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Inclusive gluon production in deep inelastic scattering at high parton density
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We calculate the cross section of single inclusive gluon production in deep inelastic scattering at very high
energies in the saturation regime, where the parton densities inside hadrons and nuclei are large and the
evolution of structure functions with energy is nonlinear. The expression we obtain for the inclusive gluon
production cross section is generated by this nonlinear evolution. We analyze the rapidity distribution of the
produced gluons as well as their transverse momentum spectrum given by the derived expression for the
inclusive cross section. We propose an ansatz for the multiplicity distribution of gluons produced in nuclear
collisions which includes the effects of nonlinear evolution in both colliding nuclei.

DOI: 10.1103/PhysRevD.65.074026 PACS number~s!: 13.60.Hb, 13.85.Hd

I. INTRODUCTION

At very high energies corresponding to very small values
of the Bjorkenx variable the density of partons in the had-
ronic and nuclear wave functions is believed to become very
large, reaching thesaturation limit @1–4#. In the saturation
regime the growth of partonic structure functions with en-
ergy slows down sufficiently to unitarize the total hadronic
cross sections. The gluonic fields in the saturated hadronic or
nuclear wave function are very strong@5,6#. A transition to
the saturation region can be characterized by thesaturation
scale Qs

2(s), which is related to the typical two-dimensional
density of the partons’ color charge in the infinite momentum
frame of the hadronic or nuclear wave function@4–6#. The
saturation scaleQs

2(s) is an increasing function of energys
and of the atomic number of the nucleusA @7–17#. At high
enough energies or for sufficiently large nuclei the saturation
scale becomes much larger thanLQCD

2 , allowing for pertur-
bative description of the scattering process at hand@4,18#.
The presence of an intrinsic large momentum scaleQs justi-
fies the use of perturbative QCD expansion even for such
traditionally nonperturbative observables as total hadronic
cross sections.

Recently there has been a lot of activity devoted to calcu-
lating hadronic and nuclear structure functions in the satura-
tion regime. The original calculation of quark and gluon dis-
tribution functions including multiple rescatterings without
QCD evolution in a large nucleus was performed in@3#. The
resulting Glauber-Mueller formula provided us with expres-
sions for the partonic structure functions, which reach satu-
ration at smallQ2. McLerran and Venugopalan argued in@4#
that the large density of gluons in the partonic wave func-
tions at high energy allows one to approximate the gluon
field of a large hadron or nucleus by a classical solution of
the Yang-Mills equations. The resulting gluonic structure
function has been shown to be equivalent to the Glauber-
Mueller approach@5,6,19#. An important problem that still
remained was the inclusion of quantum QCD evolution in

this quasiclassical expression for the structure functions. The
problem was equivalent to resummation of the multiple
Balitskiı̆-Fadin-Kuraev-Lipatov~BFKL! Pomeron@20# ex-
changes. The evolution equation resumming the leading
logarithms of energy (as ln s) and the multiple Pomeron ex-
changes was written in@7# using the dipole model of@8# and
independently in@10# using the effective high energy La-
grangian approach. The equation was written for the cross
section of quark-antiquark dipole scattering on a target had-
ron or nucleus, which in turn can yield theF2 structure func-
tion of the target. The latter can be written as

F2~x,Q2!5
Q2

4p2aEM
E d2rda

2p
Fg* →qq̄~r ,a!d2b N~r ,b,Y!,

~1!

with Fg* →qq̄(r ,a) the wave function of a virtual photon in

deep inelastic scattering~DIS! splitting into aqq̄ with trans-
verse separationr and the fraction of the photon’s longitudi-

nal momentum carried by the quarka. Fg* →qq̄(r ,a) is a
very well known function and can be found, for instance, in
@7,12,18#. The quantityN(r ,b,Y) has the meaning of the
forward scattering amplitude of a dipole with transverse size
r at impact parameterb with rapidity Y on a target proton or
nucleus normalized in such a way that the total cross section
for the process is given by

s tot
qq̄A52E d2b N~r ,b,Y!. ~2!

The evolution equation forN closes only in the large-Nc
limit of QCD @10,11# and reads@7,8#
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N~xI 01,bI ,Y!52g~xI 01,bI !expF2
4aCF

p
lnS x01

r DYG
1

aCF

p2 E
0

Y

dy expF2
4aCF

p
lnS x01

r D ~Y2y!G
3E

r
d2x2

x01
2

x02
2 x12

2 @2 N~xI 02,bI 1 1
2 xI 12,y!

2N~xI 02,bI 1 1
2 xI 12,y!N~xI 12,bI 1 1

2 xI 02,y!#,

~3!

with the initial condition set byg(xI 01,bI ), which is the
propagator of a dipole of sizexI 01 at impact parameterbI
through the target nucleus or hadron.g was taken to be of
Mueller-Glauber form in@7#:

g~xI 01,bI 0!5e2xI 01
2 Q0s

quark2/421, ~4!

where for a spherical nucleus@3,19,21#

xI 01
2 Q0s

quark25xI 01
2 4p2asAR22b2

Nc
r xG~x,1/xI 01

2 !, ~5!

with r5A/@(4/3)pR3# the density of the atomic numberA.
The gluon distribution in Eq.~5! should be taken at the two-
gluon order

xG~x,1/xI 2!5
asCF

p
ln

1

xI 2m2
, ~6!

with m some infrared cutoff. The scaleQ0s
quark2 has the

meaning of the quasiclassical quark saturation scale gener-
ated by multiple rescatterings prior to the inclusion of evo-
lution. Equations~1! and~3! provide us with theF2 structure
function and the total cross section of DIS on a nucleus in-
cluding all multiple BFKL Pomeron exchanges~fan dia-
grams!. In spite of several attempts to solve Eq.~3! analyti-
cally, which provided us with well-understood high and low
energy asymptotics forN @7,12,11#, the exact analytical so-
lution is still to be found. There exist several numerical so-
lutions to Eq.~3! demonstrating that at very high energies the
amplitudeN goes to a constant independent of energy (N
→1) thus unitarizing the total DIS cross sections
@12,13,16,17#. The numerical analyses also show that Eq.~3!
does generate a momentum scaleQs which rapidly increases
with energy. This scale justifies the small couplingas expan-
sion and helps avoid the problem of infrared instability of the
BFKL equation. An effort to calculate the next leading order
correction to Eq.~3! is currently under way@22#.

Several other observables can be calculated in the frame-
work of the saturation approach to hadronic and nuclear col-
lisions. Of the exclusive observables the diffractive~or, more
precisely, elastic! cross section has been calculated in the
quasiclassical limit in@23#. The evolution equation including
multiple Pomeron exchanges has recently been written for
the cross section of single diffractive dissociation in@24#.

In this paper we are interested in inclusive particle pro-
duction cross sections. In the saturation framework these
cross sections have been extensively studied at the classical
level in DIS and proton-nucleus (pA) and nucleus-nucleus
(AA) collisions. The inclusive gluon production cross sec-
tion for pA andAA in the weak classical field limit~lowest
order in perturbation theory without multiple rescatterings!
was calculated in@25#, reproducing the result of Gunion and
Bertsch@26#. In the strong field limit including all multiple
rescatterings but no QCD evolution the gluon production
cross section was calculated forpA in @19#. This result has
been recently reproduced in@27–29#. The inclusive gluon
production cross section for DIS was calculated in@21#, with
the resulting expression being slightly different from a
straightforward generalization of thepA result of @19#. Fi-
nally, an important problem for heavy ion physics is the cal-
culation of the inclusive gluon production cross section in
AA, which would provide us with the initial conditions for
the possible formation of a quark-gluon plasma. Numerical
estimates of the related gluon multiplicities were performed
in @30#, while an analytical ansatz was proposed in@31#.

The problem of inclusion of nonlinear evolution in the
inclusive cross sections has received much less attention in
the literature. The case of heavy flavor production in DIS
with nonlinear evolution has been solved in@32#. The inclu-
sive gluon production in DIS was studied in@33,34# using
the Abramovsky-Gribov-Kancheli~AGK! cutting rules@35#
andkT-factorization approach.

In this paper we calculate a single inclusive gluon produc-
tion cross section in DIS including the effects of multiple
rescatterings and nonlinear evolution of Eq.~3!. We begin in
Sec. II by reviewing the derivation of the formula for the
single inclusive gluon production cross section in the quasi-
classical approximation given in@21#. In the quasiclassical
approximation quantum evolution is not included since one
is interested in resummation of multiple rescatterings@5,19#.
Each multiple rescattering of the produced gluon on a
nucleon in the nucleus brings in a factor ofas

2A1/3 and the
quasiclassical approximation can be defined as resumming
powers of this parameter@5,18,19,31#. The result for the
gluon production cross section is shown in Eq.~12!.

We continue in Sec. III by including the effects of non-
linear dipole evolution from Eq.~3! in the expression for the
cross section. The philosophy of our approach is similar to
that of @7#. We first construct a classical Glauber-Mueller-
type expression for the inclusive cross section and then use it
as our starting point for including dipole evolution. We are
working in the rest frame of the target, which allows us to
consider the quantum evolution in energy as happening only
in the wave function of the incomingqq̄ pair @7,10#. In Sec.
III A we analyze the evolution preceding the emission of the
gluon that we measure in the final state. This evolution cor-
responds to emission of gluons with a larger~harder! light
cone component of momentum than the one carried by the
gluon that we trigger. We show that this early evolution can
only be linear~single Pomeron exchange! leading to creation
of the dipole in which our measured gluon is emitted. This
conclusion is in agreement with the prediction of AGK cut-
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ting rules for inclusive cross section@33–36#. In Sec. III B
we proceed by analyzing the emissions of gluons that are
softer than the measured one. We demonstrate that the effect
of these later emissions can be incorporated in the inclusive
cross section by replacing the Glauber-Mueller exponents in
Eq. ~12! with the evolved forward amplitudes of gluon~ad-
joint! dipole scattering on the target. The final expression for
the inclusive gluon production cross section in DIS is given
by Eq. ~30! in Sec. III C, which is the main result of this
paper.

We begin analyzing the cross section of Eq.~30! in Sec.
IV by observing that in the case of a very large nucleus
corresponding to zero momentum transfer in each of the ex-
changed Pomerons it can be rewritten in a factorized form as
a convolution of two functions with Lipatov’s effective ver-
tex inserted in the middle@see Eq.~39!#. In this form it
almost agrees with the expression derived by Braun in@34#
using the AGK rules and Pomeron fan diagram approach@see
Eq. ~10! in @34##. To obtain the expression given in@34# from
our Eq. ~39! one has to replace in it the evolved forward
amplitude of the adjoint dipole on the target nucleusNG by
the similar amplitude for the fundamental dipoleN. While
the difference seems minor in the weak field limit given by
the linear evolution equations, it becomes much more pro-
found in the transition to the saturation region where the
quantitiesNG andN obey different evolution equations while
approaching the same high energy asymptotics. In Sec. V we
study the transverse momentum spectrum and energy depen-
dence of the cross section obtained. We observe that while at
very largek' the cross section exhibits the usual 1/k'

4 behav-
ior, it softens to 1/k'

2 in the smallk';Qs region, like the
quasiclassical cross sections of@19,21#. The rapidity distri-
bution of the gluons produced may have a maximum whose
position is determined by the values of the produced gluon
momentumk' and photon virtualityQ ~see Fig. 7 below!.

We conclude in Sec. VI by discussing the general prin-
ciples of inclusion of nonlinear evolution in the cross sec-
tions for various inclusive processes. We present an ansatz
for the multiplicity distribution of the gluons produced in
nucleus-nucleus collisions (AA) including the effects of non-
linear evolution in both colliding nuclei.

II. INCLUSIVE CROSS SECTION IN THE
QUASICLASSICAL APPROXIMATION

In this section we will review the derivation of the single
inclusive gluon production cross section in DIS from@21# in
the quasiclassical approximation developed in@19#. The
gluon production cross section in DIS can be rewritten as

ds incl
g* A→qq̄GX

d2k dy
5

1

2p2E d2x01daFg* →qq̄~xI 01,a!

3
dŝ incl

qq̄A

d2k dy
~xI 01!, ~7!

wheredŝ incl
qq̄A/d2k dy(xI 01) is the gluon production cross sec-

tion for the scattering of a dipole of transverse sizexI 015xI 0

2xI 1 on the target. We want to calculate this observable in-
cluding all multiple rescatterings of theqq̄ pair and the pro-
duced gluon on the nucleons in the target nucleus. In the
quasiclassical approximation each rescattering happens via
one or two gluon exchanges with the nucleon@19#. We as-
sume that the initial quark-antiquark pair is moving in the
‘‘ 1 ’’ light cone direction. The diagrams contributing to the
gluon production cross section in theA150 light cone
gauge are shown in Fig. 1.

As in @19,21,27–29,31# the gluon emission can happen
via two possible scenarios: the incoming dipole may have the
gluon fluctuation in its wave function by the time it hits the
target or the gluon may be emitted after the dipole interacts
with the target. Even with all the multiple rescatterings the
interaction with the target is instantaneous compared to the
typical emission time of the gluon@19#. We thus may denote
the interaction timet[x150. If the gluon emission time in
the amplitude ist1 and in the complex conjugate amplitude
is t2 then the following classification of diagrams in Fig. 1 is
possible. The graph in Fig. 1A corresponds to the case when
t1,0 andt2,0, while the diagram in Fig. 1B reflects the
t1,0, t2.0 case. A ‘‘mirror image’’ diagram should be
added to Fig. 1B describing thet1.0, t2,0 case. The late
emissiont1.0, t2.0 scenario is represented in Fig. 1C.
The produced gluon line can start off either quark or anti-
quark lines both in the amplitude and in the complex conju-
gate amplitude in Fig. 1. We are going to sum over all pos-
sible emissions, while only one case is shown in Fig. 1.

To calculate the diagrams in Fig. 1 we will be working in
transverse coordinate space with the intent to perform a Fou-
rier transform into momentum space at the end. Thus the
produced gluon has different transverse coordinates in the
amplitude and in the complex conjugate amplitude (zI1 and
zI2). The dipole consists of the quark atxI 0 and an antiquark
at xI 1. Due to real-virtual cancellations only the diagrams
where the nucleons interact with the produced gluon survive
in Fig. 1A @19#. The square of the gluon’s propagator can be
easily calculated to give@19#

e2(zI12zI2)2Q0s
2 /4 ~8!

with

xI 2Q0s
2 5xI 2

8p2asNcAR22b2

Nc
221

r xG~x,1/uxI u2!. ~9!

The scaleQ0s
2 has the meaning of the gluon saturation scale

in the quasiclassical~no evolution! approximation and is dif-
ferent from the quark saturation scale of Eq.~5! by the Ca-
simir operator. In Fig. 1B only the interactions with the
gluon line and the antiquark are allowed. Performing the
calculation along the lines of Appendix A in@19# and adding
the ‘‘mirror’’ contribution one obtains

2e2(zI12xI 1)2Q0s
2 /42e2(zI22xI 0)2Q0s

2 /4. ~10!

The minus sign in Eq.~10! is due to the fact that the gluon is
emitted after the interaction on one side of the cut in Fig. 1B.
Finally, the interactions with the nucleons shown in Fig. 1C
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would have canceled if we were considering proton-nucleus
~or, more precisely, quark-nucleus! collisions as was done in
@19#. However, in the DIS case at hand the quark and anti-
quark originate from a virtual photon and thus have to be in
the color singlet initial state on both sides of the cut. This
condition was not imposed inpA @19,29# where the color of
the interacting quark was assumed to be randomized by the
nonperturbative ‘‘intrinsic’’ quarks and gluons in the proton’s
wave function@37#. Therefore, unlike thepA case, moving
an exchanged gluon line across the cut in DIS would modify
the color factor of the diagram and thus real-virtual cancel-
lation would not happen. A calculation of the interactions
gives

e2(xI 02xI 1)2Q0s
2 /4 ~11!

for the diagram in Fig. 1C.
To obtain the final answer we now have to combine the

terms from Eqs.~8!, ~10!, and~11! and multiply by the am-
plitude of the gluon’s emission in the original dipole while
keeping in mind that the amplitudes in Fig. 1 are slightly
different for different connections of the gluon to theqq̄ pair.
We then should Fourier transform the expression into mo-

mentum space. The final result for the single inclusive gluon
production cross section of dipole-nucleus scattering in the
quasiclassical approximation reads

dŝ incl
qq̄A

d2k dy
~xI 01!5

asCF

p2

1

~2p!2E d2bd2z1d2z2e2 ikI •(zI12zI2)

3 (
i , j 50

1

~21! i 1 j
zI12xI i

uzI12xI i u2
•

zI22xI j

uzI22xI j u2

3~e2(xI i2xI j )
2Q0s

2 /42e2(zI12xI j )
2Q0s

2 /4

2e2(zI22xI i )
2Q0s

2 /41e2(zI12zI2)2Q0s
2 /4! ~12!

where bI 5(xI 01xI 1)/2 is the dipole’s impact parameter. To-
gether Eqs.~7! and~12! give us the inclusive gluon produc-
tion cross section in DIS in the quasiclassical approximation
as derived in@21#.

III. INCLUSION OF EVOLUTION EFFECTS

We are now going to include quantum evolution in Eq.
~12!. We begin in Sec. III A by discussing the evolution pre-

FIG. 1. Gluon production in
DIS in the quasiclassical approxi-
mation. The produced gluon may
be emitted either off the quark or
off the antiquark lines both in the
amplitude and in the complex
conjugate amplitude. Only one
connection is shown.
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ceding the emission of the measured gluon, and continue in
Sec. III B by analyzing the subsequent evolution. The final
expression is derived in Sec. III C.

A. Emission of harder gluons

Let us explore how the emission of gluons with the light
cone ‘‘1 ’’ component of the momentum much larger than
that of the measured gluon modifies the inclusive cross sec-
tion. For simplicity we first consider emission of a single
extra gluon. The diagrams relevant for real emission of this
extra gluon are shown in Fig. 2. Since we are interested in
the large-Nc dipole evolution all gluons are represented by
double quark lines. Notation is explained in Fig. 2A. The
incoming original dipole of transverse sizexI 015xI 02xI 1
emits a~harder! gluon with transverse coordinatexI 2. Then
the measured gluon~3! is emitted in one of the color dipoles
formed by the emission of gluon 2. Since we are interested in
keeping this gluon’s transverse momentum fixed in the final
state its transverse coordinates are different on each side of
the cut (xI 3 and xI 38). Emission in the lower dipole only is
shown in Fig. 2. Emission in the upper dipole is completely
analogous and can be obtained from Fig. 2 by switching
gluons 2 and 3.

The gluon lines in Fig. 2 can connect to either quark or
antiquark lines in the dipoles off which they are emitted both
in the amplitude and in the complex conjugate amplitude.
This is shown in Fig. 2 by not connecting the gluon lines to
any of the quark lines specifically. For instance, the gluon 2
can be emitted off the quark line 0 and off the antiquark line
1, which is demonstrated by drawing gluon 2 directly be-
tween those quark lines. This notation is the same as the one
used in@9,24#. The interactions with the target are not shown
explicitly in Fig. 2. Instead we mark with a dashed vertical
line in Fig. 2 the moment in light cone timet50 when the
multiple rescatterings of Fig. 1 occur~see Fig. 2A!. Of
course the interactions may happen both in the amplitude and
in the complex conjugate amplitude. The solid vertical line in
Fig. 2 denotes the final state corresponding tot5`.

The measured gluon 3 is much softer than the gluon 2,
k31!k21 , while their transverse momenta are not ordered.
Thus the lifetime of the gluon 2 is much longer than that of
gluon 3. Therefore it seems natural that in all the diagrams
considered in Fig. 2 gluon 2 is emitted before gluon 3 on
both sides of the cut. However, the graphs in Fig. 2 do not
cover all the diagrams that need to be considered. There is
another set of diagrams, predominantly with the virtual emis-
sion of gluon 2, some of which are shown in Fig. 4 below,
that could be important for gluon production at this order. We
are going to first analyze the diagrams in Fig. 2, which will
allow us to understand which ones of the diagrams omitted
in Fig. 2 should be considered.

The transverse momentumkI and rapidityy of the mea-
sured gluon 3 are kept fixed, while the transverse momentum
and rapidity of the other emitted gluon are integrated over. In
the spirit of the leading logarithmic evolution, integration
over the rapidity of the gluon 2 is supposed to give us the
factor of ln 1/x with x the Bjorkenx variable, or, equiva-
lently, a factor of total rapidity intervalY. This factor makes

up for the suppression by the power of coupling constantas
that we have introduced by emitting that gluon. Now we are
going to demonstrate that this enhancement does not happen
in Figs. 2E–2I. That implies that the diagrams in Figs. 2E–2I
do not give a leading logarithmic contribution and can be
neglected as subleading.

Let us calculate the diagram in Fig. 3, which is one of the
graphs represented by Fig. 2E. The diagrams in Fig. 2 are
understood to be in the light cone perturbation theory
~LCPT! @38#, which was used in the original construction of
the QCD dipole model@8#. Therefore we will use the dia-
grammatic rules of LCPT in evaluating the graph Fig. 3. We
are working in the frame where the quarks in the original
dipole have large ‘‘1 ’’ components of their momenta while
the nucleons in the nucleus have large ‘‘2 ’’ momentum com-
ponents. Although only one rescattering is depicted in Fig. 3
our conclusions will be easy to generalize to include the
multiple Glauber rescatterings of Fig. 1. The intermediate
states are denoted by vertical dotted lines in Fig. 3. In esti-
mating the energy denominators of the intermediate states at
t.0 one should remember that the ‘‘2 ’’ component of the
nucleon’s momentum also changes. According to the rules of
LCPT the ‘‘2 ’’ component of the final state should be equal

FIG. 2. Emission of a harder gluon in the dipole evolution.
Gluons are denoted by double lines in the large-Nc limit. The pro-
duced gluon is marked by a cross.

FIG. 3. One of the diagrams contributing to the class of graphs
represented by Fig. 2E.
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to the ‘‘2 ’’ component of the initial~incoming! state@38#.
Thus one requires that for the diagram in Fig. 3 the following
condition should be satisfied:

p29 1
~kI 21 lI !2

2k21
1

kI 3
2

2k31
5p28 , ~13!

where we have used that for exchanged Coulomb gluons
l 250 @5,19#. Using Eq.~13! in evaluating, for instance, the
energy denominator of the rightmost intermediate state in
Fig. 3 yields@38#

1

p29 2p28
5

1

2~kI 21 lI !2/2k212kI 3
2/2k31

'
1

2kI 3
2/2k31

.

~14!

We have used the fact thatk31!k21 in the last approxima-
tion in Eq.~14!. The rule for calculating the diagrams in Fig.
2 can be formulated as follows: The energy denominators for
intermediate states witht.0 should consist of the sum of
the ‘‘2 ’’ momenta components of all the intermediate gluons
in the state minus the ‘‘2 ’’ momenta components of all the
gluons in the final state.~Note that according to the rules of
LCPT the ‘‘2 ’’ momenta components are not conserved at
the vertices and all intermediate lines are on the mass shell
@38#.!

Using the outlined strategy one can show that the contri-
bution of the diagram in Fig. 3 is proportional to

E
k31

p1

dk21 (
l2 ,l3

eI 2
l2
•kI 2eI 2

l2
•~kI 21 lI !~eI 3

l3
•kI 3!2

~kI 3
2!3kI 2

2k21
2

5E
k31

p1

dk21

kI 2•~kI 21 lI !

~kI 3
2!2kI 2

2k21
2

'
kI 2•~kI 21 lI !

~kI 3
2!2kI 2

2k31

;
1

k31
~15!

with p1 the large momentum of one of the quarks in the
original dipole (k31!p1). As can be seen from Eq.~15! the
diagram in Fig. 3 does not contain any logarithms of energy.
It should be compared to the contribution of, for instance, the
diagram in Fig. 2A, which is proportional to

A;E
k31

p1

dk21

1

k21k31
5

1

k31
ln

p1

k31
. ~16!

This diagram is enhanced by an extra logarithm of energy
~or, equivalently, an extra factor of rapidity! and should be
included in our leading logarithmic analysis. In the same
approximation the diagram in Fig. 3 is subleading since it
does not have a logarithm of energy in it. Similar calcula-
tions can be carried out for all the diagrams in Fig. 2E show-
ing that they are subleading and should be neglected. Finally,
the same conclusion will be reached if one analyzes all dia-
grams in Figs. 2E–2I: they do not bring in an extra logarithm
of energy and therefore must be neglected.

Here we would like to remind the reader about the ap-
proximation we are using. It is the same approximation as
outlined in@7# for calculation of the total DIS cross section.
The ~nonlinear! quantum evolution resums the powers of

asNcY and is a function of this parameter@8#. (Y is the
rapidity variable.! At the same time we are interested in re-
summing multiple rescatterings, which also bring in extra
powers ofas @5,19,31#. The multiple rescatterings are lim-
ited to two gluon exchanges with each nucleon. Thus the
actual parameter that is being resummed by multiple rescat-
terings is as

2A1/3 @5,19,31#. Therefore the combination of
leading logarithmic large-Nc evolution and Glauber-Mueller
multiple rescatterings resums all powers of bothasNcY and
as

2A1/3 in the cross sections. From this point of view the
diagrams in Figs. 2E–2I are suppressed by an extra power of
asNc , not enhanced by an extra power ofY.

We have proved that of all graphs in Fig. 2 only the dia-
grams in Figs. 2A–2D contribute. Based on this information
one may conjecture that the evolution preceding the emission
of the measured gluon consists of gluons emitted before in-
teraction both in the amplitude and in the complex conjugate
amplitude. To complete the proof of this statement we have
to consider a whole class of diagrams where the line of gluon
2 is shorter than or of the same length as the line of gluon 3.
These diagrams include virtual diagrams where gluon 2 is
not present in the final state. Many of these diagrams are also
subleading, similar to Figs. 2E–2I. This can be seen by per-
forming the analysis outlined above and using the rule pre-
sented in the Appendix of@9# for calculation of virtual con-
tributions. At the end we are left with the diagrams shown in
Fig. 4, each of which gives a leading logarithmic contribu-
tion. Not all of the diagrams in Fig. 4 are symmetric with
respect to horizontal~left-right! mirror reflections. Therefore
one should add mirror images to diagrams 4A–4D, 4F–4P
which will be denoted by primes~e.g. A8, B8, etc.!. We note
that due to momentum conservation the gluon 2 can be emit-
ted only off the quark lines 0 and 1 in the original dipole.
Therefore moving part or all of gluon 2 across the cut does
not change the transverse coordinate~and, therefore, trans-
verse momentum! structure of the diagrams. Using the can-
cellation of final state interactions demonstrated in@9# we
observe that in Fig. 4

B1C5B81C850, ~17a!

D1E1D850, ~17b!

H1I 5H81I 850, ~17c!

J1K5J81K850, ~17d!

L1M1N5L81M 81N850, ~17e!

P1Q1P850. ~17f!

We are left only with the diagrams A, F, G, O and their
mirror images A8, F8, G8, O8 in Fig. 4.

Combining the results of the analyses of the diagrams in
Figs. 2 and 4 we conclude that only the diagrams where
gluon 2 is either emitted or both emitted and absorbed before
the interaction att,0 survive. The nonvanishing diagrams
are graphs A–D in Fig. 2 and A, F, G, O, A8, F8, G8, O8 in
Fig. 4. One can easily check that these diagrams add up to
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give us one rung of the linear dipole~or, equivalently,
BFKL! evolution. The diagrams A–D in Fig. 2 provide us
with the real part of the dipole kernel, splitting the original
dipole 01 in two, in one of which we continue the evolution
by emitting the measured gluon 3. Diagrams A, F, G, O, A8,
F8, G8, O8 of Fig. 4 give us the virtual corrections to the
same process.

Now we are in a position to generalize our conclusions to
the case of many harder gluons in the virtual photon’s wave
function. The evolution preceding the emission of the mea-
sured gluon is the usual early-time dipole evolution leading
to creation at early times~before the interaction,t,0) of the
dipole in which the measured gluon is emitted. The effect of
this evolution is to modify the probability of finding this
dipole in the virtual photon’s wave function.

This preceding evolution can only be linear. This can be
understood by analyzing diagrams A–D in Fig. 2. Real emis-
sions in the dipole model may lead to branching of one di-
pole evolution into two simultaneous evolutions, thus being
equivalent to triple Pomeron vertices in the traditional lan-
guage@7,8,13,39#. For instance, in Figs. 2A–2D there could
in principle be some subsequent evolution in the dipole 02
leading to creation of many dipoles which would interact

with the target. The evolution may also lead to creation of
dipoles at late times (t.0). However, all these emissions
and interactions will not modify the momentum of the gluon
that we measure, since they happen in a different dipole iso-
lated from ours in the large-Nc limit. Therefore one can show
that all these interactions will cancel via real-virtual cancel-
lations: first one can show the cancellation of Coulomb gluon
exchanges similarly to some of the cancellations in Sec. II
and then the cancellation of evolution in dipole 02 follows
due to probability conservation~see@8,9#!. This can be done
for any graph where the evolution branches into two with the
emitted gluon being produced by one of the subsequent evo-
lutions. We therefore conclude that the early evolution is
linear. This conclusion is similar to what one would obtain
by applying AGK cutting rules to the process@33–36#. We
will return to this similarity in the next section.

To include the preceding evolution into the gluon produc-
tion cross section of Eq.~7! one should thus substitute

E d2x01daFg* →qq̄~xI 01,a!

→E d2rdaFg* →qq̄~rI ,a!d2

3Bn~rI ,xI 01,BI 2bI ,Y2y!
d2x01

2px01
2

, ~18!

wheren(rI ,xI 01,bI ,Y) is the number density of dipoles of size
x01 at impact parameterbI where the momentum fraction of
the softer of the two gluons involved in making up the dipole
is greater thane2Y. The quantityn(rI ,xI 01,bI ,y) was defined
in @8# and was shown to satisfy a linear evolution equation
equivalent to the BFKL method. The solution of that equa-
tion gives@8#

E d2Bn~rI ,xI 01,BI ,Y!5E dl

p i
eāsx(l)YS r

x01
D 2l

, ~19!

wherex(l) is the eigenvalue of the BFKL kernel@20# de-
fined as

x~l!52c~1!2c~12l!2c~l! ~20!

and

ās5
asNc

p
. ~21!

The integration in Eq.~19! runs along a straight line parallel
to the imaginary axis to the right of all the singularities of the
integrand. In Eq.~18! Y is the total rapidity interval of the
DIS process while the measured emitted gluon is located at
rapidity y.

B. Emission of softer gluons

In the previous subsection we showed how to include the
evolution of the harder gluons in the virtual photon’s wave
function. Here we will address the question of how to in-

FIG. 4. Another set of graphs contributing to emission of a
harder gluon in the dipole evolution.
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clude the evolution of gluons with the light cone component
of their momenta being softer than the measured one. For
instance, in Fig. 2 after being emitted the measured gluon
splits the dipole 02 into two off-forward dipoles. The dipoles
are off-forward because the transverse coordinate of the mea-
sured gluon is not the same in the amplitude and in the
complex conjugate amplitude. Nevertheless, there could still
be dipolelike evolution in each of these two dipoles. More
gluons with light cone components of their momenta much
smaller thank31 can be produced and these gluons can in-
teract with the target as well.

We claim that in order to include the effects of this quan-
tum evolution ~in the leading logarithmic approximation!
into Eq. ~12! one has to substitute

12e2xI 2Q0s
2 (bI )/4→NG~xI ,bI ,y! ~22!

for all the Glauber exponents in it. The quantityNG(xI ,bI ,y)
is the forward amplitude of agluon dipole scattering on the
target. This quantity is similar toN(xI ,bI ,y) except the initial
state forNG consists of a pair of gluons in the color singlet
state instead of a quark-antiquark pair. The normalization of
NG is analogous to Eq.~2!. In the large-Nc limit an adjoint
~gluon! dipole can be decomposed into two fundamental
~quark! dipoles. Therefore the scattering amplitude of a
single adjoint dipole on a target nucleus in the large-Nc ap-
proximation is equivalent to the scattering of two fundamen-
tal dipoles on the same target. One can thus conclude that

NG~xI ,bI ,y!52N~xI ,bI ,y!2N2~xI ,bI ,y!. ~23!

The evolution equation forNG(xI ,bI ,y) can be obtained by
inverting Eq.~23! to expressN in terms ofNG

N~xI ,bI ,y!512A12NG
2 ~xI ,bI ,y! ~24!

and by substituting Eq.~24! into Eq. ~3!.
One can see right away that without evolution (y50) Eq.

~22! turns into an equality~see, for instance,@3#!

NG~xI ,bI ,0!512e2xI 2Q0s
2 (bI )/4. ~25!

Our goal now is to prove that the substitution of Eq.~22!
does correctly incorporate the effects of subsequent evolu-
tion in the gluon production cross section. As we now know
the preceding quantum evolution happens only att,0 and
does not interfere with the subsequent one. As in to Sec. II
one should consider four different cases, corresponding to
different emission times of the measured gluon in the ampli-
tude (t1) and in the complex conjugate amplitude (t2). The
four cases are~1! t1,0,t2,0; ~2! t1,0,t2.0; ~3! t1
.0,t2,0; ~4! t1.0,t2.0.

Let us first consider case 1. In the quasiclassical case of
Eq. ~7! it gave us the exponent in Eq.~8!. According to Eq.
~22! we now have to prove that evolution replaces that ex-

ponent with 12NG„zI12zI2 , 1
2 (zI11zI2),y…. That means that

the gluons in the subsequent evolution connect only to the
emitted gluon line mimicking the scattering amplitude of a
gluon dipole of sizezI12zI2 on a nucleus.

To prove that the gluons in the subsequent evolution con-
nect only to the gluon line of the measured gluon let us again
consider a simple case when we add one more gluon emis-
sion to the quasiclassical diagrams of Fig. 1. Different from
the previous subsection, here the extra gluon’s light cone
momentum should be much softer than the measured gluon’s
one. To prove the cancellation of all the diagrams where the
extra soft gluon interacts with the quark lines it is sufficient
to consider the graphs presented in Fig. 5. There after emit-
ting the measured gluon 3 we include an extra emission of a
softer gluon 2 (k21!k31). All the other relevant diagrams
could be obtained by vertical and horizontal reflections of the
graphs in Fig. 5. In Fig. 5 we kept only the diagrams where
the emission of gluon 2 is enhanced by a logarithm of en-
ergy, leaving out all the subleading ones, as was done in
obtaining Fig. 4. The diagrams where the soft gluon~2! is
both emitted and absorbed by quark lines are easily canceled
by real-virtual cancellations@8,9,24# and need not be consid-
ered in much detail. In the diagrams A and F in Fig. 5 we
imply summation over both possible time orderings of gluon
2. As in Fig. 2 the interaction with the target is not shown
explicitly and is denoted by dashed vertical lines.

Let us consider diagrams A and D in Fig. 5. Emissions of
gluons 2 and 3 bring in the same transverse coordinate de-
pendence in all graphs in Fig. 5. The only possible difference
between 5A and 5D would be in the interactions with the
target. In diagram 5A the Coulomb gluons can be exchanged
only between gluon 3 and the target, while it appears that in
diagram 5D the target could interact with gluon 2 as well.
~Interactions of the target with the quark and antiquark lines
cancel via real-virtual cancellations similar to those in Fig.
2A.! However, since the transverse momentum of gluon 2 is
being integrated over the transverse coordinates of that gluon
are equal on both sides of the cut. In that way the Coulomb
exchanges between the target and this gluon also cancel
through real-virtual cancellations. Therefore both graphs 5A
and 5D include the same interactions with the target giving
identical absolute contributions to the cross section. The only
difference is that in graph 5D the gluon 2 is a real gluon
while in graph 5A the gluon 2 is purely virtual and is emitted
and absorbed att,0. Thus the contribution of the diagram
in Fig. 5A comes with a negative sign with respect to the
diagram in Fig. 5D. Therefore they cancel each other:

A1D50. ~26!

In considering diagrams B and C in Fig. 5 we note that the
interactions with the target are manifestly the same in both of
them. The only difference between graphs 5B and 5C is that
the gluon has been moved across the cut in 5C. Using the
cancellation of final state interaction rules outlined in@9# we
argue that these two diagrams cancel each other:

B1C50. ~27!

Similarly, one can show that

F1G50. ~28!
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Finally, a simple analysis can show that in graphs E and H in
Fig. 5 the interactions with the target involve only gluons
and are identical. In both cases the interactions are equivalent
to scattering of a dipole 32 and a dipole 382 on the target.
Thus the diagrams 5E and 5H give the same absolute contri-
butions. However, their signs are different since 5E is virtual
while 5H is real. Therefore they also cancel:

E1H50. ~29!

We have proved that only interactions with the gluon 3 sur-
vive in the symmetric case 1. The result can be easily gen-
eralized to any number of softer gluons.

Lastly we have to show that the softer gluons that connect
to 3 and 38 add up to give the scattering amplitude of the
gluon dipole 338 on the target nucleusNG(3238). To prove
this one has to carefully analyze the diagrams with one extra
gluon, similar to Fig. 5 but with the gluon 2 connecting only
to gluon 3 (38), and then generalize the result to any num-
ber of soft gluons. This is what has been checked by the
authors. Alternatively, we can use the duality property of the
amplitude which was used in@40#. We may just argue that
the amplitude will remain the same if we mirror-reflect the
gluon 38 in the complex conjugate amplitude into the ampli-
tude. Then the gluon production graph will become mani-
festly equivalent to the scattering of a 338 dipole on the
nucleus, justifying the substitution of Eq.~22! in case 1 as
desired.

The proofs of the substitution of Eq.~22! for cases 2, 3,
and 4 are analogous to the one outlined above. In cases 2 and
3 one first has to show that emission of a softer gluon is only
possible off the gluon and the quark involved in the appro-
priate exponents in Eq.~10!. That means all interactions with
one of the quarks should cancel. Which one of the quarks

becomes the ‘‘spectator’’ depends on the way the gluon 3
was emitted in the amplitude and in the complex conjugate
amplitude, as in Sec. II. After that by moving~reflecting! the
remaining~interacting! quark across the cut one can show
that, since in the large-Nc limit two quarks with the same
coordinates are identical to a gluon, the interaction is identi-
cal to a scattering of an adjoint dipole on the target. The
adjoint dipole would be composed of the gluon 3 and the
interacting quark, thus justifying the substitution of Eq.~22!.
In case 4 we explicitly have two fundamental dipoles 01 on
both sides of the cut developing the evolution and interacting
with the target. Using Eq.~23! we can once again prove the
substitution of Eq.~22!.

C. Expression for the inclusive cross section

Now that we have described above the effects of evolu-
tion on the quasiclassical expression for the inclusive gluon
production cross section we can combine the results to write
down the answer including all evolution effects. The evolu-
tion preceding the emission of the measured gluon can be
included by the substitution shown in Eq.~18!. The evolution
is linear, similar to what one would obtain from AGK cutting
rules @33–36#. This is not the first time AGK cutting rules
have been shown to work for an observable in dipole evolu-
tion. They were also satisfied by the equation for the diffrac-
tive structure function found in@24#.

The evolution following the emission of the measured
gluon is nonlinear and can be included by making the sub-
stitution of Eq.~22!. It is quite surprising that a complicated
evolution effect can be incorporated by such a rather com-
pact rule.

Combining Eqs.~7! and ~12! with the prescriptions of
Eqs.~18! and ~22!, we obtain

dsg* A→qq̄GX

d2k dy
5

1

2p2E d2rdaFg* →qq̄~rI ,a!d2B n~rI ,xI 01,BI 2bI ,Y2y!
d2x01

2px01
2

asCF

p2

1

~2p!2
d2bd2z1d2z2e2 ikI •(zI12zI2)

3 (
i , j 50

1

~21! i 1 j
zI12xI i

uzI12xI i u2
•

zI22xI j

uzI22xI j u2
FNGS zI12xI j ,

1

2
~zI11xI j !,yD1NGS zI22xI i ,

1

2
~zI21xI i !,yD

2NGS zI12zI2 ,
1

2
~zI11zI2!,yD2NGS xI i2xI j ,

1

2
~xI i1xI j !,yD G , ~30!

FIG. 5. Diagrams including
one softer gluon produced after
the emission of the measured
gluon.
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where the produced measured gluon has rapidityy, the total
rapidity interval isY, and

bI 5
1

2
~xI 01xI 1!. ~31!

Equation~30! gives us the single inclusive gluon production
cross section in DIS on a hadron or nucleus including the
effects of nonlinear leading logarithmic evolution and mul-
tiple rescatterings. This is the main result of the paper.

IV. FACTORIZED FORM OF THE INCLUSIVE CROSS
SECTION

We now continue by analyzing Eq.~30! in the limit of a
very large target nucleus. In that case the momentum transfer
to the nucleus is cut off by the inverse nuclear radius and is
very small. We can therefore take the scattering amplitudes
NG in Eq. ~30! at t50, which in coordinate space is equiva-
lent to neglecting the shifts in impact parameter dependence,
which are small compared to the nuclear radius. As in@7,12#
we assume that

NG~xI ,bI 6yI /2,Y!'NG~xI ,bI ,Y!, ~32!

whereyI represents any of the impact parameter shifts in Eq.
~30!. Integrating overzI1 or zI2 depending on the argument of
NG in the term involved, we reduce Eq.~30! to

dsg* A→qq̄GX

d2k dy
5

1

2p2E d2rdaFg* →qq̄~rI ,a!

3d2Bn~rI ,xI 01,BI 2bI ,Y2y!

3
d2x01

2px01
2

asCF

p2

1

2p (
i , j 50

1

~21! i 1 j

3E d2ze2 ikI •zIF2i
kI

kI 2
•

zI2xI i j

uzI2xI i j u2
2

ln
1

uzI2xI i j uL
22p

1

kI 2
d2~zI2xI i j !G

3E d2bNG~zI ,bI ,y! ~33!

with xI i j 5xI i2xI j andL some infrared cutoff put in to regu-
late the integrals@8#. Performing summation overi and j,
employing Eq.~19!, and integrating overx01 we obtain

dsg* A→qq̄GX

d2k dy
5

1

2p2E d2rdaFg* →qq̄~rI ,a!

3E dl

p i
eāsx(l)(Y2y)S r

zD 2l
asCF

p2

1

2p
d2z

3e2 ikI •zIF2i

l

kI

kI 2
•

zI

zI2
2

1

2l2
1

1

kI 2

2

zI2G
3E d2bNG~zI ,bI ,y!. ~34!

Equation~34! can be rewritten as

dsg* A→qq̄GX

d2k dy
5

1

2p2E d2rdaFg* →qq̄~rI ,a!
asCF

p2

3
1

2p

1

2kI 2E d2zNG~zI ,y!

3¹z
2Fe2 ikI •zIE dl

p i
eāsx(l)(Y2y)S r

zD 2l
1

l2G
~35!

with

NG~zI ,y!5E d2bNG~zI ,bI ,y!. ~36!

Integrating by parts yields

dsg* A→qq̄GX

d2k dy
5

1

2p2E d2rdaFg* →qq̄~rI ,a!
asCF

p2

3
1

2p

2

kI 2E d2ze2 ikI •zI@¹z
2NG~zI ,y!#

3
1

¹z
2 S 1

zI2
d2Bn~rI ,zI ,BI ,Y2y!D . ~37!

Equation ~37! can be rewritten with the help of Lipatov’s
effective vertex@20,34#

L̂k~zI !5
4asNc

kI 2
¹Q z

2e2 ikI •zI¹W z
2 ~38!

as
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dsg* A→qq̄GX

d2k dy
5

1

p~2p!4E d2rdaFg* →qq̄~rI ,a!

3E d2zNG~zI ,y!L̂k~zI !
1

¹z
4

3S 1

zI2
d2Bn~rI ,zI ,BI ,Y2y!D . ~39!

Equation ~39! presents our cross section in some sort of
kT-factorized form, similar to the inclusive cross sections
derived in@33#. It is almost identical with Eq.~14! in @34#,
which was obtained by applying AGK rules to BFKL
Pomeron fan diagrams in the DIS case. The only difference
between our Eq.~39! and Eq.~14! in @34# is that the latter
usesN(zI ,bI ,y) @the function F(y,r ,b) in the notation of
@34## instead of ourNG(zI ,bI ,y). That is, in order to obtain
Eq. ~14! of @34# from our Eq.~39! one has to substituteNG
by N. In the weak field limit when the evolution is linear
both N and NG obey the same BFKL evolution equation,
although with different initial conditions given by Eqs.~4!
and ~25!, respectively. In the saturation region the evolution
equations for the two quantities in question become different.
N(zI ,bI ,y) obeys Eq.~3!, while the equation forNG(zI ,bI ,y)
can be obtained by substituting Eq.~24! into Eq. ~3!. The
resulting equation involves square roots and is quite different
from Eq. ~3!. However, the high energy asymptotics of the
two objects is still the same: bothN(zI ,bI ,y) andNG(zI ,bI ,y)
asymptotically approach 1 at high energies, wheny→`.

The form of the cross section in Eq.~39! suggests that in
a certain gauge or in some gauge invariant way it could be
written in a factorized form involving two unintegrated
gluon distributions merged by an effective Lipatov vertex.
The usual form of the factorized inclusive cross section is
@25#

ds

d2k dy
5

2as

CFkI 2E d2q
f 1~j1 ,qI 2! f 2~j2 ,ukI 2qI u2!

qI 2~kI 2qI !2
~40!

with j1 and j2 the values of the Bjorkenx variable for the
gluons in each of the colliding particles.f 1(j1 ,qI 2) and
f 2(j2 ,ukI 2qI u2) are the unintegrated gluon distributions

f i~j i ,qI 2!5
dxGi~j i ,qI 2!

d ln qI 2
. ~41!

Equation~40! can be written in coordinate space as

ds

d2k dy
5

2p2

NcCF
E d2zf1~j1 ,zI !L̂k~zI !f2~j2 ,zI ! ~42!

with

f i~j i ,zI !5E d2q

~2p!2
eizI•qI

f i~j i ,qI 2!

qI 4
. ~43!

Comparing Eq.~42! with the gluon production cross section
in dipole-nucleus scattering which follows from Eq.~39!,

dsqq̄A→qq̄GX

d2k dy
5

1

~2p!3E d2zNG~zI ,y!L̂k~zI !

3
1

¹z
4 S 1

zI2
d2Bn~rI ,zI ,BI ,Y2y!D , ~44!

and assuming that the latter was generated through the same
factorization mechanism, we identify

NG~zI ,y5 ln 1/j!⇔ ~2p!4as

Nc
f~j,zI !. ~45!

Employing Eqs.~41! and ~43! we may rewrite Eq.~45! as

¹z
2NG~zI ,y5 ln 1/j!5

~2p!2as

Nc
E d2qeizI•qI

dxG~j,qI 2!

dqI 2
,

~46!

which corresponds to the definition of gluon distribution
used in @13,34#. However Eq.~46! is not satisfied in the
quasiclassical limit of no evolution. ThereNG(zI ,0) is given
by Eq. ~25! integrated over the impact parameter

NG~zI ,y50!5S'~12e2zI2Q0s
2 /4!, ~47!

while the gluon distribution including all multiple rescatter-
ings has been calculated in@19# to give

E d2qeizI•qI
dxGcl~j,qI 2!

dqI 2
5

2

pE d2b Tr^AI WW~0I !•AI WW~zI !&

5
2S'CF

p2aszI
2
~12e2zI2Q0s

2 /4!, ~48!

whereAI WW(zI ) is the non-Abelian Weisza¨cker-Williams field
of the nucleus@5# and we assumed that the nucleus is cylin-
drical with the cross sectional areaS'5pR2. Expanding
both Eq.~47! and Eq.~48! to the lowest order inQ0s

2 corre-
sponding to two-gluon exchange we can see that Eq.~46! can
be easily satisfied. However, the full Eqs.~47! and~48! when
inserted into Eq.~46! do not satisfy it. Therefore Eq.~46!
seems to work for the leading twist-two gluon exchange ap-
proximation but appears to fail once we include multiple
rescatterings in it.

The failure of Eq.~46! in the quasiclassical limit makes
the physical meaning of factorization of Eq.~44! quite ob-
scure. The factorized form of Eq.~44! implies convolution of
two unintegrated gluon distributions with a Lipatov vertex as
shown in Eq.~40!. It appears, however, that we cannot iden-
tify one of the convoluted functions (NG) with the uninte-
grated gluon distribution, in disagreement with the factoriza-
tion hypothesis of Eq.~40!. This observation by itself would
be quite natural, indicating that higher twists in the form of
multiple rescatterings modify the relationship betweenNG
and the unintegrated gluon distribution. On the other hand,
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the fact thatkT factorization is still preserved seems some-
what unexpected. The reason we are able to write down the
inclusive cross section of Eq.~30! in the factorized form of
Eq. ~39! needs to be better clarified, which will be done
elsewhere.

V. PROPERTIES OF THE INCLUSIVE CROSS SECTION

It was shown in@12# that asymptotic solutions to the non-
linear evolution equation bear most of the quantitative fea-
tures of the general one and are very convenient for discus-
sion of various high energy processes. To study the
asymptotic behavior of inclusive gluon production it is con-
venient to integrate over the directions of the vectorz in Eq.
~34! and use the Fourier transform of the gluon scattering
amplitudeÑG( l ,y) defined as

NG~zI ,y!5zI2E
0

`

dl l J0~ lz!ÑG~ l ,y! ~49!

with l 5u lIu, obtaining

dsg* A→qq̄GX

d2k dy
5

1

2p2E d2rdaFg* →qq̄~rI ,a!

3E dl

2p i
eāsx(l)(Y2y)

asCF

p2 E
0

`dz

z S r

zD
2l z2

k2

3E
0

`

dl l J0~ lz!ÑG~ l ,y!

3F2kz

l
J1~kz!2

k2z2

2l2
J0~kz!12J0~kz!G .

~50!
There are four interesting asymptotic regions of Eq.~50!.

They are shown in Fig. 6. In the first and second regions the
produced gluon momentumk is the largest external momen-
tum scale of the process. The first region in Fig. 6 corre-
sponds to the cases whenk@Qs(y)@Q andk@Q@Qs(y),
while in the second regionQs(y)@k@Q and Qs(y)@Q

@k. We can find the asymptotic behavior of the inclusive
cross section by expanding the functionx(l) near its simple
pole atl50 and evaluating the Mellin transform inl in the
saddle point approximation. This corresponds to the double
logarithmic approximation to the evolution equation, which
means summation ofan lnn k(Y2y)n;1 terms. The third and
fourth regions in Fig. 6 depict the cases whenQ@k
@Qs(y) and Q@Qs(y)@k, respectively. In the third and
fourth regions the asymptotic behavior of the inclusive cross
section can be found by repeating this procedure near the
simple pole ofx(l) at l51, which again corresponds to
summation of an lnn k(Y2y)n;1 terms. These are two
asymptotic double logarithmic regions relevant to the linear
evolution before the gluon is emitted. Generally, after its
emission the evolution is nonlinear. So there is a kinematical
domain where the parton density is large~regions 2 and 4 in
Fig. 6!. In this domain a color dipole evolves into two di-
poles, one of which is of the size 1/Qs(y). There is also a
kinematical domain where the parton density is small~re-
gions 1 and 3! and the evolution is still linear.

Integration overz in Eq. ~50! yields a combination of
generalized hypergeometric functions which can be ex-
panded nearl50 andl51 to give

E
0

`dz

z S r

zD
2l

z2J0~ lz!F2kz

l
J1~kz!2

k2z2

2l2
J0~kz!12J0~kz!G

5

¦

4~kr !2l

k2l
, l→0, k@ l ,

4k2~ lr !2l

l 4l
, l→0, k! l ,

~kr !2l

k2~12l!
, l→1, k@ l ,

~ lr !2l

l 2~12l!
, l→1, k! l .

~51!

Each of the limits in Eq.~51! corresponds to the appropriate
region in Fig. 6. It is now straightforward to evaluate the
Mellin transform in the saddle point approximation, which
corresponds to the double logarithmic approximation of the
scattering amplitude. Using Eq.~51! in Eq. ~50! we obtain in
the region withk@ l andl50

dsg* A→qq̄GX

d2k dy
5

8

~2p!3

ās

p

Ap

kI 4 E d2r daFg* →qq̄~rI ,a!

3
e2Aās(Y2y)ln(k2r 2)

@ās ln~k2r 2!~Y2y!#1/4E0

k

dl l ÑG~ l ,y!.

~52!

We used the well-known expansionx(l)5l211O(l). The
scattering amplitudeNG( l ,y) must be normalized to give the

FIG. 6. Various asymptotic kinematical regions discussed in the
text. Solid line is the saturation scaleQs(y). Bold lines are the
boundaries of different regions.
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correct Fourier transformed initial condition Eq.~47!. We
have~neglecting the logarithmic dependence ofQs on l )

ÑG~ l ,0!5
Q0

2

l 2 E dl

2p i S l

Q0
D 2l

222l21

3S Q0

Q0s
D 2l22 G~12l!

12l

5
1

2
GS 0,

l 2

Qs
2D , ~53!

where G(0,z) is the incomplete gamma function of zeroth
order. In region 1, wherel @Qs , evolution is linear and the
scattering amplitude is small. In the linear region

NG~ l ,y!5
Q0s

2 pR2

2l 2 E dn

2p i S l

Q0
D 2n

e(ās /n)y

5
Q0s

2 pR2

2p l 2

Apās
1/4y1/4

ln3/4~ l 2/Q0
2!

e2Aāsy ln( l 2/Q0
2),

ln~ l /Q0!@āsy, ~54!

where we expandedx(n) near n50 and assumed the
nucleus to be a cylinder with the cross sectional areaS'

5pR2. Q0 is the initial scale for linear evolution. Equation
~54! gives the gluon scattering amplitude in the double loga-
rithmic approximation with the expansion parameter
āsy ln(l/Q0);1. Upon substitution of Eq.~54! into Eq. ~52!
and integration overl one arrives at the asymptotic expres-
sion for the inclusive cross section in the region 1:

dsg* A→qq̄GX

d2k dy
U

region 1

5
pR2

~2p!4

āsQ0s
2

2kI 4 E d2rdaFg* →qq̄~rI ,a!

3
e2Aās(Y2y)ln(k2r 2)12Aāsy ln(k2/Q0s

2 )

ās
1/2@y~Y2y!#1/4~ ln k2/Q0s

2 !1/4ln1/4~k2r 2!
. ~55!

In region 2 with l !Qs saturation sets in and the total
scattering amplitudeN(xI ,y) is close to unity. Thus, using
Eq. ~23! we conclude thatNG(xI ,y) is close to unity as well.
In the momentum representation this is equivalent to the fol-
lowing asymptotic behavior in the saturation regime@12#:

ÑG~ l ,y!5 ln~Qs~y!/ l !, l !Qs~y!. ~56!

Using Eq.~56! together with the second line of Eq.~51! in
Eq. ~52! yields

dsg* A→qq̄GX

d2k dy
U

region 2

5
16pR2

~2p!4
Ap

ās

kI 2
ln

Qs
2~y!

k2

3E d2r daFg* →qq̄~rI ,a!

3
e2Aās(Y2y)ln(k2r 2)

@ās~Y2y!ln~k2r 2!#1/4
. ~57!

Consider now thel51 pole of functionx(l) in Eq. ~50!.
In the vicinity of this point x(l)5(12l)211O(12l).
Substituting the third line of Eq.~51! into Eq. ~51! and re-
peating the above procedure we end up with the following
asymptotics in the third kinematical region. In region 3 (Q
@k@Qs)

dsg* A→qq̄GX

d2k dy
U

region 3

5
pR2

~2p!4

āsQ0s
2

kI 2 E d2r daFg* →qq̄~rI ,a!r 2

3
e2Aās(Y2y)ln(1/k2r 2)12Aāsy ln(k2/Q0s

2 )

ās
1/2@y~Y2y!#1/4@ ln~k2/Q0s

2 !ln~1/k2r 2!#1/4
. ~58!

Inserting the last line of Eq.~51! into Eq.~50! and using Eq.
~56! together with the expression forNG generated by linear
evolution gives for region 4 (k!Qs!Q)

dsg* A→qq̄GX

d2k dy
U

region 4

5
4pR2

~2p!4

āsQs
2~y!

kI 2
ApE d2r daFg* →qq̄~rI ,a!r 2

3
e2Aās(Y2y)ln(1/Qs

2(y)r 2)

$ās~Y2y!ln@1/Qs
2~y!r 2#%1/4

, ~59!

where the integration overl has been done with logarithmic
accuracy.

Note that the spectrum of the gluons produced falls off as
;k24 in region 1, which is a well-known result of perturba-
tion theory. One factor ofk22 arises from Lipatov’s effective
vertex, while another one is given by the perturbative behav-
ior of the scattering amplitude¹2NG which scales as;k22

at largek' . When the typical momentuml of the late evo-
lution is less than the saturation scaleQs(y), the anomalous
dimension of the gluon structure function is close to unity.
Thus the scattering amplitude depends only logarithmically
on momentum. As a result, in region 2 the gluon spectrum
softens tok22 behavior. In region 3 the late evolution is
linear as in region 1. However, an additional factor ofk2

stems from different double logarithmic asymptotics atl
51. It is remarkable that, unlike in regions 1 and 2, the
spectrum in region 4 drops in the same manner as in region
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3 despite the fact that the late evolution is nonlinear. This
happens because the typical value ofl in the rightmost inte-
gral in Eq. ~52! is l;Qs . Due to this fact Eq.~59! is en-
hanced by a factor ofQs

2 rather thank2. Of course, one
cannot expect that the spectrum will depend on the produced
gluon’s momentum only logarithmically in the presence of a
hard projectile~virtual photon! whose wave function has not
reached saturation yet.

The derived asymptotic formulas Eq.~55!, Eq. ~57!, Eq.
~58!, and Eq.~59! make it possible to understand some im-
portant features of the spectrum energy dependence. Equat-
ing they derivative of the expression in the exponent of Eq.
~55! @or Eq.~58!# to zero, one finds the position of the inclu-
sive spectrum maximumy0 at some fixedk in the double
logarithmic approximation in which the preexponential fac-
tor is a slowly varying function. It reads

y05Y
1

16 ln2~kr !/ ln2~k/Q0s!
k@Q,Q0s

————→

1

2
Y, ~60!

where1 and2 correspond to regions 1 and 3. By analogy
we find that in region 2 the spectrum is a monotonically
decreasing function ofy and exhibits no maximum. In region
4 the spectrum also has no maximum iny. The following
equation defines a surface in the space of parameters where
the spectrum is constant:

S 4āsY1 ln2
1

Qs
2~0!r 2D 2

516āsY ln
1

Qs
2~0!r 2

. ~61!

Although Eq.~61! is beyond the validity of the double loga-
rithmic approximation employed in this section, it shows the
general features of the spectrumy dependence in region 4;
namely, whenQ;Qs the spectrum is a steplike function. In

Fig. 7 we show a qualitative picture of the energy behavior
of the inclusive cross section given by Eq.~30! in the differ-
ent kinematical regions.

Note that all four plots in Fig. 7 show different qualitative
behavior of the inclusive cross section as the rapidity varies.
By plotting the experimental data on the energy dependence
of the spectrum one can distinguish between different kine-
matical regions, which may be useful for evaluation of the
saturation scale. However, we realize that our calculations in
the asymptotic regions presented in this section are approxi-
mate and an exact numerical analysis of the cross section in
Eq. ~39! has to be performed to enable us to describe the data
with it.

VI. CONCLUSIONS

We have constructed an expression for the single inclu-
sive gluon production cross section in DIS@Eq. ~30!# includ-
ing multiple Pomeron exchanges in the form of nonlinear
evolution @Eq. ~3!#. The cross section may be used to de-
scribe ~mini!jet production in DIS. For the case of a large
target nucleus the resulting production cross section can be
written in thekT-factorized form of Eq.~39!. The transverse
momentum spectrum given by the cross section of Eq.~30!
reproduces the usual perturbative behavior;1/kI 4 in the
large-k' limit @see Eqs.~55! and ~57!#. In the small trans-
verse momentum region the spectrum softens to;1/kI 2 @see
Eqs. ~58! and ~59!#. The cross section still exhibits some
residual infrared divergence. This is due to the fact that we
are scattering a pointlike probe~virtual photon! on the target.
The target nucleus wave function has reached saturation and
this is why thek' dependence softens in the infrared. How-
ever, for the cross section to be infrared safe~up to loga-
rithms!, as in@31#, we need the wave functions of both col-
liding particles to reach saturation. In@31# that was reached
for the case of nucleus-nucleus scattering where both nuclear
wave functions were in the saturation region. In our case the
wave function of the quark-antiquark pair has not reached
saturation yet. The onset of saturation in theg* wave func-
tion would again be due to multiple Pomeron exchanges.
Unlike the case of a nucleus with nucleons there are no extra
nonperturbative color charges in the original incomingg*
wave function to facilitate saturation. All the color charges
have to be generated perturbatively. Therefore the multiple
Pomeron exchanges in theg* wave function take the form of
Pomeron loops@8,39#. Summation of Pomeron loops is a
separate problem and is beyond the scope of this paper. The
effects of Pomeron loops can be safely neglected in the en-
ergy range considered here.

The result of Eq.~30! can be generalized to the case of
proton-nucleus scattering (pA). If one models the proton as
a dipole made out of a diquark and a quark the inclusive
gluon production cross section can be obtained by appropri-
ately modifying the linear evolution term@Eq. ~18!# and
changing theg* wave function into the proton wave func-
tion. In the more generic case of a proton consisting ofNc
valence quarks, the generalization is probably somewhat
more involved, although the preceding evolution still re-

FIG. 7. Qualitative energy dependence of the inclusive gluon
production cross section. All lines are scaled by different numerical
factors to underline important features of the spectrum. In all plots
we show the curves for two different values ofk and/or Q (k1

,k2 , Q1,Q2).
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mains linear and the gluon production mechanism is not
modified.

We have shown that the evolution in the nuclear wave
function ~at least in the large-Nc limit ! can be included via a
simple substitution of the Glauber-Mueller amplitude by the

dipole-evolved amplitude as presented in Eq.~22!. We may
therefore try to apply this principle to nucleus-nucleus colli-
sions (AA). In @31# it was argued that the multiplicity of
produced gluons in a central nuclear collision is likely to be
given by the following formula:

dNcl
AA

d2kd2bdy
5

2CF

asp
2 H 2E d2z

~2p!2
eikI •zI

1

zI2
~12e2zI2Q0s1

2 (b)/4!~12e2zI2Q0s2
2 (b)/4!

1E d2x d2y

~2p!3
eikI •(xI 2yI )

xI

xI 2
•

yI

yI 2 F 1

xI 2 ln~1/uxI um!
~12e2xI 2Q0s1

2 (b)/4!~12e2xI 2Q0s2
2 (b)/4!1

1

yI 2 ln~1/uyI um!

3~12e2yI 2Q0s1
2 (b)/4!~12e2yI 2Q0s2

2 (b)/4!G J . ~62!

Q0s1
2 (b) andQ0s2

2 (b) are the saturation scales in each of the nuclei taken at the same impact parameter since the collisions
considered are central. Inspired by the success of the substitution~22! in incorporating the quantum evolution corrections in
DIS, we may conjecture the following ansatz for the multiplicity distribution of the gluons produced inAA including nonlinear
evolution in the wave functions of both nuclei:

dNAA

d2kd2bdy
5

2CF

asp
2 H 2E d2z

~2p!2
eikI •zI

1

zI2
NG1~zI ,bI ,y!NG2~zI ,bI ,Y2y!1E d2x d2y

~2p!3
eikI •(xI 2yI )

xI

xI 2
•

yI

yI 2

3F 1

xI 2 ln~1/uxI um!
NG1~xI ,bI ,y!NG2~xI ,bI ,Y2y!1

1

yI 2 ln~1/uyI um!
NG1~yI ,bI ,y!NG2~yI ,bI ,Y2y!G J , ~63!

whereY is the total rapidity interval andNG1 and NG2 are
adjoint dipole forward scattering amplitudes in the first and
second nucleus, respectively. At the moment we cannot
prove Eq. ~63! and leave it as an ansatz inspired by the
properties of the inclusive cross sections in the saturation
region studied above. We may argue that the final state gluon
mergers that are not included in Eq.~62! are not likely to
give logarithms of energy and therefore should not contribute
to the quantum evolution. They might be neglected com-
pared to the evolution effects included in Eq.~63!. Equation
~63!, together with Eq.~3!, may be used to describe the
emerging BNL Relativistic Heavy Ion Collider~RHIC! data
as was done in@41#.
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