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ABSTRACT: A condensation polymer (/3-CD-E) of {3-CD with epichlorohydrin was compared 

with P-CD and poly(/3-CD acrylate) in regard to inclusion behavior in an aqueous solution. The 

stability of the inclusion complexes of P-CD-E with substrates of a single guest part is smaller than 

that of P-CD because of steric hindrance by substituents on {3-CD. On the other hand, the stability 

of P-CD-E complexes for substrates with two guest parts is much larger than that of {3-CD and is 

somewhat smaller than that of poly(/3-CD acrylate). This is due to the cooperation in binding of the 

adjacent two CD units on a polymer chain. 
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Cyclodextrins (CD) are known to form noncova­

lent inclusion complexes with various organic mol­

ecules in aqueous solution. 1 •2 In the preceding· 

papers the authors reported the preparation of 

certain vinyl polymers containing cyclodextrins3 

and their catalytic and inclusion behavior.4 The 

polymers containing {3-CD were found to bind to 

large substrates having two guest parts more ef­

ficiently than {3-CD but to bind to small substrates 

having one guest part less efficiently than {3-CD. It 

was concluded that this polymer effect on the 

formation of complexes with large substrates was 

caused by the cooperation of two adjacent {3-CD 

moieties on a polymer chain. 5 This conclusion is 

supported by an inclusion study using the model 

dimers of {3-CD. 6 

In this paper, the study of the polymer effect on 

the inclusion by {3-CD was extended to a conden­

sation polymer of {3-CD, the preparation of which 

is already known 7 and is much easier than that of 

vinyl polymers. 3 

RESULTS AND DISCUSSION 

Characterization of {3-CD-E 

The molecular weight of the polymer was esti­

mated to be 1if to 105 by GPC using Sephadex G-

15 and G-50 columns, the degree of polymerization 

corresponding to 10-100. 

An 1 H NMR study did not identify the place of 

attachment of the glyceryl bridge or tail whether it is 

at the C-2, C-3 or C-6 position7 of the 1,4-glucoside 

unit. 13C NMR spectrum in Figure 1 presents some 

information on the place of substitution. The as­

signment of C-1 through C-6 is based on that bf 

Colson et af.8 • Resonances a and bare indicative of 

the C-2 and C-3 substitution, respectively. 3 •8 b 

Resonance d may be an overlap of the C-3 and C-6 

substitution. Resonance e is due to the terminal 

carbon of the glyceryl tail. Resonances f and g 

clearly shows the existence of the glycidyl group 

which may be responsible for gellation of the poly­

mer after prolonged storage. Thus, we have no 

positive evidences for the C-6 substitution, but in 

view of the higher reactivity of the 6-0H group than 

that of the 2-0H or 3-0H group,9 the existence of 

the C-6 substitution is assumed as well as the C-2 

and C-3 substitutions. 

The polymer was found to be completely amor­

phous by examination of the X-ray powder pattern. 

Solubilization 

When an aqueous solution of {3-CD (4.0 x 10-3 

M) was shaken with an excess of the aromatic sub-
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.Figure 1. 13C NMR spectrum and the proposed structure of j3-CD-E: TMS external reference, 15 wt% in 

D20, 16384 accumulations. 

Table I. Association constants (K.) and solubilities of j3-CD and 

P-CD-E complexes at 30oca 

Substrate 
K., P-CD 

(X 10- 3 M- 1) 

K., P-CD-E 

(X 10- 3 M- 1) 

0.35 4-Dimethylaminoazobenzene 

m-Chlorobenzoic acid 

Dibenzyl 

2.2 

Crystallized 

7.0 

0.5 

1.3 

0.8 

2.0 

0.3 

40.0 

2.1 

6.9 

4.6 

9.3 

2.2 

Diphenylmethane 

1, 1-Diphenylethylene 

p-Xylene 

• [j3-CD]=4.0 x 10- 3 M, [j3-CD-E]=5.6 x 10- 3 unit M. 

b S0 , solubility in H20; S, solubility in aqueous j3-CD-E solution (5.6 x 10- 3 unit M). 

strates listed in Table I, crystallization of in­

clusion complexes occurred in many cases (Table I, 

second column). But when an aqueous solution of {J­

CD-E was used instead, no precipitation took 

place and solubilization of substrates was always 

realized. This is one notable feature of {J-CD 

polymers in solubilization. 

The last column in Table I shows solubilization 

expressed in relative solubility in aqueous {J-CD to 

that in water. It is seen that solubilization is com­

paratively small with the substrates of one benzene 
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ring such as m-chlorobenzoic acid and p-xylene and 

relatively large with the substrates of two benzene 

rings, the largest being with 4-dimethylaminoazo­

benzene. Association constant K. in Table I also 

indicates this trend. When {J-CD and {J-CD-E are 

compared inK. values, {J-CD-E forms a less stable 

complex with m-chlorobenzoic acid, whereas {J-CD­

E forms a more stable complex with 4-dimethyl­

aminoazobenzene. This is reasonable since {J-CD-E 

is less favorable for the inclusion of substrates with 

a single guest part owing to steric interference of the 
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Table II. Effects of /3-CD, poly(/3-CD-A), and /3-CD-E on the fluorescence of dyes' 

Dye 

ANS' 

TNSd 

DNS-Phe' 

/3-CD 

10.4 

25.3 

150 

I/Io b 

Poly-
/3-CD-E 

(/3-CD-A) 

70 61 

571 316 

600 450 

' pH 5.9 phosphate buffer. [CD]= 1.0 x 10- 3 M. 

b Relative fluorescence intensity. 

' 1.0 X 10- 5 M. 

d 1.6 X 10- 5 M. 

glyceryl substituent and because /3-CD-E is favor­

able for the inclusion of substrates with two guest 

parts owing to the cooperation of two CD moieties 

for inclusion5 (vide infra). 

Fluorescence Enhancement 

Fluorescence enhancement by inclusion of hy­

drophobic microenvironmental probes, sodium 1-

anilinonaphthalene-8-sulfonate (ANS), potassium 

2-p-toluidinylnaphthalene-6-sulfonate (TNS), and 

5-dimethylaminonaphthalenesulfonylphenylalanine 

(DNS-Phe) was compared among {3-CD, {3-CD 

acrylate polymer (poly(f3-CD-A))5, and /3-CD-E. As 

shown in Table II, /3-CD-E exhibits a much larger 

fluorescence enhancement than /3-CD toward all of 

the probes and a slightly smaller enhancement than 

poly(/3-CD-A). The blue shift of emission maximum 

with /3-CD-E is also similar to that with poly(f3-CD­

A). These facts indicate that CD moieties in /3-CD-E 

cooperate in binding the large substrate which has 

both the phenyl and naphthalene rings as in the case 

of poly(fi.-CD-A). 5 

Characteristics of the interaction of TNS with /3-

CD-E was studied by the fluorescence titration 

method5 •10 and is depicted in Figure 2 along with 

the data with other /3-CD derivatives. 5 •6 In these 

experiments· the concentration of TNS was kept 

constant and the fluorescence intensity was mea­

sured at various concentrations of {3-CD units. A 

straight line for /3-CD-E shows the existence of a 

homogeneous binding mode throughout the con­

centration range, whereas a curved line for {3-CD 

shows the existense of two binding modes, i.e., 2: I 

for /3-CD: TNS at high concentrations of CD and 

I: I at low concentrations. 5 

The stoichiometry of the binding between /3-CD 
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A (nm) 

None /3-CD 
Poly-

/3-CD-E 
(/3-CD-A) 

515 495 475 475 

500 460 437 440 

548 500 500 500 

4 6 

1 I !CD unitl 

8 10 
xHJ3M'1 

Figure 2. Double reciprocal plots for titration of TNS 

by f3-CD (A), bis(f3-CD) glutarate (B), bis(/3-CD) suc­

cinate (C), /3-CD-E (D), and poly(/3-CD-A) (E): 0.1 M 

phosphate l;mffer (pH 5.9), 25oC; I, fluorescence. 

intensity. 
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Figure 3. Continuous variation plot of /3-CD-E-TNS 

system: [TNS] +[/3-CD unit]= 1.00 x 10-4 M, 25°C. 
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Table III. Dissociation constants and fluorescence properties 

of complexes of TNS with /3-CD derivatives 

CD:TNS Kd/M 
nm 

Relative 

fluorescence 

intensity 

{3-CD I :I 2.5 X ,J0- 4 462 I 

3 

12 

8 

9 

20 

2: I 5 X J0- 2 447 

/3-CD-E 2: I 3.0 X J0- 3 440 

(f3-CD)2G 2: I 1.2 X J0- 4· 447 

(f3-CD)2 S 2: I 0.6 X J0- 4 447 

Poly(/3-CD-A) 2: I 1.0 X J0- 4 438 

and TNS was studied by the continuous variation 

method, watching the fluorescence intensity at 

various ratios of the two reactants. As shown in 

Figure 3 the curve for {J-CD-E has a maximum at a 

{J-CD unit molar fraction of 0.66, which corre­

sponds to a 2: 1(/J-CD: TNS) stoichiometry. Thus, 

{J-CD-E was found to bind to TNS at a 2: 1 

stoichiometry throughout the entire concentration 

range: This was also the cases with poly({J-CD-A) 

and model dimers, bis-{J-CD succinate ({J-CDhS 

and glutarate (/J-CDhG (Fig. 25 •6). 

Dissociation constants and fluorescence proper­

ties of complexes of TNS with certain {J-CD de­

rivatives are summarized in Table III. The stability 

of the 2: 1 complex with {J-CD-E is larger than that 

with {J-CD and smaller than those with poly({J-CD­

A) and model dimers. In the cases of poly({J-CD­

A) and the dimers, the substitution is exclusively on 

one of the secondary hydroxyl groups. This sub­

stituent makes the inclusion complex less stable 

than that of {J-CD since the substituent hinders the 

entrance of guests into the cavity of {J-CD.4 •5 

A substrate like TNS has two guest :Jarts and can 

be bound cooperatively by two CD units on the 

polymer or dimers, yielding eventually more stable 

complexes than with {J-CD. In the case of {J­

CD-E, more than two substitutions as an aver­

age have taken place on {J-CD on either the pri­

mary or secondary hydroxyl groups. These sub­

stituents make the steric hindrance more severe 

than poly({J-CD-A) or the dimers, so that the com­

plexes with {J-CD-E become less stable. 

It may be noteworthy to point out a possible 

application of {J-CD-E in binding. Fluorescence 

enhancement of dansylamino acid (DNS-amino 

acid) by {J-CD is used for the quantitative de­

termination of amino acidsY As shown in Table 
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Table IV. Effects of /3-CD and /3-CD-E 

on the fluorescence of 

DNS-amino acidsa 

Rb 

-H 1.5 2.8 

-CH3 1.5 2.8 

-CH(CH3) 2 2.8 5.9 

-CH2C6H 5 5.6 20.0 

a [{3-CD]=l.Ox 10- 3 M; [DNS-amino acid]=l.Ox 

10-4 M. 

b DNS-NHCH (R) COOH. 

IV, {J-CD-E shows a fluorescence enhancement of 

all dansylamino acids tested that is higher than /J­
CD. This enhancement was largest in the case of 

dansylphenylalanine, again manifesting the impor­

tance of the cooparative binding for substrates 

with two guest parts. 

EXPERIMENTAL 

Preparation of Soluble {J-CD-Epichlorohydrin 

Polymers({J-CD-E) 

The condensation reaction was carried out using 

a modified method of Wiedenhof et al.7 Into a 

mixture of a solution of {J-CD (12.0 g, 0.0105 mol) in 

150m! of water and 40ml of 20% NaOH solution, 

10.0 g (0.127 mol) of epichlorohydrin was added 

dropwise at 60°C in 45 minutes. After the reaction 

mixture was kept at 65°C for 24 hours, it was 

neutralized with 2N HCI, dialyzed with distilled 

water for several days, and freeze-dried. Larger 

amounts of epichlorohydrin resulted in gellation 

during the reaction, yielding only insoluble poly­

mers. The Beilstein test of the polymer was 

Polymer J., Vol. 13, No. 8, 1981 



Inclusion by Cyclodextrin-Epichlorohydrin Polymer 

negative. 

Materials 

{3-CD was a product of Hayashibara Biochemical 

Laboratory Inc. and was purified as described 

previously. 3 

Measurement 

Solubility was measured according to the pre­

viously described method, dissociation constants 

being calculated assuming 1 : 1 stoichiometry.4 

13C NMR spectra were recorded on a JEOL 

FX90Q spectrometer operated at 22.50 MHz in the 

pulse Fourier transform mode. 

Fluorescence was measured in a 0.1 M phosphate 

buffer (pH 5.9) using a Union Giken FS-401 spec­

trofiuorometer as described previously.5 Deter­

mination of dissociation constants Kct of inclu­

sion complexes by fiuorimetric titration was car­

ried out as previously described4 using Klotz's 

method. 10 
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