Inclusion of Aromatic Compounds by a β-Cyclodextrin-Epichlorohydrin Polymer

Akira HARADA, Masaoki FURUE, and Shun-ichi NOZAKURA

Department of Macromolecular Science, Faculty of Science, Osaka University, Toyonaka 560, Japan.

(Received January 16, 1981)

ABSTRACT: A condensation polymer (β -CD-E) of β -CD with epichlorohydrin was compared with β -CD and poly(β -CD acrylate) in regard to inclusion behavior in an aqueous solution. The stability of the inclusion complexes of β -CD-E with substrates of a single guest part is smaller than that of β -CD because of steric hindrance by substituents on β -CD. On the other hand, the stability of β -CD-E complexes for substrates with two guest parts is much larger than that of β -CD and is somewhat smaller than that of poly(β -CD acrylate). This is due to the cooperation in binding of the adjacent two CD units on a polymer chain.

KEY WORDS β-Cyclodextrin / Epichlorohydrin / β-Cyclodextrin Polymer / Inclusion / Fluorescence / Sodium 2-p-Toluidinylnaphthalene-6-sulfonate / Binding / Dansylamino Acid /

Cyclodextrins (CD) are known to form noncovalent inclusion complexes with various organic molecules in aqueous solution.^{1,2} In the preceding papers the authors reported the preparation of certain vinyl polymers containing cyclodextrins³ and their catalytic and inclusion behavior.4 The polymers containing β -CD were found to bind to large substrates having two guest parts more efficiently than β -CD but to bind to small substrates having one guest part less efficiently than β -CD. It was concluded that this polymer effect on the formation of complexes with large substrates was caused by the cooperation of two adjacent β -CD moieties on a polymer chain.⁵ This conclusion is supported by an inclusion study using the model dimers of β -CD.⁶

In this paper, the study of the polymer effect on the inclusion by β -CD was extended to a condensation polymer of β -CD, the preparation of which is already known⁷ and is much easier than that of vinyl polymers.³

RESULTS AND DISCUSSION

Characterization of β -CD-E

The molecular weight of the polymer was estimated to be 10⁴ to 10⁵ by GPC using Sephadex G- 15 and G-50 columns, the degree of polymerization corresponding to 10--100.

An ¹H NMR study did not identify the place of attachment of the glyceryl bridge or tail whether it is at the C-2, C-3 or C-6 position⁷ of the 1,4-glucoside unit. ¹³C NMR spectrum in Figure 1 presents some information on the place of substitution. The assignment of C-1 through C-6 is based on that of Colson et al.8ª Resonances a and b are indicative of the C-2 and C-3 substitution, respectively.3,8b Resonance d may be an overlap of the C-3 and C-6 substitution. Resonance e is due to the terminal carbon of the glyceryl tail. Resonances f and g clearly shows the existence of the glycidyl group which may be responsible for gellation of the polymer after prolonged storage. Thus, we have no positive evidences for the C-6 substitution, but in view of the higher reactivity of the 6-OH group than that of the 2-OH or 3-OH group.9 the existence of the C-6 substitution is assumed as well as the C-2 and C-3 substitutions.

The polymer was found to be completely amorphous by examination of the X-ray powder pattern.

Solubilization

When an aqueous solution of β -CD (4.0 × 10⁻³ M) was shaken with an excess of the aromatic sub-

Figure 1. ¹³C NMR spectrum and the proposed structure of β -CD-E: TMS external reference, 15 wt% in D₂O, 16384 accumulations.

Table I.	Association constants (K_n) and solubilities of β -CD and
	β -CD-E complexes at 30°C ^a

Substrate	$K_{\rm a}, \beta$ -CD (×10 ⁻³ M ⁻¹)	K_a, β -CD-E (×10 ³ M ¹)	S/S_0^{b}
4-Dimethylaminoazobenzene	0.35	7.0	40.0
n-Chlorobenzoic acid	2.2	0.5	2.1
Dibenzyl	Crystallized	1.3	6.9
Diphenylmethane		0.8	4.6
1, 1-Diphenylethylene		2.0	9.3
p-Xylene	11	0.3	2.2

^a $[\beta$ -CD] = 4.0 × 10⁻³ M, $[\beta$ -CD-E] = 5.6 × 10⁻³ unit M.

^b S₀, solubility in H₂O; S, solubility in aqueous β -CD-E solution (5.6 × 10⁻³ unit M).

strates listed in Table I, crystallization of inclusion complexes occurred in many cases (Table I, second column). But when an aqueous solution of β -CD-E was used instead, no precipitation took place and solubilization of substrates was always realized. This is one notable feature of β -CD polymers in solubilization.

The last column in Table I shows solubilization expressed in relative solubility in aqueous β -CD to that in water. It is seen that solubilization is comparatively small with the substrates of one benzene ring such as *m*-chlorobenzoic acid and *p*-xylene and relatively large with the substrates of two benzene rings, the largest being with 4-dimethylaminoazobenzene. Association constant K_a in Table I also indicates this trend. When β -CD and β -CD-E are compared in K_a values, β -CD-E forms a less stable complex with *m*-chlorobenzoic acid, whereas β -CD-E forms a more stable complex with 4-dimethylaminoazobenzene. This is reasonable since β -CD-E is less favorable for the inclusion of substrates with a single guest part owing to steric interference of the

Inclusion by Cyclodextrin-Epichlorohydrin Polymer

Dye —		$I/I_0^{-\mathbf{b}}$			$\lambda_{\max}^{F}(nm)$		
	β-CD	Poly- (β-CD-A)	β-CD-E	None	β-CD	Poly- (β-CD-A)	β-CD-E
ANS	10.4	70	61	515	495	475	475
TNS ^d	25.3	571	316	500	460	437	440
DNS-Phe ^c	150	600	450	548	500	500	500

Table II. Effects of β -CD, poly(β -CD-A), and β -CD-E on the fluorescence of dyes^a

* pH 5.9 phosphate buffer. [CD] = 1.0×10^{-3} M,

^b Relative fluorescence intensity.

 $^{\circ}$ 1.0 × 10⁻⁵ M.

^d 1.6×10^{-5} M.

glyceryl substituent and because β -CD-E is favorable for the inclusion of substrates with two guest parts owing to the cooperation of two CD moieties for inclusion⁵ (*vide infra*).

Fluorescence Enhancement

Fluorescence enhancement by inclusion of hydrophobic microenvironmental probes, sodium 1anilinonaphthalene-8-sulfonate (ANS), potassium 2-p-toluidinylnaphthalene-6-sulfonate (TNS), and 5-dimethylaminonaphthalenesulfonylphenylalanine (DNS-Phe) was compared among β -CD, β -CD acrylate polymer (poly(β -CD-A))⁵, and β -CD-E. As shown in Table II, β -CD-E exhibits a much larger fluorescence enhancement than β -CD toward all of the probes and a slightly smaller enhancement than poly(β -CD-A). The blue shift of emission maximum with β -CD-E is also similar to that with poly(β -CD-A). These facts indicate that CD moieties in β -CD-E cooperate in binding the large substrate which has both the phenyl and naphthalene rings as in the case of poly(β -CD-A).⁵

Characteristics of the interaction of TNS with β -CD-E was studied by the fluorescence titration method^{5,10} and is depicted in Figure 2 along with the data with other β -CD derivatives.^{5,6} In these experiments- the concentration of TNS was kept constant and the fluorescence intensity was measured at various concentrations of β -CD units. A straight line for β -CD-E shows the existence of a homogeneous binding mode throughout the concentration range, whereas a curved line for β -CD shows the existense of two binding modes, *i.e.*, 2:1 for β -CD:TNS at high concentrations of CD and 1:1 at low concentrations.⁵

The stoichiometry of the binding between β -CD

Figure 2. Double reciprocal plots for titration of TNS by β -CD (A), bis(β -CD) glutarate (B), bis(β -CD) succinate (C), β -CD-E (D), and poly(β -CD-A) (E): 0.1 M phosphate buffer (pH 5.9), 25 °C; *I*, fluorescence intensity.

Figure 3. Continuous variation plot of β -CD-E-TNS system: [TNS]+[β -CD unit]=1.00×10⁻⁴ M, 25°C.

A. HARADA, M. FURUE, and S. NOZAKURA

	CD:TNS	$K_{ m d}/{ m M}$	λ ^F nm	Relative fluorescence intensity
β-CD	1:1	2.5×10^{-4}	462	1
	2:1	5×10^{-2}	447	3
β-CD-E	2:1	3.0×10^{-3}	440	12
$(\beta$ -CD) ₂ G	2:1	1.2×10^{-4}	447	8
$(\beta$ -CD) ₂ S	2:1	0.6×10^{-4}	447	9
$Poly(\beta-CD-A)$	2:1	1.0×10^{-4}	438	20

Table III. Dissociation constants and fluorescence properties of complexes of TNS with β -CD derivatives

and TNS was studied by the continuous variation method, watching the fluorescence intensity at various ratios of the two reactants. As shown in Figure 3 the curve for β -CD-E has a maximum at a β -CD unit molar fraction of 0.66, which corresponds to a 2:1(β -CD:TNS) stoichiometry. Thus, β -CD-E was found to bind to TNS at a 2:1 stoichiometry throughout the entire concentration range. This was also the cases with poly(β -CD-A) and model dimers, bis- β -CD succinate (β -CD)₂S and glutarate (β -CD)₂G (Fig. 2^{5,6}).

Dissociation constants and fluorescence properties of complexes of TNS with certain β -CD derivatives are summarized in Table III. The stability of the 2:1 complex with β -CD-E is larger than that with β -CD and smaller than those with poly(β -CD-A) and model dimers. In the cases of $poly(\beta$ -CD-A) and the dimers, the substitution is exclusively on one of the secondary hydroxyl groups. This substituent makes the inclusion complex less stable than that of β -CD since the substituent hinders the entrance of guests into the cavity of β -CD.^{4,5} A substrate like TNS has two guest parts and can be bound cooperatively by two CD units on the polymer or dimers, yielding eventually more stable complexes than with β -CD. In the case of β -CD-E, more than two substitutions as an average have taken place on β -CD on either the primary or secondary hydroxyl groups. These substituents make the steric hindrance more severe than poly(β -CD-A) or the dimers, so that the complexes with β -CD-E become less stable.

It may be noteworthy to point out a possible application of β -CD-E in binding. Fluorescence enhancement of dansylamino acid (DNS-amino acid) by β -CD is used for the quantitative determination of amino acids.¹¹ As shown in Table

Table I	V. Effec	ts of β -Cl	D and	β-CD-E
	on the	fluorescen	ce of	
	DNS-	amino ac	ids ^a	

Rb	$I_{\beta-{ m CD}}/I_0$	$I_{\beta\text{-CD-E}}/I_0$
н	1.5	2.8
-CH ₃	1.5	2.8
$-CH(CH_3)_2$	2.8	5.9
$-CH_2C_6H_5$	5.6	20.0

^a [β -CD]=1.0×10⁻³ M; [DNS-amino acid]=1.0×10⁻⁴ M.

^b DNS--NHCH (R) COOH.

IV, β -CD-E shows a fluorescence enhancement of all dansylamino acids tested that is higher than β -CD. This enhancement was largest in the case of dansylphenylalanine, again manifesting the importance of the cooparative binding for substrates with two guest parts.

EXPERIMENTAL

Preparation of Soluble β-CD-Epichlorohydrin Polymers(β-CD-E)

The condensation reaction was carried out using a modified method of Wiedenhof *et al.*⁷ Into a mixture of a solution of β -CD (12.0 g, 0.0105 mol) in 150 ml of water and 40 ml of 20% NaOH solution, 10.0 g (0.127 mol) of epichlorohydrin was added dropwise at 60°C in 45 minutes. After the reaction mixture was kept at 65°C for 24 hours, it was neutralized with 2N HCl, dialyzed with distilled water for several days, and freeze-dried. Larger amounts of epichlorohydrin resulted in gellation during the reaction, yielding only insoluble polymers. The Beilstein test of the polymer was negative.

Materials

 β -CD was a product of Hayashibara Biochemical Laboratory Inc. and was purified as described previously.³

Measurement

Solubility was measured according to the previously described method, dissociation constants being calculated assuming 1:1 stoichiometry.⁴

¹³C NMR spectra were recorded on a JEOL FX90Q spectrometer operated at 22.50 MHz in the pulse Fourier transform mode.

Fluorescence was measured in a 0.1 M phosphate buffer (pH 5.9) using a Union Giken FS-401 spectrofluorometer as described previously.⁵ Determination of dissociation constants K_d of inclusion complexes by fluorimetric titration was carried out as previously described⁴ using Klotz's method.¹⁰

Acknowledgement. This work was supported by a Grant-in-Aid for Special Project Research from the Ministry of Education, Science and Culture of Japan. We are indebted to Hayashibara Biochemical Co. for their generous supply of β -cyclodextrin.

REFERENCES

- M. L. Bender and M. Komiyama, "Cyclodextrin Chemistry," Springer-Verlag, Berlin, 1978.
- W. Saenger, Angew. Chem. Int. Ed. Engl., 19, 344 (1980).
- A. Harada, M. Furue, and S. Nozakura, *Macromolecules*, 9, 701 (1976).
- A. Harada, M. Furue, and S. Nozakura, *Macromolecules*, 9, 705 (1976).
- A. Harada, M. Furue, and S. Nozakura, *Macromylecules*, 10, 676 (1977).
- A. Harada, M. Furue, and S. Nozakura, *Polym. J.*, 12, 29 (1980).
- N. Wiedenhof, J. N. J. J. Lammers, and C. L. van Panthaleon van Eck, *Staerke*, 21, 119 (1969).
- a) P. Colson, H. J. Jennings, and I. C. P. Smith, J. Am. Chem. Soc., 96, 8081 (1974); b) J. B. Stothers, "Carbon-13 NMR Spectroscopy," Academic Press, New York, 1972, p 139.
- S. Umczawa and K. Tatsuta, Bull. Chem. Soc. Jpn., 41, 464 (1968).
- I. M. Klotz and D. L. Hunston, *Biochemistry*, 10, 3065 (1971).
- 11. T. Kinoshita, F. Iinuma, and A. Tsuji, *Chem. Pharm. Bull.*, **23**, 1166 (1975).