{0}, is approximately in the range $2 \leq r_{0} \leq 4$, where r_{0} is in the unit of Schwarzchild radius $R_{\mathrm{s}}\left(R_{\mathrm{s}}=2 G M /\right.$ c^{2}). In this case, gravitational light bending is expected to occur near the neutron star surface.

Fig. 1 shows the geometry of the light bending near the surface of a neutron star. The thick black line indicates the path of the light. The light is emitted from the neutron star surface at an angle θ^{\prime} to the local normal. When it reaches the observer, it makes an angle θ_{0}^{\prime} to the normal line. The relation between θ^{\prime} and θ_{0}^{\prime} is (see Riffert \& Mészáros 1988)
$\theta_{0}^{\prime}\left(r, r_{0}, \mu\right)=b \int_{r_{0}}^{r} \frac{1}{x}\left[x^{2}-b^{2}\left(1-\frac{1}{x}\right)\right]^{-1 / 2} \mathrm{~d} x$,
where
$\mu=\cos \theta^{\prime}$,
$b=\frac{r_{0}}{A_{0}}\left(1-\mu^{2}\right)^{1 / 2}$, the relativistic impact parameter,
$A_{0}=\left(1-\frac{1}{r_{0}}\right)^{1 / 2}$,
$r_{0}=\frac{R c^{2}}{2 G M}$,(the neutron star radius in Schwarzchild units).
We usually take $r \rightarrow \infty$ in equation (3) (the observer is at infinity).

The integration of equation (3) has no analytical solution. It is not easy to incorporate into the integration for calculating the angular distribution of flux, since the flux integration itself is long and complicated (see Leahy 1991).

However, from the numerical calculation of equation (3), we find that the relation between $\cos \theta_{0}^{\prime}$ and $\cos \theta^{\prime}$ can be fitted by straight lines. For $r_{0} \geq 2$, these straight-line fits are nearly perfect, and the bigger the r_{0}, the better the fit. (See Fig. 2a for an example with $r_{0}=2.4184$.) $r_{0}=2.4184$ is obtained from the estimated radius and mass of most neutron stars: $R=10 \mathrm{~km}, M=1.4 \mathrm{M}_{\odot}$ (see Mészáros 1992). When $r_{0}<2$, the plots of $\cos \boldsymbol{\theta}_{0}^{\prime}$ versus $\cos \boldsymbol{\theta}^{\prime}$ are obviously curved; linear fits are not very suitable in these cases (see Fig. 2b).

Figure 1. Geometry of the light bending, showing coordinates of emission point $\mathrm{Q}\left(r_{\mathrm{o}}, \theta^{\prime \prime}, \phi^{\prime \prime}\right)$ and the observer point $\mathrm{P}\left(r, \theta_{1}, \phi_{1}\right)$. $(r \rightarrow \infty)$.

Table 1 lists the slope a and intercept b of the fitted straight lines for different r_{0}. We can see that a and the absolute value of b become smaller when r_{0} increases (see Table 1). r_{0} indicates the density of the star, larger r_{0} corresponding to smaller density; a and $|b|$ are indications of the gravitational effects; smaller a and $|b|$ mean less gravitational effects in comparison. When r_{0} increases, the decrease of the star density will result in smaller modification to general relativity; thus a and $|b|$ will decrease. So strong correlations exist between a and r_{0}, and between b and r_{0}. For r_{0} in the reasonable range for neutron stars, $2 \leq r_{0} \leq 5$, these correlations can also be very well fitted using very simple formulae (see Fig. 3). When $r_{0}>5, a$ and b will deviate from the fitted curve of Figs 3(a) and (b). Thus these fits should be performed separately in different ranges, i.e., the neutron star range, the white dwarf range and the normal star range, etc. In this paper, only the neutron star is of concern; thus the fits for r_{0} in the range [2,5] will be used.

Thus the light-bending equation (3) can be replaced by the following simple equations:
$\cos \theta_{0}^{\prime}=a \times \cos \theta^{\prime}+b$,
where
$a=\frac{2.653}{r_{0}^{2}}+\frac{0.381}{r_{0}}+1.068$,
$b=-\frac{2.944}{r_{0}^{2}}-\frac{0.232}{r_{0}}-0.087, \quad\left(2 \leq r_{0} \leq 5\right)$.

3 THE MODEL FITS TO THE PULSAR PROFILES

The light-bending model is applied to seven of the 20 pulsars studied by Leahy (1991), and the results are compared with Leahy's no-light-bending model.

Table 2 lists the fitted parameters from both the no-lightbending model and the light-bending model. Both of the analytical functions for the intensity distribution were used for the model: $I\left(\theta^{\prime}\right) \cos \theta^{\prime}=A \cos ^{2} \theta^{\prime} ;$ and $I\left(\theta^{\prime}\right) \cos \theta^{\prime}=A$ $\cos ^{4} \theta^{\prime}$. Generally, the $\cos ^{2} \theta^{\prime}$ model will give better fits, especially when the light-bending effect is included. The fits

Figure 2. (a) Linear fitting of the light-bending formula (equation 3) for the typical values of neutron star radius: $r_{0}=2.4184$. (b) When $r_{0}<2$, the plot of $\cos \theta_{0}^{\prime}$ versus $\cos \theta$ is obviously curved, and the data points deviate from a straight line. Linear fitting is not suitable for the full range of $\cos \theta^{\prime}$, but still perfect in a smaller range, e.g., $[0.3,1]$ for $r_{0}=1.8$. (The data points are numerical calculations from equation 3.)

Table 1. Fitted slope a and intercept b for different r_{0}.

r_{0}	a	b	r_{0}	a	b	r_{0}	a	b
2.0	1.922	-0.942	3.0	1.490	-0.493	4.0	1.330	-0.330
2.2	1.789	-0.800	3.2	1.446	-0.448	4.4008	1.291	-0.292
2.3	1.734	-0.743	3.3	1.427	-0.429	4.6	1.275	-0.276
2.4184	1.678	-0.684	-3.4	1.410	-0.411	5.0	1.248	-0.248
2.5	1.642	-0.648	3.5	1.394	-0.395	50.0	1.020	-0.020
2.6	1.604	-0.609	3.6	1.379	-0.380	100	1.010	-0.100
2.8	1.542	-0.545	3.8	1.352	-0.354			

listed in the table are all $\cos ^{2} \theta^{\prime}$ model, except 4 U 1626-67, for which the $\cos ^{4} \theta^{\prime}$ model gives a much better fit. For each object in the table, the first row lists the parameters for the no-light-bending model, while the second row lists the parameters for the light-bending model. The goodness of fit was not determined, because the statistical errors were not
available for the majority of the published pulse profiles. However, restricted to a given pulsar, the resulting least sum-of-squares (SSQ) gives a relative measure of goodness of fit for comparing the different models (e.g., the $\cos ^{2} \theta^{\prime}$ model and the $\cos ^{4} \boldsymbol{\theta}^{\prime}$ model, the no-light-bending model and the light-bending model, etc.).

$$
\text { (b) } \quad b=-2.94 / r^{\wedge} 2-0.23 / r-0.09
$$

Figure 3. (a) Fitted relation between slope and r_{0}.(b) Fitted relation between intercept and r_{0}. ($2 \leq r_{0} \leq 5$).

Table 2 also shows the comparison of the two models: the no-light-bending model and the light-bending model, where the solid angle of the neutron star is given by
$\Omega=\int \sin \theta \mathrm{d} \theta \mathrm{d} \phi$,
and the emitting area is $A=\Omega R^{2}$, with R the radius of the neutron star.

Fig. 4 shows the pulse profiles. We can see that the lightbending model can give better fits to the peaks and dips of the profiles. This is because when the light-bending effect is ignored, $\boldsymbol{\theta}^{\prime}$ is the same as θ_{0}^{\prime}, and the radiation pattern is
$I\left(\theta^{\prime}\right) \cos \theta^{\prime}=B \cos ^{2} \theta^{\prime}=B \cos ^{2} \theta_{0}^{\prime}$.
The integration over this $\cos ^{2} \theta_{0}^{\prime}$ pattern will give relatively flat profiles. The radiation pattern including the effect of light bending is

$$
\begin{align*}
I\left(\theta^{\prime}\right) \cos \theta^{\prime} & =B \cos ^{2} \theta^{\prime}=B\left(c \cos \theta_{0}^{\prime}+d\right)^{2} \\
& =e \cos ^{2} \theta_{0}^{\prime}+f \cos \theta_{0}^{\prime}+g, \tag{9}
\end{align*}
$$

where c, d, e, f and g are constants.

Here, the $\cos \theta_{0}^{\prime}$ and the constant term in the radiation pattern can give sharper features in the profile. That is why the profile of the light-bending model is more flexible and can fit the observations better.

4 EXO 2030 + 375: THE LUMINOSITY DEPENDENCE OF PULSE PROFILE

EXO $2030+375$ is a transient X-ray pulsar discovered by Parmar, White \& Stella (1989a,b). The observed pulse profiles show strong luminosity dependence. The large luminosity range for an individual pulsar allows for the first time the possibility of investigating how pulse formation varies with luminosity.

We expect that the dependence of the pulse profile on luminosity is caused by the changes in the structure of the accretion disc and its interaction with the magnetosphere of the neutron star. The inflowing plasma will thread different magnetic field lines and fall on to different regions of the neutron star surface. The higher luminosity, which is associated with higher accretion rate, thus higher dynamic pressure, will cause the plasma to fall in on closer field lines

Table 2. Comparison of the two models.

Pulsar ${ }^{\text {a }}$	Rotational \& magnetic axis angles $b_{:} \theta_{r}, \theta_{r}$	Emission ring angles ${ }^{b}$ $\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}$	Offset angle ${ }^{\text {b }}$: θ_{0}	Solid angle of the emisaion region: Ω	Comments ${ }^{\text {e }}$
	1.515,0.530	0.599, 0.622, 0.561, 0.583	0.595	0.1556	SSQ: $\downarrow 11.2 \%$; Size: \downarrow 22.4\%;
$4 \mathrm{U} 0115+63^{\text {c }}$	1.632, 0.499	0.602, 0.618, 0.562, 0.581	0.007	0.1208	θ_{0} : $\downarrow 98.8 \%$.
	1.461, 0.368	0.287, 0.433, $0.558,0.602$	0.759	0.7299	SSQ: \downarrow 52.0\%; Size: $\downarrow 11.7 \%$;
Cen $\mathrm{X}-3^{\text {c }}$	1.541, 0.415	$0.238,0.444,0.555,0.616$	0.020	0.6444	θ_{0} : $\downarrow 97.4 \%$.
	0.246, 0.246	0.000E0, 0.068, 0.200, 0.300	0.100	0.1699	SSQ: $\downarrow 0.6$ \% Size: $\downarrow 6.5 \%$;
4U1626-67 ${ }^{\text {d }}$	0.320, 0.321	0.13E-4, 0.034, 0.200, 0.300	0.100	0.1589	θ_{0} : the same.
	1.252, 0.168	0.465, 0.487, 0.405, 0.428	0.507	0.1207	SSQ: $\downarrow 20.7 \%$; Size: $\downarrow 13.8 \%$;
4U1258-62 ${ }^{\text {c }}$	1.212, 0.118	0.472, 0.482, 0.400, 0.430	0.218	0.1041	θ_{0} : $\downarrow 57.0 \%$.
	1.427, 0.617	0.468, 0.501, 0.357, 0.482	0.172	0.4149	SSQ: \downarrow 76.4\%; Size: \downarrow 5.4\%;
4U0900-40 ${ }^{\text {c }}$	1.407, 0.655	0.411, 0.464, 0.634, 0.292	-0.167	0.3927	$\theta_{0}: \downarrow 2.9 \%$.
	0.602, 0.602	0.000E0, 0.035, 0.040, 0.052	0.100	0.0073	SSQ: $\downarrow 76.8 \%$; Size: $\downarrow \mathbf{5 0 . 7 \%}$;
4U1118-61 ${ }^{\text {c }}$	0.838, 0.823	$0.051,0.060,0.056,0.058$	-0.415	0.0036	θ_{0} : $\uparrow 315 \%$.
	0.851, 0.902	$0.488,0.690,0.565,0.770$	0.437	1.5009	SSQ: $\downarrow 9.2 \%$; Size: $\uparrow 11.0 \%$;
GPS1722-36 ${ }^{\text {c }}$	0.520, 1.269	0.108, 0.740, 0.672, 0.684	0.674	1.6655	θ_{0} : $\uparrow 54.2 \%$.

${ }^{\text {a }}$ The first row for each object lists parameters for the no-light-bending model; the second row lists parameters for the light-bending model.
${ }^{\mathrm{b}}$ The unit for angles is radians.
${ }^{\text {c }}$ The intensity distribution used in the models is $\cos ^{2} \theta^{\prime}$.
${ }^{\mathrm{d}}$ The intensity distribution used in the models is $\cos ^{4} \theta^{\prime}$.
${ }^{\text {e }}$ This column compares the light-bending model with the no-light-bending model. SSQ: Sum of squared deviation.
Size: the area of the emission region, which equals ΩR^{2}, with R the neutron star radius.
\downarrow : decreased. \uparrow : increased, on the value of no-light-bending model.

Figure 4. Pulse profiles for the light-bending model.

Figure 4 - continued

Figure 4 - continued
and flow on to a larger region on the neutron star surface. If this assumption is valid, the luminosity-dependent pulse profile can be fitted by varying the size and position of the emission ring, while the other parameters are fixed. So we fix the offset angle θ_{o}, rotation angle θ_{r}, and magnetic angle θ_{m}, and leave the emission ring angles $\alpha_{1}, \alpha_{2}, \beta_{1}$ and β_{2} free to investigate the dependence of emission region size on the luminosity.

We use the 10 observations from 1985 May 18 to August 13 , during which the luminosity decreased from 1.0×10^{38} to $1.2 \times 10^{36} \mathrm{erg} \mathrm{s}^{-1}$. In order to figure out the approximate values which the parameters should be set to, we first leave all 10 parameters free and do the fitting for each of the individual dates independently. Then $\theta_{\mathrm{o}}, \theta_{\mathrm{r}}$ and θ_{m} can be set to the average values for the 10 dates to analyse the variations of the emission ring angles with the luminosity.

The observed pulse profiles of EXO 2030+375 have more complicated features than the profiles studied in Section 3. The EXO $2030+375$ profiles have some deep notches and sharp peaks which cannot be dealt with by the relatively smooth profiles of the pencil-beam emission model. The 10 parameter-free fits are not very good, and give quite different values of $\theta_{\mathrm{o}}, \theta_{\mathrm{r}}$ and θ_{m} for each date. The fits become even poorer after $\theta_{\mathrm{o}}, \theta_{\mathrm{r}}$ and θ_{m} are fixed to their average values. Given the bad fittings of emission ring angles $\alpha_{1}, \beta_{1}, \alpha_{2}$ and β_{2}, the study of the correlation between the luminosity and emission rings cannot give satisfactory results.

For many viewing directions, a fan beam can produce sharp features in pulse profile, as the fan beam rotates behind the horizon of the neutron star (Wang \& Welter 1981). According to Wang \& Frank (1981), when the luminosity is higher than a certain value, possibly around $10^{37} \mathrm{erg} \mathrm{s}^{-1}$, the emission region may switch from a thin slab to a cylindrical 'pillbox'; thus the radiation switches from pencil beam to fan beam. $10^{37} \mathrm{erg} \mathrm{s}^{-1}$ is in the range of luminosity observed from EXO $2030+375$. Considering the sharp features in the EXO $2030+375$ profiles, a fan-beam pattern may be more suitable for this pulsar.

Assuming that the accretion column is a thin-walled hollow funnel, the configuration of the fan-beam model is much more complicated than the flat-ring model. Riffert et al. (1993) made a very simple approximation that the fanbeam model had the same geometry picture as the pencilbeam model, with emission pattern $i=A \sin ^{3} \theta$. This is a crude approximation for columns that are small both in height and width. We use this simple fan-beam model to fit the pulse shapes of EXO $2030+375$, but the results are less satisfactory than with the pencil-beam model. So EXO $2030+375$ is still a mystery. A better geometry figure may improve the fittings and make it possible to investigate the luminosity dependence. From past experience, some-
times simple changes in the model geometry make large differences in the pulse profiles and quality of the fittings.

5 DISCUSSION

Through handling the light-bending equation (equation 3), we found that sometimes a lengthy and complicated equation can be precisely expressed by a very simple one, in a certain region of concern. Replacement of the integral equation (3) with the linear equation (4) not only greatly simplifies the light-bending model, but also makes the light-bending effect itself more straightforward and comprehensible.

From Table 2 we can see that after the effect of the light bending is included, for all of the seven pulsars, the SSQ decreased. The relative decreases range from 0.6 per cent ($4 \mathrm{U} 1626-67$) to 76.8 per cent ($4 \mathrm{U} 1118-61$); five of the seven pulsars have smaller θ_{0}; only two θ_{0} s increased; the decreases of θ_{o} range from 0 per cent ($4 \mathrm{U} 1627-67$) to 98.8 per cent ($4 \mathrm{U} 0115+63$); for six pulsars, the area of the emission region decreased, from 5.4 per cent ($4 \mathrm{U} 0900-40$) to 50.7 per cent ($4 \mathrm{U} 1118-61$), the only exception being GPS 1722-36, whose size increased 11.09 per cent.

Generally speaking, with so many parameters, the model fit is not unique. Usually, quite different parameters can be obtained, while the SSQ is not significantly different. In this case, however, although goodness of fit cannot be evaluated, we take the SSQ as a relative measurement of goodness of fit, and the model fit with the smaller SSQ is the better fit. Then we may conclude that the model including the effects of light bending gives significantly better fits to the observations, and geometric pictures more consistent with theoretical estimates.

However, for EXO $2030+375$, we conclude that the present model is not applicable, and some mechanisms other than flat emission rings or a simplified fan beam are responsible for the pulse shapes of that pulsar.

REFERENCES

Bulik T., Meszaros P., Woo J., Nagase F., Makashima K., 1992, ApJ, 395, 564
Leahy D. A., 1990, MNRAS, 242, 188
Leahy D. A., 1991, MNRAS, 251, 203
Mészáros P., 1992, High-Energy Radiation from Magnetized Neutron Stars. The University of Chicago Press, Chicago
Mészáros P., Nagel W., 1985, ApJ, 299, 138
Parmar A. N., White N. E., Stella L., 1989a, ApJ, 338, 359
Parmar A. N., White N. E., Stella L., 1989b, ApJ, 338, 373
Riffert H., Mészáros P., 1988, ApJ, 325, 207
Riffert H., Nollert H.-P., Kraus U., Ruder H., 1993, ApJ, 406, 185
Shapiro S. L., Teukosky S. L., 1983, Black Holes, White Dwarfs, and Neutron Stars. Wiley-Interscience, New York
Wang Y.-M., Frank J., 1981, A\&A, 93, 255
Wang Y., Welter G., 1981, A\&A, 102, 97

