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Abstract. Using inclusion—exclusion, we can write the indicator function of a union of
finitely many balls as an alternating sum of indicator functions of common intersections
of balls. We exhibit abstract simplicial complexes that correspond to minimal inclusion—
exclusion formulas. They include the dual complex, as defined in [3], and are characterized
by the independence of their simplices and by geometric realizations with the same under-

lying space as the dual complex.

1. Introduction

In this paper we study inclusion—exclusion formulas for unions of finitely many balls in
R?, generalizing previous results that derive such formulas from Delaunay triangulations

and dual complexes.

Motivation. It is common in biochemistry to identify a molecule with the portion of
space it occupies. This portion is sometimes referred to as the space-filling diagram,
and its simplest and most common form is a union of balls in R?, each ball representing
an atom of the molecule. The volume and surface area of this union are fundamental
concepts that relate to physical forces acting on the molecules. We refer to [4] for a
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recent survey that describes this connection and also discusses derivatives of the volume
and surface area, which are needed in simulating the motion of molecules.

We consider a finite set of balls in R? and focus on the volume of the union. Generally,
there are many inclusion—exclusion formulas that give the correct volume, even if we
limit our attention to minimal formulas. The starting point of the work reported in this
paper is the idea that this ambiguity could be useful in maintaining a formula for a
moving set of balls. If we understand how long a formula remains valid, we can save
time by delaying any changes until they become necessary. As a first step towards such
an understanding, we study the family of minimal inclusion—exclusion formulas for a
given set of balls.

Prior Work. The principle of inclusion—exclusion is perhaps the most natural approach
to measuring a union of measurable sets. Letting B be a finite set of balls, the volume of
the union is the alternating sum of volumes of intersections:

VOIUB = Z (—l)cardx’lvolﬂX, 1)

P#£XCB

where card X is the number of balls in X. Writing »n for the number of balls in B, we
have 2" — 1 terms, each plus or minus the volume of the intersection of at most » balls.
It seems the formula is only useful if all sets X with non-empty common intersection
are small. More than a quarter of a century ago, Kratky [7] pointed out that even if this
is not the case, one can substitute lower-order for higher-order terms and thus reduce
the complexity of the formula. The software of Scheraga and collaborators [9] is based
on this observation, but it is sometimes difficult to do the reduction correctly. In 1992
Naiman and Wynn [8] proved that (1) is correct even if we limit the sum to sets X that
correspond to simplices in the weighted Delaunay triangulation of B. By definition, this
is the dual of the weighted Voronoi diagram of the balls, sometimes called the power
diagram or the Dirichlet tessellation [1]. In the geometry literature, this dual is also
known as the regular triangulation and the coherent triangulation of B [5]. In agreement
with Kratky, this result implies that in R? we only need sets X of cardinality at most four.
Taking all such sets would lead to an incorrect formula, and Naiman and Wynn’s result
is a recipe for selecting sets that give a correct formula. In 1995 Edelsbrunner [3] further
reduced the formula by proving that (1) remains correct if we limit the sum to simplices
in the dual complex, which is a subcomplex of the weighted Delaunay triangulation of
B. Besides giving a shorter formula, the terms obtained from the dual complex consist
of balls that intersect in a unique pattern, which allows a simple implementation without
case analysis [6].

Results. We refer to the specific intersection pattern exhibited by the balls in the dual
complex formula as independent, a term whose technical definition will be given shortly.
Our first result generalizes this formula to a family of formulas whose terms exhibit
the same pattern. Specifically, if K is an abstract simplicial complex whose simplices
are independent sets of balls and whose canonical geometric realization has the same
boundary complex and underlying space as the dual complex then the corresponding
inclusion—exclusion formula is correct. To prove that this is a proper generalization,
we show in Fig. 1 that even already for four disks in the plane we can have more than
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Fig. 1. Four disks that permit two correct, minimal inclusion—exclusion formulas. The upper complex on the
right is the dual complex of the disks and corresponds to the formulaa +b +c+d —ab — ad — bc — bd —
cd + abd + bed, in which we write a for the area of disk a, ab for the area of the intersection of @ and b, etc.
To get the formula of the lower complex, we substitute —ac + abc + acd for —bd + abd + bcd.

o

3}

one such formula. Our second result states that the inclusion—exclusion formulas in the
family specified in our first result are minimal and exhaust all minimal formulas that
correspond to simplicial complexes.

Outline. Section 2 presents definitions and the formal statements of our two results.
Section 3 proves the first result and Section 4 proves the second. Section 5 concludes
this paper.

2. Statement of Results

In this paper a simplex may be abstract (a collection of balls) or geometric (the convex
hull of affinely independent points). We use both interpretations interchangeably and
introduce notation that does not distinguish between them.

Independent Simplices. Let B be a finite set of closed balls in R?. Throughout this
paper we assume that the balls are in general position, which includes that every ball
has positive radius and the common intersection of any £ + 1 bounding spheres is either
empty or a (non-degenerate) sphere of dimension d —k — 1. In particular, this prevents the
common intersection degenerating to a single point. An abstract simplex is a non-empty
subset @ C B and its dimension is one less than its cardinality, dimo = carda — 1. A
k-simplex is an abstract simplex of dimension k. If 8 C « is a non-empty subset, we call
B aface of a and « a coface of . A simplex « is independent if for every subset y C «,
including y = #, there is a point that belongs to all balls in y but not to any ball notin y:

Nr-Ue-n#0

By assumption of general position, each set of the form [y — | (¢ — y) contains an
open subset of R?. Clearly, every face of an independent simplex is independent. In R?
there are only three types of independent simplices, one each for one, two, and three
disks, as shown in Fig. 2. Four disks cannot be independent because the four bounding
circles decompose the plane into at most 14 regions but we need 16, one each for the 2*
subsets. Similarly, in R? we have d + 1 types of independent simplices. To construct an
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Fig. 2. From left to right: an independent simplex of dimension k = 0, 1, 2.

independent k-simplex, for k < d, we consider the standard k-simplex whose vertices
are the endpoints of the Cartesian coordinate frame of R¥*!. This is a regular simplex
with edges of length +/2 and vertices at distance 1 from the origin. Placing the centers
of k + 1 unit balls at these vertices, it is not difficult to see that the centroid of any subset
of j 4+ 1 centers lies inside the corresponding j + 1 balls but outside the other k — j
balls. There are no independent simplices of dimension k > d because in this case k + 1
(d — 1)-spheres decompose R¢ into fewer than 2¢*! open regions (see the Chamber
Lemma below).

General Position. We think of R? as the subspace of RY*! spanned by the first d
coordinate axes. For each d-dimensional ball b; with center z; € R and radius »; > 0,
we construct the corresponding ghost sphere,

si ={y e R™ | |ly — z | — r} = 0},

which is a d-sphere in R?*!. Using this concept, we can now define what exactly we
mean by a set of balls to be in general position, namely that the common intersection of
any k + 1 ghost spheres is either empty or a sphere of dimension d — k. We note that for
0 < k < d, this is equivalent to the condition we mentioned earlier: all radii are positive
and the common intersection of any k + 1 bounding spheres is either empty or a sphere
of dimension d — k — 1. For k > d we get new conditions. We need some definitions
before we can explain them in terms of concepts intrinsic to R,

Call w; (x) = ||x — z;||* — rl»2 the power distance of the point x € R? from b; and note
that b; = ni_l (—o00, 0] and the zero-set of 7; is the (d — 1)-sphere bounding b;. Using the
power distance, we decompose |_J B into convex cells, one for each ball. Specifically, the
cell of b; consists of all points x € b; with 7; (x) < m;(x) forall b; € B.Itisnot difficult
to see that the cell of b; is the intersection of b; with a convex polyhedron, keeping
in mind that this polyhedron or its intersection with b; may be empty. To describe the
relation between this cell and the ghost sphere of b;, we extend ; to R*! by defining
0;(y) = |ly — x||?> + m;(x), where x is the orthogonal projection of y € RY*! to R¢.
The ghost sphere itself is the zero-set, s; = ofl(O). For a given point x € b;, define
yi(x) € R4 above R? such that ||y;(x) — x||> + m;(x) = 0; it is the point on the
upper hemi-sphere of s; whose orthogonal projection to R? is x. The condition for x to
belong to the cell of b; now translates to ||y; (x) — x %> > lyi(x) —x |I> whenever v (x)
is defined. In words, the cell of b; is the orthogonal projection of s;’s contribution to the
upper envelope of the ghost spheres, as illustrated in Fig. 3.

Let us return to the case k > d of our general position assumption. It says that the
common intersection of any k 4+ 1 > d + 1 ghost spheres is either empty or a 0-sphere,
and the latter case can only happen if k = d. Equivalently, the common intersection of
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Fig.3. Upper envelope of the ghost spheres of three independent disks and the corresponding decomposition
of the union of disks into convex cells.

the cells decomposing the union of any k 4+ 1 > d + 1 balls is either empty or a point in
the interior of the union, and the latter case can happen only if k = d.

Characterizing Independence. Besides for expressing our general position assumption,
ghost spheres can be used for characterizing independent simplices. This characterization
will be important in establishing the Non-Nesting Lemma in Section 3, a crucial step in
the proof of our first result. We make use of stereographic projections to flatten d-spheres
into d-planes. Assuming a d-sphere s passing through the origin of some Euclidean space,
the stereographic projection is the restriction of the inversion map to the sphere minus
the origin, N, sending every point x € s — {N} to x/|x||*>. The image of s — {N} is a
d-dimensional plane, and the image of a k-sphere in s — { N} is a k-sphere in that image
plane.

To prepare the characterization of independent simplices, we prove a technical result
on (d — 1)-spheres in R?. Any finite collection of such spheres decomposes this space
into open cells. We refer to the (connected) cells of dimension d as chambers, but for
technical reasons we modify the notion of connectivy by first compactify R? with a
single point at infinity. The only case in which the compactification makes a difference
is in dimension 1 where the two unbounded intervals in the decomposition defined by
0-spheres form a single chamber.

Chamber Lemma. The number of chambers in an arrangement of k + 1 (d — 1)-
spheres in R? is at most 27! and it is strictly less than 2" unless k < d.

Proof. We use induction over the number of spheres as well as the dimension. The
induction basis consists of k + 1 = 1 (d — 1)-sphere in R¢ forming two chambers
and of k 4+ 1 O-spheres in R! forming at most 2k + 2 chambers. To prove the upper
bound in the general case, let s be one of the k + 1 (d — 1)-spheres. By induction
hypothesis, the remaining k (d — 1)-spheres define an arrangement with at most 2¢
chambers. These spheres also decompose s into (d — 1)-dimensional patches, and we
complete the arrangement by adding one patch at a time. To get an upper bound on the
number of patches, we use stereographic projection from a point N on s, mapping s —{ N}
to a (d — 1)-dimensional plane and its patches to the chambers in the arrangement of &
(d — 2)-spheres, the image of the intersection between s and the other (d — 1)-spheres.
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By induction hypothesis, there are at most 2¢ (d — 1)-dimensional chambers and thus at
most 2¥ patches on s. Each such patch cuts a single d-dimensional chamber and either
leaves it connected or decomposes it into two. This implies the claimed upper bound of
2¢+1 for the number of chambers.

To see that 2¢*! chambers cannot be attained for k > d we note that the above
argument reduces the problem for k + 1 (d — 1)-spheres in R to k (d — 1)-spheres in RY
and to k (d —2)-spheres in R?~!. Furthermore, a maximum number of chambers for both
subproblems is necessary to get 2*! chambers for the original problem. If k > d then
the second subproblem consists of k > d (d — 2)-spheres in R?~! which, by induction
hypothesis, form strictly fewer than 2¥ chambers. O

We are now ready to characterize the independent simplices.

Ghost Sphere Lemma. A k-simplex of k + 1 balls in general position in R? is inde-
pendent iff the common intersection of its k + 1 ghost spheres is a (non-degenerate)
sphere of dimensiond — k > 0.

Proof. We prove the lemma by establishing five equivalences, A < B < C < D &
E & F, connecting statement A: “a k-simplex of k + 1 balls in general position in R?
is independent” with statement F: “the common intersection of k + 1 ghost spheres is a
(non-degenerate) sphere of dimension d — k > 0”. For the fourth equivalence, we use
induction over the dimension. By definition, A is equivalent to B: “the (d — 1)-spheres
bounding the k + 1 balls form an arrangement with 2X*' chambers and any two of the
chambers are separated by at least one of the (d — 1)-spheres”. Since we will encounter
the latter property again, we call such a set of chambers pairwise separated.

From B we prove statement C: “the k + 1 ghost spheres form an arrangement of 28!
pairwise separated chambers in R?T!”. By the Chamber Lemma there are at most 2K+!
chambers in R4, They intersect R? in 2! (d-dimensional) chambers, and because
the latter are pairwise separated, each chamber in R?*! meets R? in a unique chamber
and the chambers in R?*! are also pairwise separated. To prove C = B, we use the
fact that the arrangement of ghost spheres is symmetric with respect to R?. The fact
that its chambers are pairwise separated then implies that each intersects R? in a single
(d-dimensional) chamber and that the latter are also pairwise separated.

For the next step, let s be one of the k 4+ 1 ghost spheres, let N be a point of s, and
map s — {N} by stereographic projection to a d-dimensional plane, which we refer to as
R?. The other k ghost spheres decompose s into patches, which map to (d-dimensional)
chambers in an arrangement of k (d — 1)-spheres. Since the chambers in the ghost sphere
arrangement are pairwise separated, this implies D: “there are 2* pairwise separated
chambers in R?”. The reverse implication, D = C, can be seen by remembering that
each patch of s separates two chambers in R?*!, one inside and the other outside s. The
inside chambers are pairwise separated by the k ghost spheres because the patches are
pairwise separated. Similarly, the outside chambers are pairwise separated. Finally, s
separates all inside from all outside chambers implying that the chambers in R?*! are
pairwise separated.

By induction hypothesis, D is equivalent to E: “the k (d — 1)-spheres meet in a
common sphere of dimension d — k > 0”. Mapping the (d — k)-sphere by the inverse of
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Fig. 4. A finite set of disks and the canonical realization of an abstract simplicial complex over that set. The
vertices, edges, and triangles correspond to abstract simplices of dimension 0, 1, and 2. Take a moment to
verify that all simplices are independent.

the stereographic projection gives another (d — k)-sphere that belongs to all k + 1 ghost
spheres and thus implies F. It is clear that F implies E, which completes the proof. O

Simplicial Complexes. An abstract simplicial complex is a collection of non-empty
abstract simplices, K, that contains, with every simplex, the faces of that simplex. If B
is the set of vertices then K is a subset of the power set, K C 25, Figure 4 illustrates the
definitions. A geometric realization maps every abstract simplex to a geometric simplex
of the same dimension such that the intersection of the images of two abstract simplices
« and B is the image of o N B, which is either empty or a face of both. In this paper
the vertices are closed balls and we map every abstract simplex to its canonical image,
defined as the convex hull of the centers of its balls. We call K canonically realizable
if this map is a geometric realization. We use the letters & and 8 to denote the abstract
simplices as well as their images, which are geometric simplices. Similarly, we use the
letter K to denote the abstract simplicial complex as well as its geometric realization,
which is a geometric simplicial complex. Its underlying space is the set of points covered
by the geometric simplices, which we denote as | K|. The star of an abstract simplex 8
is the set of cofaces « € K, and the link of § is the set of simplices « — 8 with @ D B.
Assuming K is geometrically realized in R¢, the link of every k-simplex is a triangulation
of the sphere of dimension d — k — 1 or a proper subcomplex of such a triangulation.
We define the boundary complex of K as the subset of simplices in the latter category.
This is also the subcomplex of simplices contained in the boundary of | K.

Dual and Other Independent Complexes. Let B be a set of closed balls and recall the
decomposition of |_J B into convex cells described above. The nerve of this collection of
cellsis particularly important for the results described in this paper. The dual complex of B
is the canonical realization of this nerve, obtained by mapping every k 41 cells with non-
empty intersection to the k-simplex spanned by the centers of the corresponding balls.
This construction is illustrated in Fig. 5, where we see the dual complex superimposed
on the decomposition of the union into convex cells. It is perhaps not obvious but true
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Fig. 5. The dual complex of the disks in Figure 4. Its simplices record the overlap pattern of the cells in the
decomposition of the union. In this example, the dual complex has the same boundary complex and underlying
space as the independent complex in Figure 4 but differs from it in six edges and twelve triangles.

that the canonical mapping of abstract simplices defines a geometric realization of the
nerve, provided the balls in B are in general position [3].

Given a finite set of balls in general position, B, we are primarily interested in abstract
simplicial complexes K of B that satisfy the following three conditions:

Independence: all simplices in K are independent.

Realizability: K is canonically realizable in R¢.

Boundary: the boundary complex and underlying space of K are the same as those
of the dual complex.

An independent complex is an abstract simplicial complex that satisfies the independence
condition. We note that there is an alternative way to express the boundary condition,
without references to the dual complex, by comparing the boundaries of K and | B. In
particular, a simplex « belongs to the boundary complex of K iff there is a point on the
boundary of |_J B that belongs to all balls in & and to no others.

First Result: Indication. The indicator function of a subset A C R? is the map
14: RY — {0, 1} defined by

1 if xea,
La) = {0 if x¢A

Given a finite set of balls in R¢, our first result states that the inclusion—exclusion formula
defined by a simplicial complex that satisfies the above three conditions gives the correct
indicator function of the union.

Theorem A. Let B be a finite set of closed balls in general position in R? and let K be
an independent complex that is canonically realizable in R? and satisfies the boundary
condition. Then 1 jp = ZaeK(—l)d‘m"lma.
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Using Theorem A, we obtain formulas for the volume or other measures of the union
by integrating the density function, u: R¢ — R:

B = dx

meas U /erB n(x)

/ L1 5 (x) dx
xeRd

D o (=1yfime f L HOINe() dx

ack

Z(—l)dim“ meas m o.

ack

For d = 2, the edge skeleton of K is a planar graph implying that the number of terms
in the above formula is less than six times n = card B. More generally, the number of
terms is bounded from above by some constant times n/?/? [2].

Second Result: Minimality. The inclusion—exclusion formula corresponding to an ab-
stract simplicial complex K C 25 gives a map IEFx: R? — Z defined by

IEFk (x) = Z(—l)dlm"‘lmu,(x).
ack
The formula is minimal if IEF; # IEFg for all proper subsets L C K. By Theorem A we
have IEFx = 1y if K is an independent complex that is canonically realizable in R4
and satisfies the boundary condition. Our second result states that such complexes have
minimal formulas and that they exhaust the family of complexes with minimal formulas.

Theorem B. Let B be a finite set of closed balls in general position in R? and let
K < 28 be an abstract simplicial complex with IEFg = 1 . This formula is minimal
iff K is independent, canonically realizable in R?, and satisfies the boundary condition.

3. Proof of Theorem A

In this section we present our proof of Theorem A. Starting with a finite set of balls, first
we add small balls covering the rest of R to get an infinite but discrete set, and second
we use this discrete set as the basis for a continuous set. Both steps are instrumental in
obtaining the technical results that imply Theorem A.

Induced Subcomplexes. Given an abstract simplicial complex K € 25, a subset By C
B induces the subcomplex Ko = K N 250, To establish our first result, we associate
to each point x € RY the subset B, C B of balls that contain x and the subcomplex
K, C K induced by B,.. We have

IEFg (x)

D =DM 4 (x)

ackK

Z (_Ddima.

aek,
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The latter sum is the Euler characteristic of K, which we denote as x (K ). For all points
x ¢ |JB, K, = @ and IEFk (x) = x(K,) = 0. To tackle the points inside the union,
we recall that the Euler characteristic of every contractible set is 1. As explained later,
such a set has the homotopy type of a point, which in the plane includes trees and closed
disks. We will show that |K,| is contractible, for every point x € | B, which will then
imply Theorem A.

The union of the balls in B, is star-convex, which implies that |_J B, is contractible.
In spite of the fact that the underlying space of the subcomplex K, induced by B is not
necessarily star-convex, we will be able to prove that |K,| is also contractible. Before
embarking on this proof, we introduce the anticipated discrete and continuous sets of
balls. Using the continuous set, we will find a set between | K| and | By, which we will
show is star-convex and of the same homotopy type as |K|.

From Finite to Discrete Sets of Balls. A simplicial complex is locally finite if the
star of every vertex is finite. We extend the finite set of balls B to a discrete set B =
BU B,. Simultaneously, we construct a locally finite independent complex K © K whose
vertices are the balls in B and whose underlying space is R¢. The construction depends
on a positive number ¢, the radius of the balls in B, added to B. We require that B covers
R4 while the center of every ball in B, lies outside all other balls in B, as illustrated in
Fig. 6. Choosing ¢ > 0 sufficiently small, we construct B, one ball at a time, picking
the center outside all previous balls, until B covers RY, Assuming the balls in B are in
general position, it is clear that we can construct B such that its balls are also in general
position. To see which ¢ is sufficiently small, we consider the cells in the decomposition
of | B. As we add balls of radius ¢, these cells give up territory to the new balls, but
not more than what is covered by the new balls. By shrinking ¢, we can make the loss
of territory as narrow as we like. By assumption of general position, we can therefore
guarantee that any non-empty common intersection of cells in the decomposition of | J B
remains non-empty in the decomposition of |_J B. It follows that the dual complex of B
is a subcomplex of the dual complex of B. The boundary complex of the dual complex

[l

Fig. 6. Extension of the independent complex in Fig. 4 by adding disks of radius €. The rectangular frame
delimits the portion of the configuration reused in Fig. 7.
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of B is the same as the boundary complex of K. We can therefore construct K equal
to K inside and equal to the dual complex of B outside that boundary, as illustrated in
Fig. 6. We finally note the choice of balls implies that K is locally finite.

From Discrete to Continuous Sets of Balls. An abstract simplex is a finite set of balls,
o = {by, b1, ..., bi}. We extend « to an infinite set by considering convex combinations
of balls in «. Recall that 77;: RY — R maps each point x € R to its power distance from
b; and that b; = 711._1 (—00, 0]. An affine combination of « is aball b = 7~ (—o0, 0] for
which there are real numbers X;, summing to 1, such that 7 = Zf:o Mim;. To determine
the center z of b observe that the gradient of 7 at a point x € R is

k
V(x) = Z A V7 (x)
i=0

k
Y 2hr —z)
i=0

k
2 (x — ZXZ’ZZ') ,
i=0

where z; is the center of b;. This gradient vanishes at the center of b, which implies
z = Zf:() Aizi- When « is independent, we can use the ghost spheres of the b; to
complete the characterization of b. Since the o; are the same as the m;, only extended
from R to RY*! | it is clear that the ghost sphere s of b is the zero-set of 0 = Zf:o Aio;.
A point y € R?*! belongs to the common intersection of the ghost spheres of the b;,
which is a (d — k)-sphere, iff 0;(y) = 0 for 0 < i < k. It follows that o (y) = 0,
implying that y also belongs to the ghost sphere of . We summarize these findings for
later reference.

Affine Combination Lemma. [fb is the affine combination of the balls b; with centers
z; determined by coefficients \;, for 0 < i < k, then the center of b is 7 = Zf:o AiZi.
If furthermore the b; form an independent k-simplex then the ghost sphere of b passes
through the common intersection of the ghost spheres of the b;.

A convex combination b of « is an affine combination for which all A; are non-negative.
If a point x belongs to all balls in « then m; (x) < 0, for all i, which implies 7 (x) < 0.
Furthermore, if w(x) < 0 then 7; (x) < O for at least one index i, which implies that x
belongs to at least one ball in «v. We rewrite this finding in set notation for later reference.

Convex Combination Lemma. If b is a convex combination of the balls in o then

Ne<bcJe.

Letting @ € K be the simplex whose interior contains the point z € R?, we write
b, for the (unique) convex combination of balls in o whose center is z. The Affine
Combination Lemma is useful when we consider a line and the balls b, whose centers
z lie on the line. These balls intersect the line in intervals. It turns out that as we move
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the center monotonically along the line, the left endpoint also moves monotonically and
so does the right endpoint. It is convenient to prove this for the extension K of K for
which there are balls for all points along the line. As usual, we assume the balls in B are
in general position.

Non-Nesting Lemma. For any two points x # v in R?, the two balls b, and by are
either disjoint or independent.

Proof. Consider first the case in which x and y are points of a common d-simplex « in
K. Since « is independent, the ghost spheres of « intersect in a common O-sphere. By
the second part of the Affine Combination Lemma, the ghost spheres of b, and b, pass
through this O-sphere and thus meet in a (d — 1)-sphere. It follows that b, and b, are
independent.

If x and y do not belong to a common d-simplex, there is a point z on the line segment
connecting x and y that lies on a (d — 1)-simplex. The number of (d — 1)-simplices
separating x from z is strictly smaller than the number separating x from y, and similar
for z and y. We can therefore use induction to show that b, and b, as well as b, and b,
are either disjoint or independent. Consider the directed line that passes through x, z, y,
in this sequence. It intersects by, b, b, in three intervals. Because b, and b, are non-
nested so are the intervals in which b, and b, meet the line. Similarly, the intervals in
which b, and b, meet the line are non-nested. However, because x, z, y are the centers
of these intervals, the left endpoints are ordered the same way as x, z, y and so are
the right endpoints. It follows that the intervals and therefore the balls of x and y are
non-nested. O

Intermediate Set of genters_. For a point x € R4, we write B’f C B for the set of_balls
that contain x and K, € K for the subcomplex induced by B,. We prove that |K,| is
contractible by showing it has the same homotopy type as

Z,={zeR!|x eb,),

which we later prove is star-convex. Let o be the simplex whose interior contains the
point z € R, By the Convex Combination Lemma, z € Z, if all balls in « contain x.
Similarly, z ¢ Z, if none of the balls in & contains x. As illustrated in Fig. 7, the first
property implies |K,| € Z,. Let L, be the subcomplex of K induced by B — By. Each
vertex of K is either in K, or in L,. It follows that each abstract simplex « that is in
neither induced subcomplex is the union of its largest faces g € K, and a; € L,.
The corresponding geometric construction writes « as the union of line segments pg
connecting points p € ag with points ¢ € «;. Because of the Convex Combination
Lemma, b, contains x and b, does not contain x. Since p and g belong to a common
independent simplex, the ghost spheres of b, and b, intersect in a (d — 1)-sphere. It
follows that the bounding spheres of b, and b, intersect in a (d — 2)-sphere, namely the
portion of the (d — 1)-sphere in R?. This (d —2)-sphere is also contained in the bounding
sphere of every ball along the line segment between p and g. As we move from p to
g, the ball shrinks on the side of the (d — 1)-plane passing through this (d — 2)-sphere
that contains x. This implies that there is a unique point y on pg such that x € b, for
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Fig.7. The point x is contained in four disks, which induce the dark-gray subcomplex K, consisting of two
triangles and their faces. The other disks induce the light-gray subcomplex L,. We get Z, by adding initial
portions of the line segments covering the white in-between simplices to the underlying space of K.

all z between p and y, including y, and x ¢ b, for all z between y and ¢, excluding
y. In other words, Z, can be written as the union of |K,| and all line segments py as
described. These line segments can be shrunk continuously towards | K |. Formally, we
define z(A) = (1 — X))z + Ap for each point z on py and each 0 < A < 1. Since p varies
continuously with z, we have here a continuous map from Z. x [0, 1] to Z, that keeps
the points of |K .| fixed. We thus constructed a deformation retraction that takes Z, to
|K |, proving that the two have the same homotopy type.

Homotopy Type Lemma. |K,| >~ Z,.

As mentioned earlier, a contractible set has the homotopy type of a point. By the above
lemma, |K,| is contractible iff Z, is contractible. We prove the latter by showing that
Z, is the union of line segments emanating from a common endpoint. This implies that
Z, is contractible because we can again exhibit a deformation retraction by shrinking
the line segments, this time toward their common endpoint.

Star-Convexity Lemma. Z, is star-convex.

Proof. Observing that x € Z,, we show that any line that passes through x intersects
Z. in a single line segment. To reach a contradiction, assume there are points y and z
on such a line through x such that z lies strictly between x and y and x € b, butx & b,.
Then b, C by, which contradicts the Non-Nesting Lemma. O

It is not too difficult to show that the boundary of 7, is piecewise linear, as suggested
by Fig. 7. In other words, Z, is a star-convex polytope.

Finale. We finally state and prove the crucial technical result that implies Theorem A.

Contractibility Lemma. Let B be a finite set of closed balls in general position in R?.
For every point x € | J B, the underlying space of the subcomplex K, induced by the
balls that contain x is contractible.
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Proof. We first establish the result for points x in the interior of ] B. We may assume
that ¢ > 0 is sufficiently small such that none of the balls in B, contains x. Hence,
B, = B, and K, = K,. By the Homotopy Type Lemma, |K,| and Z. have the same
homotopy type, and by the Star-Convexity Lemma, Z, is star-convex and therefore
contractible. It follows that |K,| is contractible. By assumption of general position,
every point x on the boundary has a point y in the interior of | J B that is contained
in the same balls of B as x. Therefore, K, = K, and the claim follows by the first
argument. O

As mentioned earlier, the contractibility of | K| implies IEFg (x) = x(K,) = 1 for
all points x € |J B. Theorem A follows.

4. Proof of Theorem B

In this section we present a proof of Theorem B. We begin by establishing (2) as our
main technical tool.

Witness Points. Let B be a finite set of closed balls in general position in R?, as usual.
Let 5 € B be an independent k-simplex, for k < d, and let [(8) be the (d — k — 1)-
sphere common to the (d — 1)-spheres bounding the balls in 8. By assumption of general
position, almost all points of /(8) do not lie on any other bounding (d — 1)-sphere, and
we let y € [(B) be one such point. We consider 2¢*! points X, near y, one for each subset
y C B, as illustrated in Fig. 8. We require that the points witness the independence of
B, thatis, x, € [y — J (8 — y) for all y, and that every other ball in B — § either
contains all of the points or none of them. Supposing « C B is an independent simplex,
we consider

k(@) =Y (=D 14 (x)),

YEB

where dim@ = —1. If ()« does not contain y then it contains none of the points x,
and we have x (o) = 0. Otherwise, (|« contains some but not necessarily all points
x,. To specify which ones it contains, we define § = 8 N o and note that x,, belongs
to (e iff § € y C B. Writing y as the disjoint union of § and y’ € 8 — § we have
dimy = dimé + dimy’ + 1. If § is a proper subset of 8 then 8 — § is a (non-empty)
simplex and

K(Ol) — (_l)dim5+l Z (_l)dimy’ — 0,

y'Sp—s

as before. The only remaining case is when y € (|« and § = B or, equivalently,
y € N« and B € o. This is also the only case in which « does not vanish, namely
k(o) = (—1)%im#8,
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We now consider a set L C 25 of independent simplices, and the inclusion—exclusion
formulas this set defines for the points x, . The alternating sum of these formulas is

X = Y (=D IEF, (x,)
Y<h
— Z(_l)dimy Z(_l)dimalma(xy)
v<B ael
— Z(_l)dimak_(a).
ael

Recalling that « () is non-zero only if 8 C o, welet Lg C L be the subset of simplices
o that contain 8. The contribution of such a simplex « is (—1)4™# if y € (M «, and zero
if y ¢ () «. Hence,

x = (=D"™PIEF,, (y). 2)

We are interested in two special cases. The first case is characterized by IEF, being
constant in a neighborhood of y. By the choice of points x,,, we have IEF, (x,,) = IEF, (y)
for all y. Plugging the common value into the definition, we get x = 0, and using (2),
we get IEF, (y) = 0. We state this result in words, letting 8 be an independent simplex
of dimension k < d, and y € [(B) be a point not on the bounding sphere of any ball in
B — B, as before.

Even Corollary. [fIEF is constant in a neighborhood of y then the number of cofaces
o € L of Bwithy € [\« that have even dimension is the same as the number of such
cofaces that have odd dimension.

The name of the claim is motivated by the weaker implication that the number of cofaces
o of B with y € (M« is even. The second special case is characterized by IEF, (x,) =
IEF, (y) for all y # @ and IEF, (x4) = IEF,(y) — 1. This arises, for example, when
the inclusion—exclusion formula of L is the indicator function of |_J B and y lies on the
boundary of the union. Plugging the values into the definition, we get x = 1, and using
(2), we get IEF,, (y) = £1. We state a weaker implication in words.

0Odd Corollary. [fIEF, is constant around y, except in the orthant of xy where it is
one less, then the number of cofaces « € L of B with'y € [\« is odd.

Redundant Subsets. A subset L of an abstract simplicial complex K is redundant if
IEFK = IEFK,L. Equivalently,

IEF;, = Z(—l)dimalma

ael

vanishes everywhere. We use the Even Corollary to derive structural properties of re-
dundant subsets.
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Redundant Subset Lemma. Let B be a finite set of closed balls in general position
inR?, let K be an independent complex over B, and let L be a redundant subset of K .

(1) If L contains a k-simplex B, with k < d, then L contains at least one proper
coface a O B.
(ii) If L contains a (d — 1)-simplex B, then L contains two d-simplices whose
canonical images in RY intersect in the canonical image of B.
(iii) If L contains a d-simplex a, then L contains alld + 1 (d — 1)-faces of «.

Proof. To get (i), let y € [(B). Since IEF; vanishes everywhere, and therefore also
in a neighborhood of y, the Even Corollary implies that L contains an even number of
cofaces  of B with y € (). One such cofaces is S itself, which implies the number is
at least two and therefore includes at least one proper coface.

To get (ii), observe that /(B) consists of two points, y and z. Applying the above
argument to y we obtain a d-simplex « D B in L. Since d — 1 and d are the only
dimensions to consider, and for trivial reasons § is the only (d — 1)-simplex that contains
B, the d-simplex « is unique. Since « is independent, the extra ball in « contains y and
does not contain z. Symmetrically, we get a unique d-simplex whose extra ball contains
z and does not contain y. The centers of the two extra balls lie on opposite sides of
the (d — 1)-dimensional plane spanned by f. It follows that the two d-simplices lie on
opposite sides of the (d — 1)-simplex, as illustrated in Fig. 8 on the right.

To get (iii), we consider a (d — 1)-face 8 of «. Since § is independent, /() consists
of two points and we let y be the one contained in the single ball in « — 8. The Even
Corollary implies that L contains at least one coface of 8, besides @ whose common
intersection contains y. As proved above, « is the only proper coface of 8 with y € (e,
leaving B itself as the only remaining possibility. |

Sufficiency. We are ready to prove one direction of Theorem B. Specifically, we show
that an abstract simplicial complex K that is independent, canonically realizable in
R?, and satisfies the boundary condition has a minimal inclusion—exclusion formula.
Equivalently, such a complex K contains no redundant subset.

To obtain a contradiction, we assume K has a non-empty redundant subset L. Because
of (i) in the Redundant Subset Lemma, we may assume that L contains at least one d-
simplex. Using (iii) of the same lemma, we see that L also contains the (d — 1)-faces
of that d-simplex. By iterating (ii) and (iii), we conclude that L contains all d-simplices
of a component formed by connecting the d-simplices across shared (d — 1)-faces.
However, then L also contains the boundary (d — 1)-simplices of that component, which
exist because K is finite and geometrically realized in R¢. Now we have arrived at a
contradiction because a boundary (d — 1)-simplex lacks the d-simplex on its other side
which, by (ii) of the Redundant Subset Lemma, ought to be in L.

Boundary and Interior. Having established one direction of Theorem B, we now pre-
pare the other. Let B be a finite set of balls in R? and let K < 2% be an abstract simplicial
complex. The only properties we assume are that the balls are in general position and
that IEF[( = IU B-
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Inside-Outside Lemma. Let 8 C B be an independent simplex of dimension k < d
and not necessarily in K , and let y € [(8) be a point not on the (d — 1)-sphere bounding
any ball in B — B.

(i) If y lies in the interior of | J B then 8 € K implies that K contains a proper
coface a O B.
(i) If y lies on the boundary of | ) B then B € K.

(i) IfdimpB =d —1, B € K, and K is independent then the number of d-cofaces of
B in K is equal to the number of points in [(B) that lie in the interior of | ) B. If
there are two then the centers of the two extra balls lie on opposite sides of the
(d — 1)-plane spanned by the centers of the balls in .

Proof. To get (i), we note that IEFk is equal to 1 in a neighborhood of y. The Even
Corollary implies that K contains an even number of cofaces of 8 whose common
intersections contain y. If 8 is in K then this number is at least 2 so there is also a proper
cofacea D Bin K.

To get (ii), we note that IEFk is equal to 1 in a neighborhood of y except outside | B,
where it is 0. The Odd Corollary implies that K contains an odd number of cofaces of
whose common intersections contain y. This odd number is at least 1, and since K is a
complex, this implies that K also contains 8.

To get (iii), we first note that /(8) is a O-sphere consisting of only two points, y and
z, as illustrated in Fig. 8. Furthermore, 8 is its own only coface of dimension d — 1 and
the assumed independence of K implies all other cofaces are of dimension d. The Even
Corollary therefore permits only one d-coface for each point of /(f) in the interior of
| B. If there are two such d-simplices then the respective extra ball contains one point
of the 0-sphere but not the other, which implies that the two centers lie on opposite sides
of the (d — 1)-plane spanned by the centers of the balls in 8. Finally, if b is the extra
ball of a d-coface of § then b either contains y or z in its interior. We therefore get no
d-coface if both y and z lie on the boundary of | B and only one d-coface if one of the
two points lies on the boundary and the other in the interior. |

Necessity. We are finally ready to prove the second direction of Theorem B. Specifi-
cally, we show that an abstract simplicial complex K with minimal inclusion—exclusion

Fig.8. The edge belongs to none, one, or two triangles depending on whether two, one, or none of the points
y and 7 lie on the boundary of the union of disks. The four points near y are the points x,, used in the derivation
of (2).
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formula IEFx = 1 p is independent, canonically realizable, and has the same boundary
complex and underlying space as the dual complex.

First independence. Supposing K is not independent, we let « € K be a non-
independent simplex. By definition, « has a face 8 suchthat 18 —J (@ — B) = ¥
or, equivalently, 8 € | (@« — B). If B = o then [ Ja = @ so L = {«} is redundant,
which contradicts the minimality of IEFg. Otherwise, « — 8 # @ and we can rewrite
the indicator function of the common intersection of balls in 8 as

Ing = 1ng -1y @-p

=1ns- D =D)™1p,
bty Ca—p
— Z (_l)dimﬁ—dimﬂ—llma’

BCéCa

where § = g Uy, and dimé = dim g + dimy + 1 because B Ny = @. After moving
1 to the other side and multiplying with (—1)%™#*! we get

> (=)™ =0, 3)

BSéCa

which implies that the set of faces of « that are cofaces of 8 is redundant. We again
get a contradiction to the minimality of IEFg, which shows that the minimality of the
inclusion—exclusion formula implies the independence of K, as claimed.

Second realizability and boundary. Recall that a simplex 8 belongs to the boundary
complex of the dual complex of B iff there is a point y € [(8) on the boundary of  J B.
All simplices of the dual complex are independent so the Inside—Outside Lemma (ii)
applies showing that 8 also belongs to K. By (i) of the same lemma, every simplex in K
for which there is no such point y is the face of a d-simplex. By (iii) of the same lemma,
every such (d — 1)-simplex belongs to two d-simplices, one on each side. Intersect
the (canonical images of the) simplices with an oriented line that avoids all simplices
of dimension d — 2 or less. It meets the boundary (d — 1)-simplices in some order,
alternating between entering and exiting the underlying space. After entering and before
exiting, the line may encounter a sequence of interior (d — 1)-simplices, alternating
between entering and exiting a d-simplex. Since this is true for almost all oriented lines,
it is not possible that two d-simplices overlap in anything other than their shared faces.
It follow the canonical mapping gives properly intersecting simplices on the boundary
as well as in the interior. Equivalently, K is canonically realizable. Furthermore, the
boundary complex and the underlying space of K are equal to those of the dual complex.
This completes the proof of Theorem B.

5. Conclusion
The main result of this paper is a characterization of the minimal inclusion—exclusion

formulas of a union of closed balls B in R? that correspond to simplicial complexes.
What about inclusion—exclusion formulas that correspond to sets of simplices that do



Inclusion—Exclusion Formulas from Independent Complexes 77

not form complexes? The central concept is that of an independent set of balls in R?,
and our results rest on the observation that the maximum size of such a set is d + 1.
There are other classes of geometric shapes with bounds on the size of independent sets.
For example, the number of independent ovals (each bounded by an ellipse in R?) is at
most five. Does an upper bound of k 4 1 on the maximum number of independent shapes
imply the existence of an abstract simplicial complex of dimension at most & that gives
a correct inclusion—exclusion formula? The argument leading up to (3) gives a weaker
result, namely the existence of inclusion—exclusion formulas in which each term is an
integer multiple of the indicator function of the intersection of at most k + 1 shapes.
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