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INCLUSION WEIERSTRASS-LIKE ROOT-FINDERS WITH

CORRECTIONS

LJ. D. PETKOVIĆ, M. S. PETKOVIĆ AND D. MILOŠEVIĆ

Abstract. In this paper we present iterative methods of Weier-

strass’s type for the simultaneous inclusion of all multiple zeros

of a polynomial. The order of convergence of the proposed in-

terval method is 1 +
√

2 ≈ 2.414 or 3, depending on the type

of the applied disk inversion. The criterion for the choice of a

proper circular root-set is given. This criterion uses the already

calculated entries which increases the computational efficiency

of the presented algorithms. Numerical results are given to

demonstrate the convergence behavior.

1. Preliminaries and basic concepts

The problem of finding complex zeros of a polynomial is one of the most
important problems involved in mathematical models of many branches of
engineering sciences, physics and applied mathematics. The implementation
of some of zero-finding iterative procedures requires solving certain practi-
cal problems as computationally verifiable initial conditions that guarantee
convergence of applied algorithm, the construction of algorithms which pos-
sess a fast convergence in the presence of multiplicity of a requested zero,
the control of rounding errors, information about error bounds of a complex
approximation to the sought zero, and so on.

Some of the above requirements can be fulfilled by applying interval arith-
metic. In particular, the problem of determination of complex zeros with
automatic error bounds needs complex interval arithmetic. Iterative meth-
ods for the simultaneous determination of complex zeros of a given polyno-
mial, realized in complex interval arithmetic, are a new and very efficient
device to error estimates for a given set of approximate zeros. More de-
tails about iterative inclusion methods, including studies on convergence
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properties, computational efficiency, numerical experiments and parallel im-
plementation, may be found in the books [1], [7], [11] and references cited
there. In general, inclusion methods, realized in complex interval arithmetic,
produce resulting disks or rectangles containing complex zeros. In this man-
ner, the upper error bounds, given by the radii of disks or the semidiagonals
of rectangles, are obtained automatically. This very useful property of self-
validated results, together with the ability to incorporate rounding errors
without altering the fundamental structure of the iterative formula, led to
frequent application of inclusion methods for solving many problems which
appear not only in applied mathematics but also in mathematical models of
physics and engineering sciences.

A significant improvement of computational efficiency of simultaneous in-
clusion methods can be achieved by using suitable correction terms. Such
an approach, based on Nourein’s idea [5] for the simultaneous methods in
ordinary complex arithmetic, was applied for the first time in [9] to the
Börsch-Supan-like method. This idea was later applied to the Ehrlich-Aberth
method [2] (the case of multiple zeros) and the Halley method [8]. The aim
of this paper is to present iterative methods of Weierstrass’ type for the si-
multaneous inclusion of multiple zeros of a polynomial where the improved
convergence order is attained by using suitable corrections.

Let us consider a monic polynomial of degree n ≥ 3

P (z) = zn + an−1z
n−1 + · · · + a1z + a0 = (z − ζ1)

µ1 · · · (z − ζk)
µν

(1.1)

with simple or multiple zeros ζ1, ..., ζν with the known multiplicities µ1, ..., µν ,
µ1 + · · · + µν = n. From the factorization (1.1) we obtain the fixed point
relations

ζk = z −
[

P (z)
∏

j 6=k

(z − ζj)
µj

]1/µk

∗

(k ∈ Iν := {1, ..., ν}).(1.2)

The right-hand side in (1.2) will reduce to the zero ζk only for one particular
value of the µk−th root (µk > 1). The symbol ∗ indicates that only one
(appropriate) of µk values of the µk−th root of a complex number has to be
chosen.

Let z1, . . . , zν be distinct approximations to the zeros ζ1, ..., ζν . Farmer
and Loizou [4] constructed the following iterative formula for multiple zeros:

ẑk = zk −
[

P (zk)
∏

j 6=k

(zk − zj)
µj

]1/µk

∗

(k ∈ Iν).(1.3)
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The order of convergence of this method is two. The increase of the con-
vergence rate of the method (1.3) has been obtained by using Newton’s
correction in the following way (see [12]):

ẑk = zk −
[

P (zk)
∏

j 6=k

(zk − zj + Nj)
µj

]1/µk

∗

(k ∈ Iν).(1.4)

Newton’s correction Nj appearing in (1.4), often known as Schröder’s cor-
rection, is given by Nj = µjP (zj)/P

′(zj). The order of convergence of the
iterative method (4) is three. The proper value of the µk−th root (which is
stressed by ∗) should select according to the criterion described in [12]. In
this paper we will extend the iterative methods (1.3) and (1.4) to circular
complex arithmetic.

The development and convergence analysis of the algorithm which will be
considered in this paper require the basic properties of the so-called circular
complex arithmetic introduced by Gargantini and Henrici [3]. More details
about circular arithmetic can be found in the books [1, Ch. 5] and [11,
Ch. 1]. Throughout this paper, disks in the complex plane will be denoted
by capital letters. A circular closed region (disk) Z := {z : |z − c| ≤ r}
with center c := midZ and radius r := radZ we will denote by parametric
notation Z := {c; r}.

Addition, subtraction and multiplication in circular arithmetic are defined
as follows:

{c1; r1} ± {c2; r2} = {c1 ± c2; r1 + r2},
{c1; r1} · {c2; r2} := {c1c2; |c1|r2 + |c2|r1 + r1r2}.

We will consider two types of inversion of a disk Z: the exact inversion

Z−1 = {c; r}−1 =
{c̄; r}

|c|2 − r2
(|c| > r, i.e. 0 /∈ Z),(1.5)

obtained by the Möbius transformation, and the inversion in the centered

form

ZI := {c; r}I =
{1

c
;

r

|c|(|c| − r)

}

(|c| > r, i.e. 0 /∈ Z).(1.6)

Let us note that

{c; r}−1 ⊂ {c; r}I .

In the sequel, INV (Z) will denote one of the two inversions Z−1 or ZI .
Using (1.5) and (1.6) the division is defined as

Z1 : Z2 := Z1 · Z−1
2 or Z1 : Z2 := Z1 · ZI

2 (0 /∈ Z2).
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In this paper we will use the following obvious implications:

z ∈ {c; r} ⇔ |z − c| ≤ r.(1.7)

z /∈ {c; r} ⇔ |z − c| > r.(1.8)

For a disk Z = {c; r} which does not contain the origin (that is, |c| > r), the
k-th root of Z is defined by the union (see [11, Ch. 2])

Z1/k :=
k−1
⋃

λ=0

{

|c|1/k exp
(arg c + 2λπ

k
i
)

; |c|1/k − (|c| − r)1/k
}

.

(1.9)

2. Weierstrass-like algorithm for multiple zeros

Let Z1, . . . , Zn be disjoint disks which contain the zeros ζ1, . . . , ζn respec-
tively, and let zk = mid Zk (k = 1, . . . , n). In [10] the following inclusion
methods of Weierstrass’ type for simple zeros with Newton’s and Weierstrass’
corrections were constructed:

Ẑk = zk − P (zk) · INV

(

n
∏

j=1

j 6=k

(zk − Zj + Nj)

)

(k ∈ Iν),(2.1)

Ẑk = zk − P (zk) · INV

(

n
∏

j=1

j 6=k

(zk − Zj + Wj)

)

(k ∈ Iν),(2.2)

where Nj = P (zj)/P
′(zj) and Wj = P (zj)/

∏

j 6=i(zi − zj) are Newton’s and
Weierstrass’ corrections, respectively. INV in (2.1) and (2.2) denotes either
the exact inversion (1.5) or the centered inversion (1.6), that is, INV ∈
{()−1, ()I}.

Now, we will extend the iterative inclusion formula (2.1) to the case of
multiple zeros. Considering computational costs, Schröder’s correction

Nk = µj
P (zk)

P ′(zk)

is obviously more convenient compared to Weierstrass’ correction

Wk =

[

P (zk)
∏

j 6=k

(zk − zj)

]1/µk

since (already calculated) Schröder’s correction enables us to establish an
efficient criterion for the choice of the proper root-disk, referred to as CCR,
among µk (> 1) disks. Aside from this advantage, we note that Schröder’s
correction Nk is rather simpler for calculation than Weierstrass’ correction



INCLUSION WEIERSTRASS-LIKE ROOT-FINDERS WITH CORRECTIONS 147

Wk. For this reason, we will not study the iterative formula with Weier-
strass’ correction. However, if all zeros are simple, then both corrections
give algorithms (2.1) and (2.2) of the same computational costs.

Let Z1, . . . , Zν be disjoint disks containing the zeros ζ1, . . . , ζν respec-
tively, and zk = mid Zk. From the fixed point relation (1.2) we obtain

ζk ∈ zk − 1
[

1

P (zk)

∏

j 6=k

(zk − Zj)
µj

]1/µk

∗

(k ∈ Iν).(2.3)

According to (2.3) we are able to construct the following interval method
of Weierstrass’ type for the simultaneous inclusion of multiple zeros of a
polynomial P :

Ẑk = zk − INV

(

1

P (zk)

∏

j 6=k

(zk − Zj)
µj

]1/µk

∗

)

(k ∈ Iν).

(2.4)

Let us introduce disks

Qk =
1

P (zk)

∏

j 6=k

(zk − Zj + Nj)
µk (k ∈ Iν).

Assuming that ζj ∈ Zj −Nj (under some suitable conditions), from the fixed
point relation (1.2) we obtain

ζk ∈ zk − 1
[

1

P (zk)

∏

j 6=k

(zk − Zj + Nj)
µj

]1/µk

∗

= zk − 1
[

Qk

]1/µk

∗

(k ∈ Iν).

(2.5)

Let again Z1, . . . , Zν be disjoint disks containing the zeros ζ1, . . . , ζν re-
spectively, and zk = rad Zk. According to (2.5) we can construct the follow-
ing interval method of Weierstrass’ type with Schröder’s correction for the
simultaneous inclusion of multiple zeros of a polynomial P :

Ẑk = zk − INV

(

1

P (zk)

∏

j 6=k

(zk −Zj +Nj)
µj

]1/µk

∗

)

= zk − INV
(

[

Qk

]1/µk

∗

)

(k ∈ Iν).

3. Criterion for the root selection

First, we are concerned with the selection of the appropriate disk in (2.6).
The main idea has been already presented in [12] in ordinary complex arith-
metic so that we give only the outline of CCR in complex circular arithmetic
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in the same spirit as in [6] (see, also, [7, Ch. 3]). Let µk > 1 and assume that

the disk Q
1/µk

k does not contain the origin. Then Q
1/µk

k is the union of µk

disjoint disks (see formula (1.9)), one of which contains (zk − ζj)
−1. Let this

disk be denoted by
[

Qk

]1/µk

∗
= {c∗k; d∗k}. Denote the remaining µk − 1 disks

Q
1/µk

k,λ , which do not contain (zk − ζj)
−1, with {ck,λ; dk}, λ = 1, ..., µk − 1.

Let us note that d∗k = dk and ck,λ = c∗k exp
(

i2λπ
µk

)

, λ = 1, ..., µk − 1 adopting

ck,0 = c∗k.
Let us introduce

ρ = min
1≤i,j≤ν

i6=j

{|zi − zj | − rj}, r = rad
1≤j≤ν

rj , µ = min
1≤k≤ν

µk,
(3.1)

where zj = mid Zj , rj = rad Zj . The criterion for the choice of the appro-

priate disk
[

Qk

]1/µk

∗
is based on the following assertion:

Lemma 3.1. If ρ > (n − 1)r and

dk <
ρ − (n − µk)r

2µkρr
,

then for each k = 1, . . . , ν it follows

(i) |N−1
k − c∗k| ≤

n − µk

ρµk
+ dk;

(ii) |N−1
k − ck| ≥

n − µk

ρµk
+ 3dk.

Proof. Using the logarithmic derivative we find

N−1
k =

1

µk

P ′(zj)

P (zj)
=

1

µk

[ d

dz
ln

ν
∏

j=1

(z − ζj)
µj

]

z=zk

=
1

µk

ν
∑

j=1

µj

zk − ζj
.

(3.2)

We will prove Lemma 3.1 using a geometric construction displayed in Fig.

1 (the case µk = 3, where the boundaries of the disks
[

Qk

]1/3

∗
= Q

1/3
k,0 , Q

1/3
k,1

and Q
1/3
k,2 are denoted by γ

(0)
k , γ

(1)
k , γ

(2)
k , respectively).

Since N−1
k − (zk − ζk)

−1 ∈
{

N−1
k − c∗k; d

∗
k

}

, according to (3.2) we have

|N−1
k − c∗k| ≤

∣

∣

∣

1

µk

ν
∑

j=1

µj

zk − ζj
− 1

zk − ζk

∣

∣

∣+ d∗k <
n − µk

ρµk
+ dk,

which proves (i).
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To prove (ii) we use (1.8) and the elementary inequality m sin π
m > 1 (m ≥

2). We estimate for λ = 1, ..., µk − 1

|N−1
k − ck,λ| ≥

∣

∣

∣

1

µk

ν
∑

j=1

µj

zk − ζj
− 1

zk − ζk
exp

(

i
2λπ

µk

)
∣

∣

∣− dk

≥ 1

|zk − ζk|
∣

∣

∣1 − exp
(

i
2λπ

µk

)∣

∣

∣− 1

µk

∑

j 6=k

µj

|zk − ζj |
− dk

≥ 2

rk
sin

λπ

µk
− n − µk

ρµk
− dk ≥ 2

rµk
− n − µk

ρµk
− dk

=
2ρ − (n − µk)r

rρµk
− 4dk + 3dk >

n − µk

ρµk
+ 3dk.

According to (1.7) and the relation (induced by (i))

|N−1
k − c∗k| ≤

(n − µk

ρµk
+ 2dk

)

− dk,

we conclude that the disk
[

Qk

]1/µk

∗
= {c∗k; d∗k}, containing (zk − ζk)

−1, lies
in the interior of the disk

Γk =
{

N−1
k ;

n − µk

ρµk
+ 2dk

}

.

*

*

g
k

g
k

g
k

Gk

kN
-1

(0)

(1)

(2)

z
k zk( )-1

z
k zk( )

-1
e
i p2 /3

z
k zk( )-1e

i p4 /3

0

Fig. 1 Selection of a proper disk root
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Besides, in regard to (1.8) and the relation (induced by (ii))

|N−1
k − ck,λ| ≥

(n − µk

ρµk
+ 2dk

)

+ dk,

it follows that all remaining µk−1 disks Q
1/µk

k,λ = {ck,λ; dk} (λ = 1, . . . , µk−1)

(that is, the disks with the boundaries γ
(1)
k and γ

(2)
k in Fig. 1), which do not

contain (zk − ζk)
−1, lie outside of the disk Γk. �

Regarding the assertions (i) and (ii) of Lemma 3.1, as well as Fig. 1, there
follows that we have to choose the disk whose center minimizes |N−1

k −
ck,λ|, λ = 0, 1, ..., µk − 1. Of course, in finding this minimum we use the
already computed value Nk which is necessary in the iterative formula (2.6).

4. Convergence theorems

Let ρ, r and µ be the abbreviations given by (3.1). Assume that the initial
condition

ρ >
7

2
(n − µ)r(4.1)

holds. Under this condition, using the same technique presented in [10] for
the inclusion method (2.4) we are able to prove the following assertions for
the method (2.6) taking into account CCR defined by Lemma 3.1.

Lemma 4.1. Let Z1, ..., Zν be inclusion disks for the zeros ζ1, ..., ζν , ζk ∈ Zk,
and let zk = midZk, rk = radZk, εk = zk − ζk. If the inclusion disks

Z1, ..., Zν are chosen so that the inequality (4.1) is satisfied, then we have

for k = 1, . . . , ν :

(i) ζk ∈ Zk ⇒ ζk ∈ Zk − Nk;

(ii) 0 /∈ HN,k :=
∏

j 6=k(zk − Zj + Nj)
µj .

Furthermore, introducing for any m = 0, 1, ... the quantities

ε
(m)
k := z

(m)
k − ζk, εm := max

1≤k≤ν
|ε(m)

k |, rm := max
1≤k≤ν

r
(m)
k = r(m),

we can prove

Lemma 4.2. Let β be equal 1 if INV = ()−1 and 0 if INV = ()I . Then for

the inclusion method (2.6) we have

(i) rm+1 = O(εmrm);

(ii) εm+1 = O(ε3
m) + βO(εmr2

m),

where O is the Landau symbol.
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The proofs of Lemmas 4.1 and 4.2 are tedious and rather extensive but
elementary and we omit them.

Lemma 4.1 gives conditions under which the inclusion method is defined,
while Lemma 4.2 describes the behavior of the sequences of centers and radii
of disks produced by (2.6). Using these lemmas we establish the convergence
theorem for the inclusion method (2.6):

Theorem 4.3. Let (Z1, ..., Zν) := (Z
(0)
1 , ..., Z

(0)
ν ) be initial disks such that

ζk ∈ Zk (k = 1, ..., ν) and let {Z (m)
k } (k = 1, ..., ν) denote the sequences

of disks produced by (2.6), where m = 0, 1, ... is the iteration index. If the

initial condition

ρ(0) >
7

2
(n − µ)r(0)

holds, then for any k ∈ {1, ..., ν} and m = 0, 1, ... there holds ζk ∈ Z
(m)
k and

the sequences of radii {r(m)
k } (k = 1, ..., ν) tend monotonically towards 0.

The convergence rate of the inclusion method (2.6) for multiple zeros is
the subject of the following theorem:

Theorem 4.4. Let OR(2.6) denote the R-order of the iterative interval

method (2.6), where INV ∈ {()−1, ()I}. Then

OR(2.6) ≥
{

1 +
√

2 ∼= 2.414 if INV = ()−1,
3 if INV = ()I .

Theorems 4.3 and 4.4 are proved in a similar way as in [10] for simple zeros.

The convergence speed of the second order interval method (2.4) can be
accelerated by applying the Gauss-Seidel approach (single step mode). The
single step version of (2.4) reads

Ẑk = zk − INV

(

1

P (zk)

[

∏

j<k

(zk − Ẑj)
µj
∏

j>k

(zk − Zj)
µj

]1/µk
)

(k = 1, ..., ν).

The lower bound of the R-order of (4.2) is given by

OR((4.2)) ≥ 1 + xn,

where xn > 1 is the unique positive root of the polynomial equation xn −
x − 1 = 0 (see Alefeld and Herzberger [1, Ch. 8]).

In the similar way, the presented inclusion method (2.6) of Weierstrass’
type with Schröder’s correction can be further accelerated using the Gauss-
Seidel procedure. Starting from (2.6) we can state the following single step
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inclusion method

Ẑk = zk − INV

(

1

P (zk)

[

∏

j<k

(zk − Ẑj)
µj
∏

j>k

(zk − Zj + Nj)
µj

]1/µk
)

(k ∈ Iν).

Using the technique presented in [8] (see, also, [2], [9]), it can be proved that
the R-order of convergence of the single step method (4.3) decreases as the
polynomial degree grows, and lies in the interval (2.414, 3.214) if the exact
inversion is applied, and in the interval (3, 3.732) in the case of the centered
inversion.

5. Numerical example

In this section we illustrate numerically the presented inclusion meth-
ods with/without corrections. The proposed algorithms were implemented
on PC PENTIUM IV using the programming package Mathematica 5 with
multiple precision arithmetic. The type of inversion is stressed by the sub-
script indices “E” (exact) and “C” (centered); for instance, (2.6)E and (2.6)C

denote two versions of the inclusion method (2.6) where the exact inversion
()−1 and the centered inversion ()I are applied, respectively. For demonstra-
tion, we present the following example.

Example 1. We have considered the polynomial

P (z) = z7 − (6 + 4i)z6 + (6 + 20i)z5 + (20 − 20i)z4 − (27 + 36i)z3

−(30 − 56i)z2 + (28 + 16i)z + 24 − 32i

with the zeros ζ1 = −1, ζ2 = 2, and ζ3 = 1 + 2i, with the respective
multiplicities µ1 = 2, µ2 = 3, µ3 = 2. As the initial inclusion disks we have
taken the circular regions

Z
(0)
1 = {−1.1+0.1i; 0.3}, Z

(0)
2 = {1.9+0.1i; 0.3}, Z

(0)
3 = {1.1+2.1i; 0.3}.

We have tested the total step methods (2.4) and (2.6) using the inversions
()−1 and ()I . The radii of the inclusion disks obtained after the third iteration
are displayed in Table 1.

methods (2.4)E (2.4)C (2.6)E (2.6)C

r
(3)
1 1.19(−6) 2.23(−8)) 7.16(−8) 2.08(−14)

r
(3)
2 4.79(−7) 2.90(−9) 2.73(−8) 1.66(−14)

r
(3)
3 1.18(−6) 9.07(−8) 1.03(−7) 3.45(−14)
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Table 1 The results of the third iteration of the total step methods (2.4) and (2.6).

The corresponding single step methods have also been tested in the same
example. After the third iteration we obtained considerably better results
shown in Table 2.

methods (4.2)E (4.2)C (4.3)E (4.3)C

r
(3)
1 2.92(−10) 1.49(−10) 7.88(−12) 1.14(−16)

r
(3)
2 1.19(−13) 4.06(−15) 4.37(−17) 3.94(−31)

r
(3)
3 4.44(−18) 1.70(−19) 5.22(−24) 2.55(−44)

Table 2 The results of the third iteration of the single step methods (4.2) and (4.3).

The results obtained in this example, as well as many other examples,
coincide very well with the theoretical results given in Theorems 4.3 and 4.4.
In particular, from Tables 1 and 2 we observe that the centered inversion
(1.6) gives smaller disks compared to the exact inversion (1.5), which could
seem surprising regarding the inclusion Z−1 ⊂ ZI for arbitrary Z. However,
this is caused by the better convergence of the midpoints which behave as
the third order method (1.4) when the inversion (1.6) is applied. This forces
the faster convergence of the sequences of radii of disks produced by the
employed inclusion method. The convergence of the midpoints of disks in
the case of the exact inversion is somewhat slower due to the shifted centers
of disks.
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[10] M. S. Petković and -D. D. Herceg, Methods with corrections for the simultaneous
inclusion of polynomial zeros, Nonlinear Analysis 30 (1997), 73–82.
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