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Inclusion of Higher Order Terms for Small-Signal
(Modal) Analysis: Committee Report—Task Force on
Assessing the Need to Include Higher Order Terms

for Small-Signal (Modal) Analysis
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A. R. Messina, Senior Member, IEEE, D. J. Vowles, Member, IEEE, S. Liu, Student Member, IEEE, and
U. D. Annakkage, Senior Member, IEEE

Abstract—This paper summarizes the work done by the Task
Force on Assessing the Need to Include Higher Order Terms for
Small-Signal (Modal) Analysis. This Task Force was created by
the Power System Dynamic Performance Committee to investigate
the need to include higher order terms for small signal (modal)
analysis. The focus of the work reported here is on establishing and
documenting the practical significance of these terms in stability
analysis using the method of Normal Forms. Special emphasis
was placed on determining and describing conditions when higher
order terms need to be included to accurately describe modal
interactions. Test cases were developed on a standard test system
to demonstrate the application of appropriate indices to detect the
occurrence of nonlinear interaction and hence the need for higher
order terms in stability analyzes. The use of the higher order terms
in the site selection for a damping controller is also documented.

Index Terms—Method of normal forms, modal analysis, modal
damping, modal frequency, nonlinear modal interaction.

I. INTRODUCTION

T
HIS paper, which serves as a committee report, describes

the investigations conducted by the Task Force on As-

sessing the Need to Include Higher Order Terms for Small-

Signal (Modal) Analysis established by the Power System Dy-

namic Performance Committee.

An important problem for the power industry is the presence

of low-frequency electromechanical oscillations that often arise

between interconnected areas in a power system. These oscil-

lations are often poorly damped and have a negative impact on

the power transfer capabilities of the system [1].
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Small-signal stability analysis is the conventional analysis

tool for studying electromechanical oscillations. This type of

analysis provides an understanding of the underlying modal

structure of a power system and gives insights into a system’s

dynamic characteristics that are not easily obtained from time

domain simulations. However, small-signal stability analysis is

based on a first-order (linear) approximation of the nonlinear

power system differential-algebraic equations in the neighbor-

hood of an operating point. Such an approximation has two

important consequences: on the one hand, it allows for the

application of powerful linear analysis methods well suited for

the study of large systems. On the other hand, it limits the scope

of the analysis to the region where the linear approximation is

valid.

It is well known that the manner in which the state variables

and the modes in a power system interact is a complex phenom-

enon. It has been suggested that in certain cases, such as when

the system is stressed, linear analysis techniques might not pro-

vide an accurate picture of the power system modal characteris-

tics [2]. This makes techniques that extend the domain of appli-

cability of small-signal stability analysis an attractive proposi-

tion for advancing the understanding of power system dynamics.

Of particular interest is the study of modes and interactions that

result from the combination of the individual system modes of

the linearized system. These modes and their interactions are

termed “higher order modes” and “higher order modal interac-

tions,” respectively.

In the period 1996 to 2001, investigators from Iowa State

University published numerous papers [3]–[13] and made pre-

sentations at various PES forums advocating the application of

Normal Forms as a means for studying higher order modal in-

teractions. Recognizing the potential value of such techniques,

the Task Force on Assessing the Need to Include Higher Order

Terms for Small-Signal (Modal) Analysis was formed by the

Power System Stability Subcommittee of the Power System Dy-

namic Performance Committee.

The Task Force was given the assignment of investigating the

practical significance of higher order modal interactions. More

specifically, the ensuing work was aimed at providing answers

to the following questions.
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1) What is the practical significance of higher order modal

interactions?

2) When should second-order or higher modal analysis be

used?

3) What are the engineering insights, not obtainable from

linear analysis, that second-order analysis provides?

4) When should linear analysis be complemented with a

higher order approximation?

5) What are the computational requirements for higher order

modal analysis of realistic system models?

6) What is the range of applicability of second-order

analysis?

The work performed by the Task Force was focused on the

application of the method of Normal Forms to the analysis of

higher order modal interactions in the four generator system in-

troduced in [14]. Developing fully worked examples, using an

accepted test system, provided concrete means for enhancing

and confirming the understanding of the techniques as currently

applied. The emphasis of this effort was placed on gaining a

better understanding of the insights provided by the method and

on developing guidelines for analyzing higher order modes in

the frequency range associated with local and inter-area modes.

Results obtained for two selected cases are used to highlight

the applicability of the method of Normal Forms to the analysis

of nonlinear modal interactions. The difference between the two

cases is the fault duration. In the first case the fault duration is 10

ms and, in the second case, 19 ms. This allows for the study of

the effect that the system stress has on the modal characteristics,

and to determine whether the increased stress, due to a longer

fault duration, results in nonlinear modal interactions that can be

predicted by the Normal Forms analysis. The application of var-

ious indices used in conjunction with the Normal Forms analysis

to predict and evaluate the onset of nonlinear modal interactions

is documented. The modal interactions predicted by the method

of Normal Forms were verified by a frequency domain analysis

of the time domain responses.

A concrete example of a situation that specifically addresses

question 3 above is provided in Appendix B based on a heavily

stressed system. The case is studied using linear (conventional)

and nonlinear modal analyzes techniques to determine suitable

locations for controllers to damp the inter area mode of oscilla-

tion. Normal Forms analysis shows that nonlinear modal inter-

action plays an important role and that the location suggested by

the nonlinear measures obtained from the Normal Forms anal-

ysis provides more effective damping of the inter area mode.

The paper is organized as follows: Section II outlines the for-

mulation of the method of Normal Forms used for power system

analysis, and describes several indices and performance mea-

sures. The test system is briefly described in Section III. Sec-

tion IV is the main section and presents the Normal Form anal-

ysis on two different test cases. A discussion on practical as-

pects associated with the Normal Forms analysis is provided.

The conclusions of the work are presented in Section V. An im-

portant complement to the main body of the paper are Appen-

dices A and B. The former highlights differences and similari-

ties between linear and nonlinear analyzes. Appendix B presents

recent developments pertaining to the siting of controllers on a

highly stressed system using nonlinear measures with the objec-

tive of damping electromechanical oscillations.

II. METHOD OF NORMAL FORMS

The method of Normal Forms was introduced by Poincaré

and is a well established mathematical procedure for sim-

plifying nonlinear differential equations. Using this method,

provided that certain conditions are met [15], a set of nonlinear

differential equations can be transformed, up to a specified

order, into a set of linear differential equations by performing

a sequence of nonlinear coordinate transformations. The trans-

formed equations are in their simplest form, i.e., in their Normal

Form, and allow for the study of essential modal characteristics.

An important characteristic of this approach is that it provides

a closed form solution for the system state variables. These last

two features are key elements in the analysis of power system

stability.

A brief overview of the method of Normal Forms is provided

first. The purpose of the overview is to highlight aspects relevant

to power system modal analysis. For a more formal introduction

to the subject, the reader is referred to [15]–[19]. Following the

description of the Normal Forms method, several indices for

quantifying higher order modal characteristics are introduced.

In a manner similar to small-signal stability analysis, the

method of Normal Forms begins by performing a Taylor series

expansion of the nonlinear system of interest, , in the

neighborhood of a stable operating point (This expansion can

also be done in the neighborhood of an unstable equilibrium

point [6]). However, unlike small-signal stability analysis the

expansion is carried out beyond the first-order (linear) term.

Although there is no theoretical limit to the number of terms in

the series, the computation of higher order terms for a typical

power system represents a heavy computational burden. For

this reason, the Taylor series expansion is usually computed up

to second-order terms

(1)

The state-space equation for the th state variable is given by

(2)

In (2), is the th row of the Jacobian matrix , and

is a Hessian matrix. The th element of is given by

(3)

The next step is to transform (1) to its Jordan form by ap-

plying the similarity transformation , where is the

matrix of right eigenvectors of . This transformation yields

(4)

The elements of the diagonal matrix are the eigenvalues of

, , and is the matrix of left eigenvectors of
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. The state equation for the th Jordan form variable is of the

form

(5)

is the th element of the matrix

(6)

The term in the brackets is an matrix; is the th

element of the matrix . Notice that the terms of the summation

in (5) constitute a homogeneous polynomial of second order,

i.e., all the terms of the polynomial are of second order.

The next step is to transform (5) into a simpler form, its

Normal Form, by eliminating the nonlinear terms. The trans-

formation is of the form [15]

(7)

where is the vector of Normal Form state variables. The ex-

panded form of (7) is given by

(8)

is given by

(9)

provided that . The transformation (7) re-

moves the second-order terms from (4). This is referred to as the

nonresonant condition. Notice that contains only second-

order polynomial terms in .

The transformed equation is a set of decoupled first-order

linear differential equations

(10)

where denotes third- and higher order terms, and it is as-

sumed that the second-order terms have been annihilated by

the nonlinear transformation (7). By neglecting these terms, the

linear solutions of the individual Normal Form variables

is given by

(11)

In (11), is the initial condition of . The initial conditions

for are computed by solving the nonlinear equation (7), for a

given initial condition . The solution is obtained by formu-

lating a nonlinear system of equations of the form

(12)

The solution to the above equation provides the initial con-

dition . This system of equations is directly related to the na-

ture of the second-order nonlinear terms and describes how the

-variables differ from as a result of the nature of the

terms. The numerical solution of these equations is complicated.

It requires a robust algorithm and is sensitive to the choice of

the initial conditions for the solution. A robust solution tech-

nique has been developed and demonstrated for the test system

chosen in Section IV-A. It is recommended that be selected as

the choice of the initial condition for the algorithm described in

Section IV A. This choice is based on the nature of the system

of (12) where the variables differ from according to the

second-order nonlinear terms. In Section IV, a detailed discus-

sion of the initial condition solution is provided.

The solution to the original set of equations, (1), is obtained

by transforming the variables back to the original state vari-

ables . This is done by first using (7) to compute

, followed by the ap-

plication of the similarity transformation to compute .

This yields

(13)

In (13), is an element of the matrix of right eigenvectors .

Equation (13) constitutes the basis for most of the work per-

formed to-date using the Normal Forms method for the study of

power system electromechanical oscillations. The reason is evi-

dent: (13) clearly shows the relation between the state variables

, the individual system modes , and the

second-order modes, .

The terms associated with the mode pairs provide

information not available from the linear approximation of the

power system equations. These terms represent “modal interac-

tions” that arise due to the inclusion of the higher order terms.

Notice that the coefficients of the exponential terms

give a measure of the participation of the mode combination

in a given state variable. Hence, (13) has the poten-

tial to be an effective analysis tool for describing modal inter-

actions that involve pairs of system modes. It certainly gives a

broader perspective of the system dynamic characteristics than

that provided by a linear approximation. In the sequel, the terms

“second-order mode” and “combination mode” are used to de-

note .

Equation (13) reveals that, if the system is stable, the second

term involving will be more heavily damped than the

first-order modes, or .

A. Key Indices Based on Normal Forms Analysis

The indices described below have been developed to iden-

tify and quantify the extent of nonlinear interactions, and to de-

scribe important system characteristics such as mode-state in-

teractions.

Contribution Factors [8]: In the linear case, the Jordan form

solution is , where is the th initial condi-

tion in the Jordan-form coordinate system. The linear solution

in time for the th state variable is

(14)

Authorized licensed use limited to: Adelaide University. Downloaded on October 28, 2008 at 02:01 from IEEE Xplore.  Restrictions apply.
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The are referred to as linear “contribution fac-

tors” [20], [21]. They indicate the size of mode ’s contribution

to the oscillations of state for a given disturbance. The solu-

tion (14) consists of a sum of weighted exponential oscillations.

The “weights” are the contribution factors. The frequencies of

oscillation are given by the imaginary parts of the eigenvalues

( ).

The comparison of the linear and second-order solutions, ex-

pressed in (14) and (13) respectively, shows that the second-

order solution contains many more potential frequencies of os-

cillation. The bracketed term in (13) represents the second-order

effects related to these combinations of frequencies from the

Jordan form (8). As shown in (13), these effects are transformed

to the states using the right eigenvectors ( ).

The second-order solutions given in (13) may be rewritten as

(15)

Here, and . Since

the matrices , are symmetric, (13) is often

rewritten using the notation , as in (15) above. Thus,

the second-order contribution factors are defined in a manner

very similar to the linear contribution factors described earlier.

They are measures of the size and phase of the oscillations that

make up the approximate second-order solution for the states.

gives the contribution of the single-eigenvalue mode ( )

to the response of state . Similarly gives the contribution

of the combination mode ( ) to the response of state .

(Note that the linear contribution factor constitutes part of

the second-order contribution factor .)

Nonlinear Participation Factors [8]: Linear participation

factors, which are defined in [22], are a commonly used mea-

sure of mode-state interactions. The participation factor is

a measure of the participation of the th state in the trajectory

of the th mode. One advantage of using participation factors

is that they measure mode-state relationships independent of

eigenvector scaling. This is because they are functions of both

the left and right eigenvectors. In [22], it is observed that the

participation factors represent the size of the modal oscillations

in a state when only that state is perturbed. Hence, the initial

condition vector is (all elements of are zero except

the th, which is one). This means that when , the time

solution for the th state variable is

(16)

In this type of analysis, the responses for each of the perturbed

states are assumed to combine to give the full response.

Using the theory of Normal Forms this concept can be ex-

tended to include second-order terms. The approximate second-

order, Normal Form inverse transformation for any initial con-

dition is given by . When the initial condition

vector is applied, the Jordan form initial conditions be-

come

(17)

The Normal Form initial conditions, using the second-order

approximation of the inverse transformation

, are

(18)

The solution for the th state variable (when , for all

) can be written as

(19)

Using the same approach as in the linear case, the second-order

participation factors can be defined according to

(20)

(when for all ). Note that there are two types of

second-order participation factors. represents the second-

order participation of the th state in the th single-eigenvalue

mode. These factors can be thought of as providing second-

order corrections to the linear participation factor information.

In fact, viewing (19) reveals that the linear participation factor

( ) is one term in the expression for . The second

type of second-order participation factor, , represents the

second-order participation of the th state in the “mode” formed

by the combination of the eigenvalues and , e.g., by (

). As in the linear case, these second-order factors are inde-

pendent of eigenvector scaling.

As previously stated, the inverse transformation is approxi-

mate. To obtain a more accurate value for the Normal Form ini-

tial conditions, the iterative procedure described in of [23, Ch.

2] was used to solve (12) and find the ’s numerically. This

numerical method does not provide an expression for the in-

verse Normal Form transformation. However, it does provide a

method for more accurately determining numerical values for

the initial conditions of the Normal Form. Because the partici-

pation factors are found by applying a specific initial condition

( ), the participation factors may also be determined nu-

merically using the iterative approach. When the initial condi-

tion vector is set equal to , the contribution factors become

the participation factors.

Nonlinearity Index ( ) [5], [24]: This index provides a

measure of the effect of the nonlinear terms in the approxi-

mate closed form solution. It compares the solution obtained by

using only the linear terms to that obtained by using the second-

order terms, and determines the extent to which the second-

order terms are dominant. This index is evaluated for all the

Jordan form variables that are highly excited by the disturbance.

Among these variables we then determine the specific variable

which has the largest index . A large Index indicates

a high degree of nonlinear effects in a variable and provides

an indication of the fundamental mode in the linear term of

the variable solution, and its interaction with the modes in the

second-order terms of the solution. A high value of could
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indicate that the second-order terms are significant indicating

nonlinear interaction, or could indicate that the difference be-

tween and is large, also indicating that the second-order

terms have significant contributions which affect the behavior

of the closed-form solution

(21)

Nonlinear Interaction Index ( ) [5]: This Index deter-

mines whether the nonlinear effects arise from the second-order

terms indicating a strong modal interaction, or whether the

second terms affect the initial solution in the variables indi-

cating a dominant linear mode

(22)

Nonlinear Modal Persistence Measures: Three measures

were defined to quantify the extent of dominance of the various

modes in the time solution. These measures are denoted ,

and and are defined as follows.

For a combination mode

(23)

provides a measure of the settling time of the combination

mode

(24)

is the ratio of the time constants of the combination modes

and the dominant mode. A small indicates a significant pres-

ence of the combination mode.

A relatively high value of the product tends to

reveal a strong modal interaction of longer duration. It appears

that the index provides a measure of the energy

in a modal interaction. This index therefore may be significant

in determining if a composite mode is likely to appear in the

power-spectral-density or discrete Fourier transform (DFT) of a

disturbance recording. This index is referred to as the Composite

Mode Energy Index (CMEI).

III. TEST SYSTEM

The test system selected for this work is shown in Fig. 1.

This system is the four-generator system introduced in [14]

as a system suitable for the analysis of electromechanical

oscillations. This system has subsequently been widely used

for studying different issues related to small-signal stability

analysis.

The generators are modeled using a two-axis model with one

winding in each axis. Each generator is equipped with an AVR

with a transient gain reduction of 10, a fast-response exciter rep-

resented by a single time constant and a gain. The loads L1 and

L2 are modeled as constant impedances. The data for the system

Fig. 1. Two-area test system.

are provided in Appendix B. There is one inter-area mode as-

sociated with the oscillations of the two areas, and two local

modes associated with the oscillations of the generators within

each area.

The selected system operating condition for the study is a

highly stressed condition close to voltage collapse, character-

ized by a tie line flow of 410 MW from Area 1 to Area 2. This

operating point was chosen to more readily expose the nonlinear

characteristics of the system.

The damping ratio of the inter-area, and the two local modes

are 0.04, 0.15, and 0.23, respectively.

IV. NONLINEAR MODAL ANALYSIS

Several system conditions were considered in the course of

this investigation. The two test cases analyzed in this section

were selected to highlight information provided by the second-

order modal analysis. In these test cases the stress is varied by

subjecting the system to a three-phase short circuit at Bus 5 and

clearing the fault at different times.

Case 1: This case represents a lower stress condition in

which the three phase fault applied at Bus 5 is

cleared in 0.010 s with no line switching.

Case 2: This case represents a higher stress condition in

which the three phase fault applied at Bus 5 is

cleared in 0.019 s with no line switching.

The system is relatively well damped; the damping ratio of

the inter-area, and the two local modes are 0.10, 0.16, and 0.20,

respectively.

A systematic presentation related to the computation of the

initial conditions, key indices, and a discussion of pertinent is-

sues associated with the application of the Normal Forms anal-

ysis follows.

A. Initial Condition for

The initial condition in the Normal Form variables is a crit-

ical aspect for the computation of the various indices described

in Section II. The initial conditions for the state variables ( )

for each test case were obtained using a conventional transient

stability program. The following procedure is then followed to

obtain the initial conditions in the Normal Form variables via a

solution to the equations given in (12).

1. x0: The initial condition x0 = xcl � xSEP,

where xSEP is the post disturbance equilibrium

solution and xcl is the system condition at the

Authorized licensed use limited to: Adelaide University. Downloaded on October 28, 2008 at 02:01 from IEEE Xplore.  Restrictions apply.
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TABLE I
CASE 1—COMPARISON OF INVERSE x SOLUTION

end of the disturbance obtained from the tran-

sient stability program.

2. y0: y0 = V Tx0, where V is the matrix of left

eigenvectors calculated for the post distur-

bance equilibrium condition.

3. z0: The system of (12) is solved for z0

using the Newton-Raphson method as follows:

a. Formulate a nonlinear solution problem of

the form fj (z) = zj + n

k=1
n

l=k h2
j

klzkzl � yj = 0,

j = 1; 2; . . . ; n

b. Choose an initial estimate for z0. From

the analysis on a variety of test systems, the

choice of z0 = y0 provides the most robust re-

sults. Initialize the iteration counter: s = 0.

c. Compute the mismatch function for itera-

tion s fj(z
(s)) = z

(s)
j � yj + n

k=1
n

l=kh2
j

klz
(s)
k z

(s)
l j =

1; 2; . . . ; n

d. Compute the Jacobian of f(z) at z(s):

A z
(s) =

@f

@z
z=z

:

e. Compute �z(s) = � A z(s)
�1

f z(s)

f. Determine the optimal step length � using

cubic interpolation or any other appropriate

procedure and compute

z
(s+1) = z

(s) + ��z
(s)

g. Continue the iterative process until a

specified tolerance is met. The value of z

when the tolerance is met provides the solu-

tion z0

For both test cases, is used as a starting value for the

iterative solution. This choice also has a firm analytical basis.

The iterative process is based on (12) which in turn is given

by the fundamental Normal Form nonlinear transformation

(7). From (12) one observes that the solution to is obtained

by determining how the nonlinear terms described by

affect the -variables. The iterative process described above

is continued until the solution converges to a small toler-

ance. In order to verify the accuracy of the solution, an

inverse transformation first to the -variables and then to the

-variables is performed and the solution obtained in this

fashion is compared with that obtained from the conventional

time domain program. It is important to note that in trans-

forming the Normal Form variables, to the Jordan space ,

the approximation is used. Thus the

starting values of can be approximated by a truncated series

, . The

use of the second-order summations

appears to be of interest for heavy stress (highly nonlinear

behavior). Numerical simulations performed on the two-area

system appear to indicate that the improved estimate may

result in a reduced number of iterations in the Newton-Raphson

approach; the first-order approximation, on the other hand, is

easier to implement and gives good results for most operating

conditions. Tables I and II show the comparison for Case 1

and Case 2, respectively. The results in these tables clearly

indicate that the initial conditions in the Normal Form variables
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TABLE II
CASE 2—COMPARISON OF INVERSE x SOLUTION

are accurately obtained and the inverse solutions to the state

variable initial conditions agree closely with those obtained

from conventional time simulation.

In [25], a different approach for verifying the validity of the

initial condition solution is proposed. This paper also suggests

several indices to determine the accuracy of the initial condi-

tions based on time domain simulations.

It is important to note that in order to determine the time evo-

lution of the states using the initial conditions, the responses

should be continuously differentiable, i.e., the instant of

time for initial conditions must be chosen such that all limiting

action by controllers in the system must have ceased after the

clearance of the fault.

The method of Normal Forms can also be applied to unstable

systems. In this case, a stable post disturbance equilibrium will

not be available. However, the Normal Forms analysis can be

conducted at the appropriate unstable equilibrium point using

the real Normal Forms approach as demonstrated in [6] and crit-

ical qualitative results regarding the trajectory and dynamic per-

formance can be obtained.

B. Normal Form Analysis of Case 1

The original state variables in terms of the variables are first

represented by a Taylor series expansion approximated to the

second order. The fundamental linear modes are then computed.

Using the similarity transformation derived from the linear term

of the series expansion [3], the state variables are transformed

into the Jordan form characterized by the variables . The Jordan

form variables describe the time evolution of the linear modal

variables of the system. It is to be noted that in the transforma-

tions used in this paper, the -variables are real; however, the

and –variables are complex. The -variables also describe the

time evolution of the linear modes as characterized by (8). Using

the initial conditions for the Normal Form variables, the indices

and [(21) and (22)] are evaluated to determine the

extent of the nonlinearity and the existence of important inter-

actions. These are listed in Table III. The following observations

are made from the results presented in Table III.

1) Among the oscillatory modes, Modes (5,6), (1,2), (7,8),

and (3,4) have the largest Index . This index indicates

the extent of the nonlinearity.

2) There are several real modes that also have a high value

of Index .

3) The modes identified in observation 1 also have a very

high value of Index which indicates that there could

be some nonlinear interaction.

4) We also note from Table I that among the oscillatory

modes, Modes (7, 8), (9, 10), (3, 4), (13, 14), (11, 12),

and (5, 6) have the largest .

These observations suggest that Mode (5, 6), should be exam-

ined in greater detail because it figures predominantly in all the

observations made above. On this basis, the interaction coeffi-

cients ( terms) of Mode (5, 6) are examined. These

coefficients are listed in descending order in Table IV. It is ob-

served that several of the larger interactions involve Mode 5

and other real modes listed in Table III, and modes 7, 8, 9, and
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TABLE III
CASE 1—NORMAL FORM CALCULATIONS

10 among the oscillatory modes. The interactions with other

oscillatory modes have smaller interaction coefficients. At the

bottom of the table there is a listing of an interaction of mode

5 with itself. This interaction coefficient is again very small in-

dicating a very low level of interaction. The largest interaction

among oscillatory modes occurs between Modes 5, 7, and 9.

Close examination of the modes listed in Table III shows that

We note that there is near resonance among the modes only

in terms of the frequency. The practical significance of this in-

teraction is that in some instances modes that are observed in

practice, e.g., in ring-down tests, can originate due to the inter-

action of first-order modes.

The nonlinear modal persistence measures, , , and

, for the dominant Mode 5 are listed in Table V. The

results shown in this table indicate that none of the combination

modes have a settling time that is close to one half of the

settling time of the dominant Mode (5, 6) (i.e., 1/2 20.4 s). The

combination modes (5, 5) and (6, 6) have half the settling time

but their interaction coefficients given in Table IV are relatively

small. This indicates that there is no significant nonlinear

interaction. As a further verification of the modal behavior, a

discrete Fourier transform of the spectrum of the tie line real

power flow in the four machine system, following the 0.01 s

three phase fault was obtained. The plot is shown in Fig. 2. The

frequency spectrum clearly illustrates that Mode 5, which has a

frequency of 2.016 rad/s, is the dominant mode. An additional

frequency of 4.0212 rad/s is also present but this frequency

does not have a significant magnitude in the spectrum. This is

clearly reinforced by the last row in Table IV where the double

frequency mode has a very small interaction coefficient.

All other frequencies do not have significant contributions in

the spectrum. This spectral analysis also reinforces the Normal

TABLE IV
CASE 1—INTERACTION COEFFICIENTS FOR MODE (5, 6)

Fig. 2. Case 1: frequency spectrum.

Form analysis results that indicate that for the clearing time of

0.01 s the test system does not demonstrate significant nonlinear

interaction. The dynamics are dominated by the inter area Mode

(5, 6).

C. Normal Form Analysis of Case 2

The Normal Form analysis for the more severely stressed

Case 2 is described in this section. Table VI summarizes the

Normal Form calculations. The following observations can be

made from the results presented in Table VI.
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TABLE V
CASE 1—QUANTITATIVE MEASURES OF COMBINATION MODE DOMINANCE FOR FUNDAMENTAL MODE (5, 6)

TABLE VI
CASE 2—NORMAL FORM CALCULATIONS

1. All the oscillatory modes have a high interaction index.

Among the oscillatory modes, Modes (7, 8), (9, 10), (1,

2), (3, 4), and (5, 6), have the largest index . The other

modes, Modes (11,12), and (13,14), have index that are

comparable in magnitude

2. Among the oscillatory modes, Modes (7,8), (9,10), (5,6),

(13,14), and (11,12), have the largest .

Some of the real modes also have large and significantly

large . These include Modes 16, 15, 17, and 18. Some of the

other real modes that have these characteristics are 20, 21, 22,

23, 24, 25, 26, and 27; however, these modes have very short

time constants (about 0.01 s).

The indices listed in Tables III and VI can only be used to

compare the modes for individual cases. They cannot be used

as a measure to compare modes between two different cases.

This is because these indices use normalized eigenvectors and

the normalization differs between cases.

Based on these observations it appears as if Mode (3, 4),

Mode (7, 8), Mode (1, 2), Mode (5, 6), and Mode (9, 10) among

the oscillatory modes and real Mode 15, 16, 17, and 18 should all

be examined. The interaction coefficients of these modes were

examined in detail. Lack of space prevents listing all interac-

tion coefficients. However, the system dynamics clearly indi-

cate that the interaction is dominated by large interaction coeffi-

cients between these modes and Mode (5, 6) together with other

modes. Another salient feature is that several of these modes

have large interaction coefficients with the combination Mode

(5, 5). This analysis indicated that system dynamic performance

will be dominated by Mode (5, 6). In addition, in this case which

is highly stressed by the disturbance, the combination Mode (5,

5) has significantly higher interactions with all other modes.

Table VII provides the interaction coefficients for the domi-

nant Mode (5, 6). It is important to note that the combination

Mode (5, 5) has strong interaction with Mode (5, 6) unlike the

situation in Case 1, indicating the presence of significant non-

linear interaction.

The quantitative indices for Mode (5, 6) for Case 2 are shown

in Table VIII. These results again clearly illustrate that the linear

Mode (5, 6) interacts with several other modes and the combi-

nation of these modes have settling times that are nearly half the
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TABLE VII
CASE 2—INTERACTION COEFFICIENTS FOR MODE (5, 6)

settling time of the fundamental mode. In addition a salient fea-

ture of Case 2 is that the combination Mode (5, 5) and Mode (6,

6), which have the same frequency, clearly show a marked pres-

ence and their settling times are exactly half that of the dominant

mode. This indicates a strong presence of nonlinear modal inter-

action and reinforces the presence of a combination frequency

in the dynamic response of the system. The DFT of the tie line

power flow for Case 2, shown in Fig. 3, verifies this observation.

The frequency spectrum for Case 2 shown in Fig. 3 corrobo-

rates the inference derived from the Normal Form analysis. It

shows that the frequency spectrum of the tie line real power

flow is dominated by the fundamental Mode (5, 6). In addition,

for Case 2, the combination Mode (5, 5), which has twice the

frequency of the fundamental mode, is present to a significant

extent indicating that a combination frequency does exist in the

dynamics observed in time domain. This observation is also sup-

ported by the Normal Form analysis that was presented above

for Case 2.

D. Discussion

The results presented above for a simple test system demon-

strate that the increase in stress caused by the severity of the

fault does result in nonlinear interaction of the fundamental

modes. The analysis conducted using the method of Normal

Forms identifies this interaction correctly. The modes involved

in the interaction can also be determined. The validity of the

interaction is also verified by conducting spectral analysis on

the time domain variation of the tie line real power flow. The

Fig. 3. Case 2: frequency spectrum.

Normal Form analysis has the ability to distinguish between the

degrees of interaction when different levels of stress are consid-

ered.

This has been demonstrated by the analysis conducted on the

two cases with varying levels of stress. In Case 1, the anal-

ysis points out that there is no significant interaction among the

modes, whereas in Case 2, the more stressed case, the analysis

correctly identifies the nonlinear interaction. This is again con-

firmed from the spectral analysis which shows that the (5, 5)

combination mode has a higher participation in the frequency

spectrum of the stressed case. It should also be noted that the

interaction coefficients for the dominant mode, Mode (5, 6), are

much higher in Case 2. This is especially true for a combination

of Mode 5 with itself and another oscillatory mode.

This observation can be made by comparing the results in

Tables IV and VII. Comparing the results in Tables V and VIII

it is noted that Case 2 has several combination modes that have

significant settling time in comparison to the dominant Mode

(5, 6). These modes also have large product terms

indicating the persistence of strong modal interaction. There are

a few such terms in Case 1, however, these combination modes

do not have a long settling time or ratio of the time constant.

Some of the specific questions listed in Section I, addressed

by this analysis include the following:

1) Practical Significance: The analysis shows that non-

linear modal interactions are an inherent characteristic of

power system dynamic phenomena. They occur as a result

of two important aspects of the dynamic phenomena: 1) the

post-disturbance network characteristics and 2) the impact of

the disturbance. The modal interaction depends on the stress in

the system. The interaction can be determined using the method

of Normal Forms. In addition, the analysis can distinguish

between the levels of interaction in differently stressed analysis

cases.

Related work reported in [21], [25], and [26] show an-

other characteristic of practical significance associated with

Normal Form analysis. In these references, transient responses

are shown for linear analysis, Normal Form analysis, and

step-by-step transient stability analysis for both less stressed

and heavily stressed systems. The results obtained indicate
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TABLE VIII
CASE 2—QUANTITATIVE MEASURES OF COMBINATION MODE DOMINANCE FOR FUNDAMENTAL MODE (5, 6)

that the method of Normal Forms accurately captures the time

evolution of the state variables even in highly stressed cases.

The significance of these results resides in further illustrating

the model fidelity captured by the higher order formulation

allowing for a reliable qualitative description.

Another practical implication of the Normal Form analysis is

the identification of higher order resonances or near higher order

resonances. In this instance the coefficients of the appropriate

higher order terms will become very large as indicated by (8)

in the case of the second-order term . The resulting transients

may result in hard limits on the controllers coming into play and

as a consequence the resonance condition could be modified or

eliminated.

The analysis based on the ratio ( decay time constant of

mode ( ) decay time constant of dominant mode) reveals

that, even under highly stressed conditions, the transients due

to modal interactions decay away in less than half the time it

takes for the dominant mode (assumed to be the most lightly

damped electro-mechanical mode) to decay. It is important to

note the practical significance of this result for the identification

of the first-order modes using disturbance monitoring or Prony

Analysis, i.e., the following.

a) Disturbance monitoring captures the transient behavior of

the system following a major disturbance. For a highly

stressed system, the latter half of the transient (after lim-

iting action has ceased) will be free of interacting modes.

b) Ring-down tests are usually carried out under

less-stressed conditions and the response can be as-

sumed to be due to the eigenvalues of the linearized

system for a period probably well before one half the

settling time of the dominant mode. Prony Analysis is

thus applicable in this later part of the transient.

2) Use of Higher Order Analysis: Higher order analysis

should be considered, if feasible when conventional linear anal-

ysis does not provide sufficient accuracy or when the analysis

of measured data (e.g., spectral analysis) indicates the presence

of phenomena not observable by linear analysis.

3) Engineering Insight: The Normal Form analysis identi-

fies the specific modes involved in the nonlinear interaction. In

addition, several indices, with a firm basis in linear analysis, re-

veal important characteristics of the interacting modes. These

indices can be used to determine appropriate control actions to,

if necessary, ameliorate the effects of such modes. These indices

can also identify the onset of complex dynamic phenomena.

4) Complementing Linear Analysis: Linear Analysis tools

have found wide spread use and are well established. When

analysis as described in question 2 above, indicates the presence

of higher order interaction, second or higher order analysis used

as a complement to linear analysis tools would significantly en-

hance the understanding of the structural basis of the dynamic

phenomena and aid in designing appropriate control measures.

5) Computational Burden: Higher order analysis does result

in additional computational burden. This consists of the evalu-

ation of the quantities associated with the higher order terms.

The computational efficiency can be significantly enhanced by

the use of tools like spectral analysis and Prony analysis [27],

[28] to identify the important frequencies and then selectively

computing the higher order terms associated with only the in-

teracting modes. The development of algorithms suitable for the

Normal Forms analysis of large power systems is an area of re-

search.
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6) Range of Applicability of Second-Order Analysis: This

issue has not been addressed in significant depth. A logical ap-

proach would be to include terms higher than second order and

if significant higher order nonlinear interaction was identified

then the analysis would have to be extended to include terms

higher than second order.

V. CONCLUSIONS

The investigations conducted by the task force have examined

several critical issues related to the inclusion of higher order

terms for small-signal analysis. The detailed analysis conducted

on a sample test system chosen by the task force has provided

several critical insights into nonlinear power system dynamic

performance. The cases that were analyzed enable the following

conclusions to be drawn.

A. Practical Outcomes of Normal Form Analysis and

Their Significance

• Nonlinear modal interaction between fundamental modes

of oscillation does occur in power systems. The degree of

this interaction is amplified as the system stress increases.

• The degree of stress is a function of 1) the post distur-

bance operating conditions and 2) the impact of the dis-

turbance. The stress can be increased by either changing

the post disturbance operating condition or by changing

the severity of the disturbance.

• The method of Normal Forms can accurately detect the

onset of significant nonlinear modal interaction and iden-

tify the interacting modes.

• Several quantitative indices developed based on the

Normal Form analysis quantify the degree of interaction

and provide important information regarding the inter-

acting modes, the states participating in these modes, and

the degree of the nonlinear interaction. Future work in the

area could consist of seeking indices that will improve

the accuracy of the analysis.

• The task force in the course of its investigation has also

developed several new modal interaction indices that

relate the modal interactions with the time response of

the system. These indices capture the settling time of the

modal combinations and also provide a comparison of the

time response of the combination modes to the dominant

fundamental mode of oscillation.

• The method of Normal Forms provides engineering in-

sight not available in conventional linear analysis. This

has been demonstrated in the analysis provided in Ap-

pendix B dealing with the siting of controllers in a case

where significant nonlinear interaction is identified. The

analysis in this Appendix indicates a location for a con-

ventional PSS that provides better damping than the loca-

tion suggested by conventional analysis.

• In the analysis conducted, the Normal Form approach

uses terms up to second order. The method however, can

be extended without loss of generality to include higher

order terms. This would significantly increase the com-

putational burden.

• Several techniques have been developed for detecting

modal content from time responses [27], [28]. When

these techniques identify modal frequencies, not obtained

by small-signal linear analysis, Normal Forms analysis

could be used to determine the order of the modal inter-

action.

• The analysis of modal content of the time responses in the

cases considered have verified the interaction predicted

by the method of Normal Forms. In the stressed case de-

veloped in Section IV, the second-order interaction pre-

dicted by the method of Normal Forms is also identified

by the spectral analysis conducted on the time response. In

this case, the interaction happens to be a double frequency

mode of the dominant fundamental mode. No such mode

exists in linear analysis. The method of Normal Forms

however, predicts such an interaction and correctly iden-

tifies it as a double-frequency interaction.

• Modes identified from time responses could occur as a

result of nonlinear modal interaction. They are not neces-

sarily the modes obtained using linear analysis.

• The method of Normal Forms provides significant infor-

mation regarding the nonlinear structural characteristics

of the system. In cases where strong nonlinear interaction

between modes is predicted, the approach can effectively

complement the conventional linear analysis tools.

• In recent years, several techniques for monitoring power

system events have been developed and implemented. The

task force has not verified whether nonlinear modal inter-

actions have been observed in these measurements. The

analysis conducted on the modal content of the time re-

sponses from simulation, however, do indicate that such

interactions may exist. Actual measurements conducted

on highly stressed systems should be analyzed and modal

interaction if present could be verified using the method

of Normal Forms.

B. Shortcomings and Limitations of the Normal Form Analysis

• The computational burden of the Normal Form analysis

is large. Inclusion of even second-order terms for a large

system could impose a significant computational burden.

As a result, techniques need to be developed to identify in-

teractions from either measurements or time domain sim-

ulations and use this information to evaluate only the nec-

essary terms in the Normal Form analysis to reduce the

computational burden.

• The calculation of the initial conditions for the Normal

Form variables is a highly nonlinear numerical problem.

Care should be taken to obtain the solution and practical

techniques to verify the suitability of the solution should

be developed.

• Several of the indices developed to analyze the system dy-

namic performance involve the normalized eigen vectors.

Since the normalization is case dependent the indices de-

termined for different cases cannot be directly compared.

Some efforts to develop directly comparable indices have

been made [12], [13], but further work is necessary.

• Terms higher than second order have not yet been in-

cluded in the Normal Form analysis. Criteria to determine
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TABLE IX
OSCILLATORY MODES

when such terms are needed should be developed and the

range of applicability of each higher order term should be

developed. The computational burden involved in incor-

porating such terms should also be carefully investigated

APPENDIX A

LINEAR VERSUS NONLINEAR ANALYSIS

—A BRIEF COMPARISON

The objective of Appendix A is to illustrate the differences

and similarities in the analysis results that arise as a conse-

quence of applying either linear analysis techniques or the

Normal Forms method. It is not the purpose of Appendix A

to perform extensive linear and nonlinear analyzes of the test

system rather; its emphasis is on highlighting a selected number

of results that show that the linear and nonlinear methods may

offer different perspectives on the system dynamic characteris-

tics. A more comprehensive discussion can be found in [29].

The operating condition for the system is characterized by

a tie line flow of 410 MW from Area 1 to Area 2. The ex-

citer gains, generator damping coefficients and loading con-

ditions differ from those used in Section IV and are given in

Appendix C. For the selected conditions the system is highly

stressed and close to voltage collapse.

A. Linear Analysis

Table IX gives the system oscillatory modes, their frequen-

cies, and damping ratios. Also included in the table are the domi-

nant states associated with the individual modes computed using

linear participation factors [22].

Fig. 4 shows the speed mode shape for the inter-area mode

[30]; the orientation of the mode shapes reflects the highly

stressed system conditions. Fig. 5 shows the magnitudes of the

rotor speed participation factors; the values are normalized with

respect to the largest component. For this stressed operating

condition, the speed mode shape shows that the four machines

swing more-or-less in-phase; a similar mode shape is reported

for this system in [14] for cases involving 400-MW power

transfers.

The results obtained by linear analysis are limited (by defini-

tion) to the information provided by the system eigenvalues and

eigenvectors. Consequently, a question of practical importance

is “Are there circumstances where it would be valuable to have

Fig. 4. Mode shapes of rotor speeds for mode 9.

Fig. 5. Speed-based linear participation factors for mode 9.

access to a more detailed analytical description of the system

dynamic characteristics?” An affirmative answer to this ques-

tion is suggested by the identification of the modes present in

the test system response. This type of analysis is typically per-

formed to determine the linear modes present in a signal.

The identification of modes in the inter-area power flow, fol-

lowing a fault at Bus 5, is illustrated in Figs. 6–8. Fig. 6 shows

the system response approximately 10 s after the removal of the

fault (the data points in the plot have been shifted to start at time

zero). This figure compares the deviation from steady state of

the inter-area power flow, , computed by a transient stability

program, and the response of an identified system computed

using the ERA method [31]. The identified system consists of
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Fig. 6. Inter-area power flow.

Fig. 7. 0.21 Hz (1.31 rad/s) modal component.

two pairs of lightly damped modes and a single real mode. The

lightly damped modes are the inter-area mode (Modes 9 and

10 in Table I) and a second lightly damped mode that results

from the self combination of and : (

) and ( ).

Figs. 7 and 8 show the two modal components that constitute

the . In other words, in Fig. 6, is equal to the sum of the

signals shown in Figs. 7 and 8 (plus an offset given by the real

mode).

It is not the purpose of this discussion to delve into system

identification issues, but rather to point out the possibility of de-

tecting higher modes in the transient response of a system. The

presence of this type of modes is of particular significance in

cases for which the linearized form of the system is not avail-

able. It is thus pertinent to inquire if the possibility exists of ex-

tending the understanding of a system dynamic performance be-

yond the linear region by applying alternative analysis methods

such as Normal Form analysis.

B. Normal Forms Analysis

Normal Forms analysis is based on the system representation

given by (13). Of particular interest are the second-order modes,

Fig. 8. 0.42 Hz (2.62 rad/s) modal component.

Fig. 9. Approximate nonlinear participation factors.

, that contribute to the system response. The significance

of these modes can be determined using the nonlinear partici-

pation factors and nonlinear interaction indices. Specifically, by

exciting a given mode of concern, the rotor speed deviation of

the system generators can be expressed in the form

(A.1)

where and are the second-order nonlinear participation

factors defined in (20). The nonlinear mode-state participation

factors for the speed states are shown in Fig. 9.

Fig. 9 shows the largest 15 nonlinear participation factors

for the four generators as a function of the inter-

acting modes. The nonlinear participation factors for machines

in Area 1 indicate the dominant presence of the inter-area Mode

9. This is similar to results obtained using linear analysis. On

the other hand, and in contrast to the results obtained using the

linear participation factors, the nonlinear participation factors

for the machines in Area 2 indicate that the combination Mode

(3,4) ( ), and not Mode 9, is the predominant

mode. The combination Mode (3,4) is followed by Mode 7 and,
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to a lesser extent, by the inter-area Mode 9. Furthermore, the

participation of Modes 7, 8, 11, 12, and the combination modes

(7,10) and (8,9) in Fig. 9(c) and (d), in the speed deviations of

machines GEN3 and GEN4 suggest the potential for nonlinear

modal interactions. It should be noted that the amplitude of the

combination mode (3,4) decays rapidly compared with Mode 9.

The Nonlinear Interaction Index, , introduced in Sec-

tion IV provides additional information on the modal interac-

tions. The values of computed based on a 34 ms fault at

Bus 6 reveal a strong modal interaction between the inter-area

Mode 9, and Modes 11, 12 along with Modes 5 through 7. In

addition, Modes 3, 5, and 7 strongly interact with Mode 11. An

interesting aspect of these results is that at the instant of fault

clearing the self interaction of Mode 9 ( ) is much smaller

than the interaction of Mode 9 with other modes [29].

C. Discussion

The results presented in the preceding paragraphs illustrate

differences and similarities between the linear and nonlinear

analyzes. Both approaches describe the natural response of

the system as a sum of complex exponential terms. However,

whereas the state variables computed using linear analysis con-

sist of a sum of terms that only include individual modes, the

state variables computed using Normal Forms include not only

the individual modes, but also combination modes of the form

that describe modal interactions not observable using

linear analysis. Depending on the system operating conditions,

these terms may represent system dynamic characteristics that

are significantly different than those expected from a linear

analysis. To illustrate this important fact, a further analysis of

the nonlinear phenomena is provided in [29] by addressing

three specific issues: 1) existence of a 0.1-Hz component (ap-

prox.) in the system response not characterized by the 0.1-Hz

mode listed in Table I; 2) computation of modal interactions

for the 0.1-Hz component using initial conditions evaluated at

significantly different times; 3) existence of the second-order

harmonic of the inter-area mode. Here, only the first item is

considered.

Mode 11 is a very well damped mode (see Table IX) and,

from a linear analysis point of view, it is not expected to play

a significant role in the system response once it decays as dic-

tated by its damping. However, in the course of this investiga-

tion, the analysis of the system response using Intrinsic Mode

Functions and the Hilbert transform [32] suggested the presence

of a 0.1-Hz component that persists beyond the time frame asso-

ciated with the 0.1-Hz mode listed in Table IX. These results led

to a closer scrutiny of the system response as given by with em-

phasis on those modes that lead to a 0.1-Hz component. More

specifically, the following question was considered: Are there

terms in the speed of GEN4, i.e.,

(A.2)

that give rise to a 0.1-Hz component that persists during the time

frame ? The answer to this question is obtained by

considering the combinations of second-order modes that result

TABLE X
MODAL COMBINATIONS THAT RESULT IN � 0:1 Hz

Fig. 10. Time response of mode 9, 14, 16, (9, 14), and (9, 16).

Fig. 11. DFT of time response in Fig. 7.

in a frequency of approximately 0.1 Hz. These modes and their

associated frequencies are shown in Table X.

The time response (A.2) computed using the terms in Table X

and the terms corresponding to Mode 9 is shown in Fig. 10; its

discrete Fourier transform (DFT) is shown in Fig. 11. The DFT

clearly shows the presence of two dominant components at 0.1

and 0.2 Hz. For comparison, Fig. 12 shows the time response

(A.1) including only terms related to the inter-area mode, Mode
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Fig. 12. Response of generator 4 including only terms corresponding to
mode 9.

9. The reason for the presence of the 0.1-Hz component is pro-

vided by the combination modes in Table III: the first four en-

tries correspond to two 0.1-Hz modes with damping ratios of

39% and 42%. These modes arise from the interaction of the

inter-area mode and other modes and, although well damped,

will be observable for a significant time span. This analysis re-

inforces the main claim of the Normal Form analysis that non-

linear interaction of modes may lead to frequency components

not observed by linear modal identification techniques.

APPENDIX B

CONTROLLER PLACEMENT USING NORMAL FORMS

Appendix B serves the purpose of suggesting possible av-

enues for further research by describing the possible use of

Normal Forms for the siting of damping controllers. For a more

extensive description, the interested reader is referred to [33]. It

is emphasized that PSSs are employed for illustrative purposes

only; other devices may be more appropriate for addressing

systemic dynamic issues.

Specifically, the nonlinear participation factors are used to

determine the best site for the PSS. By exciting a given mode

of concern, the rotor speed deviation of the system generators is

expressed in the form

(B.1)

where and the second-order nonlinear participation

factors have been defined in (19) and (20). For these states, the

nonlinear mode-state participations were derived

Fig. 13 shows the top 15 participation factors for the machines

as a function of the interacting modes obtained from (B.1). In

evaluating these participation factors, the procedure described

in Section II where only the excited state has an entry in the

Fig. 13. Approximate nonlinear participation factors.

TABLE XI
COMPARISON OF NONLINEAR PARTICIPATION FACTORS

unit vector was used. Further, numerical estimates for non-

linear participation factors derived using the numerically ob-

tained initial condition for the specific scenario considered

were then used to determine the best location for power system

stabilizers. The nonlinear participation factors for machines in

Area 1 shown in Fig. 13(a) and (b) show the dominant presence

of the inter-area Mode 9, suggesting that Area 1 is the best place

to install PSSs. By contrast, the nonlinear participation factors

for the machines in Area 2 indicate the presence of the combina-

tion local Mode (3,4) followed by the presence of Mode 7, and,

to a lesser extent, by the inter-area Mode 9. In contrast to linear

participation factors, nonlinear participation factors suggest that

Area 1 is a better location for the PSSs. Further, the large par-

ticipation of Modes 7, 8, and 11, 12 in the speed deviations of

machines GEN3 and GEN4 suggests the potential for undesir-

able nonlinear modal interaction arising from this phenomenon

[see Fig. 13(c) and (d)].

Table XI shows the nonlinear participation factors computed

using the approximations and the exact for the scenario. The

results single out machine GEN2 as the best location for siting

the PSS.

A. Second-Order Interaction Coefficients

The analysis presented above is further reinforced using the

second-order interaction coefficient analysis. To this end, a

three-phase fault is applied at Bus 6 and is removed in 34 ms

to investigate nonlinear effects arising from modal interaction.

Normal Form analysis is conducted on the post-contingency

condition.
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TABLE XII
NONLINEAR INTERACTION COEFFICIENTS FOR KEY MODES

TABLE XIII
EFFECT OF PSSS ON SYSTEM DAMPING

The analysis of nonlinear interaction coefficients in Table XII

reveals strong modal interaction between the inter-area mode

and the control Modes 5 and 7, in addition to Mode 11. In turn,

Modes 3, 5, and 7 are seen to strongly interact with Mode 11.

The interaction coefficients also show that the self interaction

of Mode 9 is much smaller than the interaction of Mode 9 with

other modes, and that self interaction of Mode 11 produces a

mode with the same frequency characteristics as the inter-area

mode but different in damping.

B. Small-Signal Control Design

To verify the effects of nonlinear behavior on the analysis

and design of controllers, PSSs were designed using the ap-

proach in [34], [35]. In this analysis, a PSS was designed consid-

ering a single machine location at a time. Table XIII gives the

local mode eigenvalues for each area and the inter-area mode

along with the damping ratio and frequency of oscillation for

each control alternative. Small-signal results show that the use

of PSSs in machines in Area 1 results in more damped behavior.

Thus, for instance, for the case with a PSS at machine GEN2, the

damping ratio is increased to 10.87%. By contrast, adding PSSs

at machines in Area 2 may actually decrease the damping of the

inter-area mode from 4.4% to 2.81% and 2.90% for the cases

with a PSS added to machines GEN1 and GEN2, respectively.

Comparing these results with the analysis of nonlinear partici-

pation factors in Fig. 13, one can see that modal interaction is

not properly captured by linear analysis. As a result, conven-

tional techniques do not necessarily identify the ideal location

for damping controllers.

C. Discussion

The primary goal of the analysis presented in this section was

to address question 3 in the task force objectives with a concrete

example. The case described in this section clearly demonstrates

that for a highly stressed case, conventional linear techniques to

locate controllers could provide results that are not necessarily

ideal to damp oscillations. The engineering insight provided by

the nonlinear participation factors and the interactions analysis

clearly indicates that the location of the controllers in Area 1

is better suited to damp the oscillations because of the high de-

gree of interaction that takes place. The design of the PSS and

the small-signal testing using the setting obtained demonstrate

the efficacy of the new locations and their ability to effectively

improve the damping of the inter area mode. The analysis also

reinforces the importance of nonlinear modal interaction and

demonstrates: 1) the ability of the method of Normal Forms to

correctly identify the interaction and 2) the efficacy of the var-

ious indices to accurately quantify the level of interaction and

predict the states that are involved in it.

APPENDIX C

SYSTEM DATA

A. Data for Case Study in Section IV

Tie Line Flow 400 MW:

TABLE XIV
LINE DATA—IN PU ON A 100 MVA BASE

TABLE XV
LOAD DATA

TABLE XVI
GENERATOR DAMPING IN PU ON MACHINE BASE
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TABLE XVII
GENERATOR DATA ON MACHINE BASE (G1,G2,G3,G4)

TABLE XVIII
EXCITER DATA (IEEE TYPES ST1, AC4 AND AC4A)

TABLE XIX
SHUNT SUSCEPTANCE B (P.U. ON 100 MVA BASE)

B. Data for Case Study in Appendix A

Tie Line Flow 410 MW:

TABLE XX
LOAD DATA

TABLE XXI
GENERATOR DAMPING IN PU ON MACHINE BASE

TABLE XXII
EXCITER GAIN
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