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Predicting evaporation is essential for managing water resources in basins. Improvement
of the prediction accuracy is essential to identify adequate inputs on evaporation. In this
study, artificial neural network (ANN) is coupled with several evolutionary algorithms,
i.e., capuchin search algorithm (CSA), firefly algorithm (FFA), sine cosine algorithm (SCA),
and genetic algorithm (GA) for robust training to predict daily evaporation of seven synoptic
stations with different climates. The inclusive multiple model (IMM) is then used to predict
evaporation based on established hybrid ANNmodels. The adjusting model parameters of
the current study is a major challenge. Also, another challenge is the selection of the best
inputs to the models. The IMM model had significantly improved the root mean square
error (RMSE) and Nash Sutcliffe efficiency (NSE) values of all the proposed models. The
results for all stations indicated that the IMM model and ANN-CSA could outperform other
models. The RMSE of the IMM was 18, 21, 22, 30, and 43% lower than those of the ANN-
CSA, ANN-SCA, ANN-FFA, ANN-GA, and ANNmodels in the Sharekord station. The MAE
of the IMM was 0.112mm/day, while it was 0.189mm/day, 0.267mm/day, 0.267mm/
day, 0.389 mm/day, 0.456mm/day, and 0.512mm/day for the ANN-CSA, ANN-SCA, and
ANN-FFA, ANN-GA, and ANN models, respectively, in the Tehran station. The current
study proved that the inclusive multiple models based on improved ANN models
considering the fuzzy reasoning had the high ability to predict evaporation.

Keywords: artificial neural network, machine learning, evaporation, capuchin search algorithm, inclusive multiple
models, artificial intelligence

1 INTRODUCTION

Evaporation is a crucial parameter in hydrology and water resource management (Adnan et al.,
2019). Predicting evaporation is an essential issue for monitoring water resources. In arid regions,
evaporation prediction is vital for decision-makers because of water shortage (Malik et al., 2020a;
Seifi and Riahi, 2020). Direct and indirect methods are used for predicting evaporation. The
stochastic, statistical, and empirical models are considered as indirect methods for predicting
evaporation. However, the utilization of instruments for predicting evaporation has some
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limitations when there is heavy rain or wind speed. The indirect
methods use the various climate data so as not to be accessible for
modelers (Seifi and Soroush, 2020). The inherent evaporation
process is complex and nonlinear. The soft computing models
have the high ability for predicting different target variables such
as streamflow (Adnan et al., 2021a; Adnan et al., 2021b), rainfall
(Adnan et al., 2021c), and evapotranspiration (Alizamir et al.,
2020; Malik et al., 2020b).

Machine learning algorithms are recently widely used to predict
evaporation. Abghari et al. (2012) used wavelet artificial neural
networks (ANN) to predict evaporation in one station in Iran. It
was observed that the wavelet as a preprocessing data could improve
the standalone ANN model. The main advantage of their study was
the hybridization of the ANN model using a wavelet. Their new
hybridANN (ANN-wavelet) can be used for predicting time series of
other hydrological variables.

Tabari et al. (2012) applied an adaptive neuro-fuzzy interface
system (ANFIS) and ANNmodel for predicting evaporation for a
semi-region of Iran. It was observed that the ANN model had
better accuracy than the ANFIS model. Also, the main
contribution of their study was to investigate the effect of
different training algorithms on the outputs. The results
indicated that the momentum learning algorithm was the best
algorithm. The RMSE and MAE of the ANN model were
0.81 mm/day and 0.63 mm/day.

Guven and Kisi (2013) used an ANN, ANFIS, and linear
genetic programming for predicting evaporation. The wind
speed, relative humidity, solar radiation, and air temperature
were used as the models’ inputs. It was observed that linear
genetic programming outperformed the ANN and ANFIS model.
Also, the main contribution of this study was to investigate the
effect of different inputs on the outputs.

Kisi (2013) investigated the accuracy of the evolutionary
neural networks (ENN) for predicting evaporation. The
accuracy of the ENN was benchmarked against the ANN,
fuzzy logic, and ANFIS models. It was observed that the ENN
had better accuracy than the other models. The main advantage
of this study was developing the ANN models using classical and
optimization methods. This study had a comprehensive between
the classical training algorithms and optimization algorithms.
The mean absolute error of ENN for two stations was 0.749 and
0.759 mm.

Kim et al. (2015) investigated the accuracy of the ANN, genetic
programming, and the self-organizing feature maps-neural
networks for predicting evaporation. They found that the
genetic programming, ANN, and self-organizing feature maps-
neural networks outperformed the multiple linear regression
models. This study guided the modelers to use genetic
programming for predicting time series of different
hydrological variables.

Kisi et al. (2016) applied classification and regression tree
(CART), ANN, and chi-squared automatic interaction detector
(CSIAD) for predicting evaporation. The relative humidity,
minimum temperature, maximum temperature, and wind
speed were used as the models’ inputs. This study guided the
modelers in predicting evaporation in a station using data of
neighborhood stations.

Regarding the comparison of the accuracy of the models, the
ANN outperformed the regression tree (CART) and chi-squared
automatic interaction detector models. Keshtegar et al. (2016)
applied a conjugate line search method for predicting
evaporation. The results demonstrated that the conjugate line
search method performed better than the ANFIS and decision
tree model. They developed a conjugate line search method based
on mathematical functions with nonlinear forms.

Arunkumar et al. (2017) used ANN, genetic programming,
and decision tree models for predicting daily evaporation. The
sunshine hours, dew point temperature, relative humidity,
maximum temperature, and minimum temperature were used
as the inputs to the models. It was observed that the genetic
programming outperformed the other models. Wang et al. (2017)
evaluated the capability of the least square support vector
machine, decision tree model, and fuzzy genetics for
predicting evaporation. It was found that the fuzzy genetics
and the least square support vector machine outperformed the
decision tree model. Ghorbani et al. (2018) coupled the firefly
algorithm with the ANNmodel for predicting evaporation. It was
concluded that the ANN- firefly algorithm (FFA) outperformed
the standalone MLP and support vector machine models. Their
study developed the MLP model using the FFA. The MLP-FFA
model converged earlier than the standalone MLP model. The
new MLP-FFA was suitable for different simulation problems
such as classification problems. The NSE and RMSE of MLP-FFA
were 0.92 and 1.406 mm/day.

Sebbar et al. (2019) used an online sequential extreme learning
machine (OSELM) and an optimally pruned extreme learning
machine (OPELM) for predicting evaporation. They stated that
both models had a high ability for predicting evaporation.
Keshtegar et al. (2019) coupled the response surface method
and the support vector machine (RSM-SVM) for predicting
evaporation. It was found that the RSM-SVM outperformed
the SVM, ANN, and RSM models for predicting evaporation.
Guan et al. (2020) coupled the SVM model with the krill
algorithm for predicting evaporation. The results demonstrated
that the SVM-krill algorithm improved the accuracy of the
standalone SVM models for predicting evaporation. Their
study developed the SVM models using a krill optimization
algorithm. Their new SVM model was helpful in predicting
other hydrological variables.

Although significant improvements and capabilities were
found in using machine learning, several challenges are yet to
be addressed in future research (Yuan et al., 2018). First, the
selection of the best inputs to the models has major
complexity. Second, the utilization of preprocessing
methods is necessary for finding the best input
combination. Furthermore, decreasing computational time
and fast convergence are the other challenges of the
utilization of machine learning models. The previous studies
only determine the best and worst models. Consequently, this
paper aims to predict daily evaporation in seven synoptic
stations of Iran. To address the above-mentioned challenges
in this study, these strategies are suggested by the current
paper. First, a new version of the GT is utilized to select the best
input for predicting daily evaporation. A robust optimization
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algorithm, namely, the capuchin search algorithm (CSA), is
used to enhance the Gamma test performance based on
decreasing time-consuming. Second, as observed in previous
articles, the ANN models can predict evaporation, but the
powerful optimization algorithms obtain the model
parameters. In this study, the CSA as a new optimization
algorithm is used to train the ANN models for finding
value parameters. The CSA was introduced by Braik et al.
(2021). Braik et al. (2021) tested the CSA on complex
engineering problems and mathematical functions. The
results indicated that the CSA outperformed particle swarm,
multiverse optimization algorithm (MVOA), and moth flame
optimization algorithm (MFO). Furthermore, in this article, to
decrease the computational costs, fuzzy reasoning conception
is used to correct the obtained structure of the ANN. Thus, the
current study uses this conception for removing redundant
weight connections to decrease the computational cost. In this
article, an IMM provides synergy among the models to
increase the outputs’ accuracy. The novelty of the current
research includes introducing a new version of ANN-CSA
for predicting evaporation. The new model is benchmarked
against the ANN-sine cosine algorithm (ANN-SCA), ANN-
firefly algorithm (ANN-FFA), ANN-GA, and ANN models.
The aim of the study is to predict daily evaporation in different
climates in Iran based on daily data. The new model, ANN-
CSA-fuzzy reasoning, is used in no articles, and thus, this new
conception can help modelers in the simulation and modeling
fields. This study simultaneously improved the accuracy of the
ANN models based on powerful optimization algorithms and
decreased the computational time based on fuzzy reasoning.
Introducing inclusive multiple models is another innovation of
the current study. The IMM is used to improve the accuracy of
the hybrid ANN-CSA, ANN-SCA, ANN-GA, ANN-FFA, and
ANN models. The rest of the paper is arranged as follows. The
second section describes the methods and materials. The third

section presents the case study. The discussion and results are
presented in the fourth section. Finally, the conclusions are
presented in the fifth section.

2 MATERIALS AND METHODS

2.1 Artificial Neural Network
The ANN model acts based on biological neural networks. Easy
implementation, generalizability, and nonlinear computation are
the advantages of the MLP model (Banadkooki et al., 2020; Seifi
et al., 2020). The input, hidden, and output layers are the
computational layers of the ANN model (Figure 1). The
connection weights connect each layer to the next layer. The
nonlinear nature of activation functions of the ANNmodels helps
to train the complex neural networks. The ANNmodel acts based
on the following equation. Eq. 1 uses the bias, weight
connections, and inputs to give the final outputs.

Y � B0 +∑noh

j�1Bjf(woj +∑nin

i�1wijxi), (1)

where Y: output, B0: a bias for output layer, Bj: a bias for the
hidden layer, wij: the weight of i input to j hidden layer neuron,
woj: the weight in the output layer connecting the jth neuron in
the hidden layer, xi: input, noh: number of hidden neurons, n
(in): number of inputs, and f: activation function. Regarding
the successful application of the sigmoid function in the
previous articles (Banadkooki et al., 2020; Seifi et al., 2020),
the sigmoid function is used as an activation function in this
study:

f(y) � 1
1 + e−y

, (2)

where f(y): activation function, y: the input to the activation
function (woj +∑nin

i�1 wijxi). The backpropagation algorithm is

FIGURE 1 | The location of synoptic stations.
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commonly used for training ANN, although it may trap in the
local optimums and does not have the fast convergence. At the
forward level, the random values of ANN parameters are
initialized randomly. Then, the input signal propagated from
the input layer to the output layer. Then, the backward level is
implemented. In the backward level, the bias and weight are
changed so that the error values are minimized. However, the
current study uses the new optimization algorithms instead of
traditional training algorithms based on their fast convergence. In
addition, it uses advanced operators to avoid traps in local
optimums and their high accuracy.

2.2 Capuchin Search Algorithm
CSA was inspired by the live capuchins. The alpha male is the
leader of capuchins. In some species, the male and female
guide other capuchins for finding a food source (Braik et al.,
2021). In the first level, the location of capuchins is initialized
randomly. The CSA had better performance than the other
optimization algorithms in terms of accuracy, convergence,
and CPU time. The leaders share their information with
followers. It is one of the advantages of CSA. Thus, the
quality of solutions can be increased in each iteration.

The initial location of the capuchins is initialized using Eq. 3
(Braik et al., 2021). Eq. 3 is used to determine the initial location
of capuchins based on the upper and lower bound of decision
variables.

zi � upj + r × (upj − loj). (3)

zi: the position of the ith capuchin, upj: the upper bound of
the ith capuchin in the jth dimension, loj: the lower bound of the
ith capuchin in the jth dimension, and r: a random number. The
location of the alpha capuchins in the group is defined as follows
(Braik et al., 2021):

zij � foodj +
Pbf(veij)2 sin(2θ)

g
, 0.10≤ ε≤ 0.20, (4)

where zij: the location of the alpha capuchins in the jth dimension,
food j: the position of food in the jth dimension, Pbf: the
probability of the balance generated by the tail of the
capuchins, g: the gravitational force, ε: a random number θ:
the jumping angle: the velocity of the alpha capuchins in the jth
dimension. In fact, Eq. 4 updates the location of the alpha
capuchins based on the jumping angle and the location of the
food source. The parameters of veij and velocity are defined as
follows:

veij � σvij + κa1(zibestj − zij)r1 + κa2(foodj − zij), (5)

θ � 3
2
r. (6)

vij: the velocity of the ith alpha capuchin in the jth dimension,
zibestj: the best location of the ith alpha capuchin, r: random
number, a1 and a2: constant, σ : the inertia coefficient, and κ a:
lifetime exponential function (Braik et al., 2021).

κa � ηe
−η1( I

Imax
()η2)

, (7)

where I: iteration number, Imax: maximum number of iterations,
η: constant-coefficient (η:2), η1: constant-coefficient (η1:21), and
η2: constant coefficient. Each alpha capuchin uses the leap,
climbing, walking, and movement in different directions to
update their positions. κa is an important parameter for
balancing between exploitation and exploration.

• Leap and waking mechanism.

A leader capuchin uses leap and walking mechanisms when
they cannot find food on the trees. In this condition, they can leap
on the ground from one place to another. The location of an alpha
capuchin as a leader based on the leap mechanism is updated as
follows (Braik et al., 2021).

zij � Fj +
PefPbf(vij)2 sin(2θ)

g
, 0.20≤ ε≤ 0.30, (8)

where Pef: the elasticity probability of the capuchin movement
for jumping from a side of a river to the other side. The
elasticity probability helps the CSA to carry out a global search
on the ground. Eq. 8 uses the elasticity probability to increase
the leaping distance on the ground. When alpha capuchins
cannot find food on the tress, their locations are updated as
follows:

zij � zij + vij,← 0.30≤ ε≤ 0.50. (9)

The advantage of the CSA is to consider the different strategies
for updating the location of an alpha male as the best solution in
the search space. Thus, the best solution can guide the other
followers well based on updating its location using different
strategies.

• Swing operation

The swing operation is another ability of alpha capuchins for
finding food. Thus, the location of alpha capuchins is updated
based on the swing motion as follows, as stated by (Braik et al.,
2021):

xi
j � Fj + κPbf × sin(2θ), 0.5< ε≤ 0.75, (10)

where xi
j: new location of alpha capuchin.

The alpha capuchins may climb the other trees to find food.
Thus, the location of the alpha capuchins can be updated based
on the climbing operator (Braik et al., 2021).

zij � foodj + κPbf(vij − vi−1j ), 0.75≤ ε≤ 1.0, (11)

where vij: the current velocity of the ith capuchin, and vi−1j : the
previous.

• Movement in the different directions
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The last effort of alpha capuchins for finding food is
movement in several new directions in order to find a better
food source. Thus, this potential allows the alpha capuchin to
search the problem space accurately (Braik et al., 2021).

xi
j � κa × (loj + ε × (upj − loj)). (12)

Eq. 12 is useful to search the search space for finding better
solutions entirely.

Finally, the followers update their position as follows:

xi
j �

1
2
(xi

αj + xi−1
j ), (13)

where xi
j: the current position of followers in the jth dimension,

xi−1
j : the previous location of the followers in the jth dimension,

and xi
αj: the location of the alpha leader. Figure A1 in the

Supplementary Appendix shows the CSA flowchart.

2.3 Sine Cosine Algorithm
The SCA is one of the powerful algorithms that is used for solving
various optimization problems such as feature selection (Neggaz
et al., 2020), global optimization (Gupta et al., 2020), optimal
operation of hydropower systems (Feng et al., 2020), image
segmentation (Ewees et al., 2020), and engineering design
problems (Rizk-Allah, 2018). The excellent balance between
exploration and exploitation and easy implementation are the
advantages of the SCA. Mirjalili (2016) introduced the SCA based
on the characteristics of the trigonometric functions sine and
cosine. First, the initial solutions are randomly initialized. In the
SCA, the location of each solution is changed based on the sine
and cosine functions. The location of solutions is changed as
follows (Mirjalili et al., 2020).

St+1i,j � Sti,j + r1 × sin(r2) ×
∣∣∣∣∣r3Stbestj − Stij

∣∣∣∣∣ ← if(r4)< 0.5, (14)

St+1i,j � Sti,j + r1 × cos(r2) ×
∣∣∣∣∣r3Stbestj − Stij

∣∣∣∣∣ ← if(r4)≥ 0.5, (15)

where St+1i,j : the ith solution in the jth dimension at iteration t,
Stbestj : the best solution, r1, r2, r3, and r4: random parameters. The
r1 is updated as follows:

r1 � 2 − 2 × t

T
, (16)

where t: number of iterations, and T: maximum number of
iterations. The r1 parameter is an important parameter for
determining the area of the nest solution. The direction of the
movement of the solution is determined based on parameter r2.
The parameter r3 is an important parameter for emphasizing or
deemphasizing the influence of the target in the determining
distance. The r4 parameter is used for switching between the sine
and cosine functions to update the location of solutions. Figure
A2 in the Supplementary Appendix shows the SCA flowchart.

2.4 Firefly Algorithm
The FFA is a robust optimization algorithm for solving various
problems such as global optimization problems (Wu J. et al.
(2020)), training ANN (Bui et al., 2020), matching biomedical

(Xue, 2020), fuzzy clustering (Langari et al., 2020), and the vehicle
routing problem (Trachanatzi et al., 2020). The FFA acts based on
different assumptions. The brighter firefly can attract other
fireflies. The objective function of the firefly shows the
brightness of the firefly. A firefly with a better objective
function has more brightness. Each firefly has a special
attractiveness, so that the attractiveness should be determined
in each iteration. The increasing distance of fireflies from other
fireflies can decrease their attractiveness for other fireflies. To
update the location of fireflies, the previous location of fireflies,
the attractiveness, and the distance. First, the random parameters
of FFA are initialized. Then, the initial location of fireflies is
initialized. The location of the firefly is changed as follows:

lo′i � loi + βoe
−cm(loi − loj) + αζ , (17)

rij �
∑D

k�1(loik − lojk)2√
, (18)

where lo′: the new location of the ith firefly, loi: the location of the
ith firefly, βo: initial attractiveness, ζ : random parameter, α:
scaling factor, loik: the k element in the location of firefly i,
lojk: the k element in the location of firefly j, D: number of
dimensions, loj: the location of the jth firefly, rij: the distance
between firefly i and j. To move a firefly toward another firefly, it
is essential to compute the light intensity:

I � I0.e
cr2 , (19)

where I: light intensity, I0: initial light intensity, and c: absorption
coefficient. Figure A3 in in the Supplementary Appendix shows
the FFA flowchart.

2.5 Genetic Algorithm
The GA is one of the optimization algorithms that is widely used
for optimizing different problems such as training machine
learning algorithms (Park et al., 2020), optimal design of the
building environment (Zhang T. et al., 2020), optimization of the
culture condition (Zhang Q. et al., 2020), optimizing bank lending
decisions (Metawa et al., 2017), and face recognition (Zhi and Liu,
2019). The GA has consisted of the population of chromosomes
that gradually mature during the optimization process to
converge to an optimal solution. Three operators, namely,
reproduction, crossover, and mutation, are used in the GA.
The GA uses a reproduction operator for choosing the best
chromosome regarding its fitness value. The crossover
operator combines the particular parts of the individuals
(parent) to provide new solutions. To provide a random
change in the elements (allele) of a chromosome, a mutation
operator is used to increase the population’s diversity.

2.6 Fuzzy Reasoning
To decrease the computational time, fuzzy reasoning is used to
correct the structure of the obtained hybrid and standalone
ANN models. When the structure of the ANN is too big, the
computational time increases. An excessive number of weights
with low values is considered redundant connections. The
fuzzy reasoning tries to identify the hidden units with no
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activity based on finding weak weight conception (Melo and
Watada, 2016). The current study uses a fuzzy IF-THEN rule
to decrease the number of weak weights in the ANN model’s
structures. A fuzzy IF-THEN rule is used to reduce redundant
weights. If the number of hidden neurons is too big, the
generalization is weak. If the number of hidden neurons in
the hidden layer is small, learning is consequently poor (Melo
and Watada, 2016). Structural learning is a strategy to decrease
the computational time and improve the difficulty of
specifying the ANN structure. The aim of this strategy is to
remove hidden neurons with no activity. The hidden neurons
with no activity do not affect decreasing error function in the
structure of the ANN model. Three rules were used for the
fuzzy reasoning. The learning cycle, RMSE rule, and weight
rule are three rules for fuzzy reasoning. In structural learning,
the unnecessary weights with low values were eliminated based
on the goodness factor. The summation of all the forward
propagated signals to the last layer is known as the goodness
factor. The goodness factor is computed based on the following
equation. The units with the least activity or the weights with
the low values in the hidden layers are identified using the
goodness factor.

gk
i � ∑

j

(wk
i,j, o

k
i )2, (20)

where gk
i : goodness factor, o

k
i is the i output from the k layer,

and wk
i,j is the weighted link. The choice of redundant weights

is carried out after the learning in all patterns is performed.
For better performance, the fuzzy interface that targets the
weight that leads to the defective unit is utilized. A threshold is
defined in the next level for the RMSE rule as the second rule.
If the RMSE has slight changes after removing weights, these
weights are considered redundant. Thus, if the goodness
factor identifies to remove some weights, the RMSE should
be checked as the second conditional rule. If these two rules
are satisfied, the values of weights also should be checked so
that the weights with the low values are removable. The
learning cycle is used as a rule because the weights are
initialized with the low values in the initial stages, and
thus, they are susceptible to elimination. The learning cycle
rule prevents removing weight with low values in the initial
levels of the simulations. The RMSE criterion is used as the
second rule. If there is not a decrease in RMSE, it is regarded
that the weight has no effect on the prediction error, and thus
this weight is redundant. In fact, the weights with no
effectiveness do not change the RMSE value, and they are
considered redundant weights. However, the learning cycle
and RMSE membership functions (MFs) are not sensitive to
data complexity and noise in training ANN. Thus, the weight-
rule as the third rule is used to decrease redundant weights. The
number of learning means the number of epochs. One epoch
means that each sample in the training data has had an
opportunity to change the internal model parameters. The
goodness factor is used to assess the effect of each hidden
unit in the hidden layer. The high value of goodness factor
provides a large effect on the whole units of level k + 1 from the

unit. The unit with the lowest goodness factor is considered the
most inactive unit in the layer. The unit is defective if the
goodness factor <0.99. Thus, the goodness factor <0.99 is a
threshold for removing weight. This goodness factor is helpful
to identify the weak weight in inactive units. The modelers use
membership functions of three rules for removing weak
weight. The minimum operator is used by the fuzzy
interface system to choose the minimum value for each of
the 3 MFs. The obtained membership function values for the
learning cycle should be subtracted from 1. The minimum
value from the MFs is chosen in the next level, and it is
multiplied by the value of the weight to be removed. If the
outcome is 0, the weight is removed. When the weak weight is
disregarded in the ANN model, the connection weights
associated with the weak weight (connections between two
nodes) also are removed.

The monotonically decreasing sigmoid for the weight and
RMSE is used as follows:

S(x, α, β, c) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ← x< α

2
(x−α)2
(c−α)2 ← α≤ x< β

1 − 2
(x−α)2
(c−α)2 ← β≤ x< c

1 ← x>ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

The monotonically increasing sigmoid for the learning cycle is
used as follows.

S(x, α, β, c) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ← x< α 337

2
(x−α)2
(c−α)2 ← α≤ x< β

1 − 2
(x−α)2
(c−α)2 ← β≤x< c

0 ← x> c

338

339

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (22)

where c, α, β, and ω:the parameters of membership functions.

2.7 Hybridizing ANN Based on Optimization
Algorithms and Fuzzy Reasoning
The weight and bias of the ANN models are the unknown values
that are obtained by the training process. To find the ANN
parameters (weight and bias) using optimization algorithms
based on fuzzy reasoning, the following levels are performed.
1) To prepare input data and divide data into the training and
testing data. 2) Run the ANNmodel based on training data at the
training level. The initial guess for the weight and bias is used. 3)
The training accuracy is estimated. In this study, the root mean
square error (RMSE) as a common criterion is used to assess the
models’ accuracy at the training level. 4) If the value of RMSE is
low, the weak weight can be removed by fuzzy reasoning. 5)
When the low weights are removed in Section 4, the RMSE is
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rechecked. If its value is decreased, the performance of fuzzy
reasoning is stopped. The elimination of weights was stopped
because the weak weights were removed in the previous levels,
and the elimination of the remaining weight connections changed
the RMSE. In fact, the remaining weights were the effective
weights in the structure of the ANN model. 6) If the
convergence is met, the testing level is performed; otherwise,
the optimization algorithms link to the ANN. 7) The weight and
bias are considered as the decision variables in the optimization
algorithms. The location of agents in the algorithms is encoded to
represent the value of weight and bias. 8) The fitness of each agent
is calculated for each solution to obtain the quality of solutions. 9)
The operators of the algorithms are used to change the location of
agents. It means that the value of weight and bias is updated. 10) If
the convergence creation is satisfied, the weight and bias values
are inserted into the ANN to rerun it; otherwise, go to Step 6.

3 CASE STUDY

Iran is in an arid and semi-arid climate. Significant climate
anomalies are observed in Iran. Many drought events are
observed in the different cities of Iran. Also, water shortage is

a primary challenge in Iran. Figure 1 shows the location of the
stations. In this study, the standalone and hybrid ANNmodels
were used to predict seven provinces of Iran’s daily
evaporation with different climates. As observed in
Table 1, the relative humidity (RH), wind speed (WS),
number of sunny hours (NS), maximum temperature
(MAT), minimum temperature (MIT), and rainfall (R)
were used as the inputs to the models. Thus, it is necessary
to use a preprocessing method for selecting the best input
scenario. In this study, an improved Gamma method is
applied to select the best input combination. The data were
collected from seven synoptic stations (Tabriz, Tehran, Sari,
Yazd, Ahvaz, Sharekord, and Isfahan) of Iran from 2011 to
2014 (1,080 days). Figure 1 shows the evaporation time series.
Since Iran faces a drought period, evaporation prediction is an
important duty for decision-makers. However, the modelers
can test the models of the current study in the different
regions of the world.

3.1 Improved Gamma Test
The GT is a powerful tool for identifying the best input
scenarios that are applied in various fields, such as
determining the inputs for predicting groundwater (Azadi

TABLE 1 | The characteristics of data.

Province MAT MIT RH% NS (hr) R (mm) WS (m/s) EV (mm)

Isfahan Maximum 35.4 14.14 89.12 14.56 41.0 6.98 19.12
Average 26.78 8.12 56.78 9.22 8.89 2.23 8.78
Minimum 1.23 −1.14 19.22 0.00 2.23 0.00 2.24
Standard deviation 9.12 8.78 8.99 7.89 9.23 2.45 7.89

Sari Maximum 32.23 16.12 98.12 14.20 98.12 7.24 23.00
Average 24.12 9.21 75.57 12.90 12.45 5.24 10.45
Minimum 12.23 −2.54 27.12 7.87 5.89 3.55 2.00
Standard deviation 6.12 8.25 12.45 6.55 6.87 6.79 6.72

Yazd Maximum 38.98 21.20 80.12 14.12 17.12 9.23 22.12
Average 30.76 10.20 54.23 9.12 10.24 6.78 12.27
Minimum 8.76 −3.76 14.23 2.46 0.00 2.45 2.00
Standard deviation 7.12 6.25 7.10 9.89 9.91 6.41 8.76

Tabriz Maximum 34.12 14.23 92.23 10.12 55.12 6.98 14.2
Average 22.23 9.45 87.73 6.25 15.67 4.53 8.23
Minimum 2.43 −4.76 11.23 1.45 8.98 2.24 1.00
Standard deviation 7.89 6.55 12.22 5.94 9.23 7.12 6.25

Ahvaz Maximum 38.98 27.12 93.23 12.98 32.23 6.78 25.12
Average 30.12 19.23 89.91 8.76 18.86 4.55 14.54
Minimum 12.12 2.23 12.24 2.24 2.35 2.35 2.00
Standard deviation 9.12 12.24 9.98 7.88 6.72 6.88 8.98

Shahrekord Maximum 27.85 20.12 95.45 10.23 55.23 8.23 14.10
Average 18.78 12.67 90.23 9.12 29.87 5.67 10.23
Minimum 6.78 −2.23 24.55 0.00 8.76 2.23 1.21
Standard deviation 8.12 7.65 6.23 8.78 6.55 8.98 6.76

Tehran Maximum 35.67 24.12 93.35 11.23 45.78 8.91 17.6
Average 29.12 17.89 70.25 6.78 18.98 5.67 15.55
Minimum 2.89 −1.05 14.23 0.00 0.00 4.55 1.00
Standard deviation 7.86 6.72 6.84 4.73 7.61 6.72 7.89
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et al., 2020), determining the inputs for modeling
evaporation (Malik et al., 2020a), input selection for
predicting solar radiation (Biazar et al., 2020), and
selection of the best inputs for evapotranspiration (Seifi
and Riahi, 2020). Assume a set of data based on the
following equation:

{(bi, ci), 1≤ i≤M}, (23)

where bi ∈ Rm: the input vectors are confined to some closed
bounded, ci: the output vectors are confined to some closed
bounded, M: the total number of observations. The only
hypothesis made is that the underlying relationship of the
system is as follows:

c � f(b1, . . . , bm) + r. (24)

where f: smooth function, and r: random variable. The smooth
data model cannot calculate the Gamma statistic (Γ). The gamma
test acts based on the V[i, k] that is the kth nearest neighbors
bN[i, k]. The delta function is used to derive the gamma test as
follows:

δM(k) � 1
M

∑M

i�1
∣∣∣∣bN(i,k) − bi

∣∣∣∣, (25)

where |...|: Euclidean distance. The gamma function of the
outputs is computed as follows:

cM(k) �
1
M

∑M
i�1

∣∣∣∣cN(i,k) − ci
∣∣∣∣, (26)

where cM(k): corresponding c value of the kth nearest neighbor
of bi. The unvaried linear regression was used to compute the
Gamma statistic (τ) as follows:

c � Aδ + Γ, (27)

where A and Γ: the gradient and intercept of the regression line
(δ � 0). The lowest value Γ shows the best input combination.
Another index in the gamma test is the Vratio that is computed
as follows:

Vratio � Γ

σ2(y), (28)

where σ2(y): the variance of output. The lowest value Vratio

shows the best input combination. Regarding six inputs, 26–1
input combinations can be provided, and thus, it is
challenging to compute the Vratio and Γ for each input
combination. The new hybrid gamma test was utilized in
the current study to decrease the time-consuming and
challenging. In this study, CSA was hybridized with the
gamma test to improve the gamma test’s ability. First, the
name of input variables is regarded as the decision variables.
The CSA provided a random input combination as the
candidate solutions. Then, the Γ is calculated for each
input scenario. The computations finish when the stop
criterion is satisfied. If the hybrid gamma test was not
used, it is difficult to compute Vratio and Γ for each input
combination. Also, the hybrid gamma test can be useful for

the next studies when the modelers encounter more input
data. The hybrid gamma test can automatically give the best
input combination. Also, Table A1 of the Supplementary
Appendix shows the correlation values of inputs with
evaporation.

3.2 Avoid Overfitting in ANN Models
Liu et al. (2008) proposed a method that was different from other
modes for preventing overfitting. Their method was named the
optimization approximation algorithm (OAA). The method can
prevent overfitting without the use of a validation set or any
disturbance to the observed data. The value of easily computable
relation coefficient called signal-to-noise-ratio-figure (SNRF) and
threshold signal-to-noise-ratio-figure was used to reach the stop
criterion. The SNRF was computed based on modeling errors at
each iteration and the sample size was used to obtain the
threshold SNRF (SNRFN). Liu et al. (2008) assumed that the
data included the noise (NOi) and signal (SIi) components. Thus,
the energy error in Eq. 29 was computed based on the noise and
signal components. The error signal was computed based on
summing NOi with SIi. The energy error was computed as follows
(Liu et al., 2008).

E(SI +NO) � C(ei, ei)∑n

i�1e
2
i , (29)

where ei: the error signal for ith case and C(ei, ei): the auto
correlations function.

It should be considered that there is a high correlation between
the signal in the neighboring samples while there is not a high
correlation between the noise in the neighboring cases so onemay
write [40]:

C(SIi, SIi) ≃ C(SIi, SIi−1), (30)

C(NOi,NOi) � 0, (31)

where C: correlation, NOi: ith noise, Si: ith signal, and Si-1: i-1 th
signal.

Each sample has two neighbors. Afterward, the signal energy is
computed as follows.∑n

i�1eiei−1 � C(ei, ei−1) � C(Si, Si−1) � E(S). (32)

Then, the noise energy is computed as follows:

E(n) � E(n + s) − E(s). (33)

Finally, the SNRF is computed as follows:

SNRF � E(S)
E(NO) �

∑N
i�1eiei−1∑N

i�1e
2
i −∑N

i�1eiei−1
. (34)

Liu et al. (2008) stated that the training terminated when the
SNRF reached SNRFN. The SNRFN was computed as follows:

SNRFN ≃
1.7
N
. (35)

Hence, the process should be continued until SNRF < SNRFN
or the maximum number of function calls is reached.
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3.3 Choice of Data Set for Training and
Testing Level
One of the effective methods for choosing a representative subset
with size P from the original database of size N is the subset
selection of maximum dissimilarity. The reliable data set for
training level and testing level were obtained based on SSMD
(Riahi-Madvar et al., 2021). The main benefit of the SSMD is the
chosen data not to focus on a specified area. Assume that Z is the
data set as Z� (z1, z2,. . .,zn), a set of v � 1, 2, . . . , P points regarded
as the applications for training. If DISij

2 is regarded as the distance
between the ith and jth point and k points have been chosen (k <
n), the minimum distance from the applicant point P to k points
is defined as follows:

Dis2ij �
����xj − xi

����2 � ∑n

k�1(zki − zkj)2. (36)

Δ2
i (k) � min(Dis21i,Dis22i, ..,Dis2ki). (37)

The (k+1)th candidate point in the training data was chosen
from the remaining (P-k).

Δ2
k+1 � max(Δ2

i (k)), i ≠ m. (38)

The SSMD is performed based on the following levels
(Memarzadeh et al., 2020). 1) The datasets are normalized. 2) The
first point of data from the Z dataset is chosen near the mean of the

data set. 3) The second point of the data set with the large distance
with the first data set is chosen. 4) The third point is chosen at the
farthest distance from the previous two points. 5) The selected points
are regarded as the training data set. The remaining ones are regarded
as the testing data set. A total of 70% of data and 30% of data were
chosen for training and testing levels.

3.4 Inclusive Multiple Model
The previous articles use individual models for predicting
evaporation. The worst and the best models for predicting
hydrological variables were determined. In this article, an
IMM model was used to provide synergy among hybrid and
standalone ANN models. The inclusive multiple model (IMM)
uses the outputs of the ANN-CSA, ANN-FFA, ANN-SCA, ANN-
GA, and ANNmodels to increase the outputs’ precision based on
utilizing the benefits of different models. The outputs were
obtained in the first level by the ANN-CSA, ANN-FFA, ANN-
SCA, ANN-GA, and ANN models. Then, the outputs of the
hybrid and standalone ANN models were used as the input to
another ANNmodel. In fact, the models’ outputs in the first level
are considered lower-order modeling results. In this study, the
following indexes were used to compare the models:

• Root mean square error (ideal values are close to zero)

TABLE 2 | Sensitivity analysis for random parameters of optimization algorithms in Ahvaz station.

CSA

Inertia parameter OF Population size (PS) OF α OF Maximum number of iterations (MNI) OF

0.2 0.894 100 0.875 0.30 0.923 50 0.976
0.40 0.657 200 0.622 0.50 0.844 100 0.612
0.60 0.323 300 0.794 0.70 0.546 150 0.845
0.80 0.498 400 0.823 0.90 0.623 200 0.723

FFA

ζ OF PS OF α OF MNI OF

0.10 1.435 100 1.345 0.20 1.312 50 1.355
0.20 1.021 200 1.002 0.40 1.300 100 1.345
0.30 1.112 300 1.123 0.60 1.002 150 1.298
0.40 1.235 400 1.235 0.80 1.212 200 1.316

SCA

PS OF r3 OF r2 OF MNI OF

100 1.214 0.4 1.256 π/3 1.004 50 1.234
200 1.002 0.60 1.112 2π/3 0.998 100 1.123
300 0.988 0.80 0.998 π 1.112 150 0.998
400 0.876 1.00 0.1002 4π/3 1.116 200 1.200

GA

PS OF function MNI OF Crossover rate (CR) OF Mutation probability (MP) OF

100 1.289 100 1.356 0.20 1.345 0.30 1.315
200 1.200 200 1.299 0.40 1.200 0.50 1.278
300 1.345 300 1.200 0.60 1.300 0.70 1.200
400 1.567 400 1.245 0.80 1.323 0.90 1.341
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RMSE �

1
m
∑m

i�1(EVes − EVob)2
√

. (39)

The scatter index (SI < 0.10: good performance, SI:0.10 < SI <
0.20: fair performance, and SI > 0.30: poor performance) (Li et al.,
2013).

SI � RMSE
E �Vob

. (40)

Mean absolute error (MAE):

MAE � 1
m
∑m
i�1
|EVes − EVob|. (41)

Nash Sutcliffe efficiency (NSE) (The closest values to 1 are
ideal).

NSE � 1 − ∑m
i�1(EVes − EVob)2∑m
i�1(EVOB − E �Vob)2. (42)

• R2 (coefficient of determination)

R2 �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ∑m

i�1(EVob − E �Vob)(EVes − E �Ves)[∑m
i�1(EVob − E �Vob)2]√ [∑m

i�1(EVes − E �Ves)2]
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (43)

where SD: Standard deviation, m: number of data, EVob: observed
CO2, E �V: average observed data, and EVes: estimated data.

Centered root mean square error (CRMSE):

CRMSE �
∑N

i�1(EViobs − E �Viobs) − (EVies − E �Vies)
N

√
, (44)

where E �Viobs: avenge observed data, and E �Vies: avenge
estimated data.

4 DISCUSSION

4.1 Finding Random Parameters of the
Algorithms
The random parameters affect the accuracy of the algorithms. A
sensitivity analysis (SA) helps modelers find the optimal values of
random parameters. An SA can be used to compute the objective
function’s variation by changing the value of random parameters.
In fact, SA shows how the variations of the value of random
parameters affect the objective function (OF) value. As the RMSE
is an OF in this study, random parameters’ best values minimize
RMSE. To find the best value of random parameters, the Ahvaz
station is chosen as a sample. The population size (PS) of CSA
varied from 100 to 400 in Table 2, and the OF varied from 0.875
to 0.823. The least value of OF occurred at the population size �
200. Thus, the best size of the population was 200. The inertia
parameter varied from 0.20 to 0.80, and the least value of the OF
occurred at inertia parameter � 0.60. As observed in Table 2, the
best value of the mutation probability and the maximum number
of iterations (MNO) were 0.70 and 300, respectively.

As observed inTable 2, parameters of optimization algorithms
were obtained based on the sensitivity analysis of Table 2. The
number of hidden layers in the ANN models was obtained based
on Eq. 45:

Nh �

Nin +Nout

√ + α, (45)

whereNh: number of hidden layers,Nin: number of inputs, and α:
a value between 0 and 10. To obtain the optimal value of the
number of hidden layers and hidden neurons, the OF variation vs.
the number of hidden layers and neurons was computed. The
learning coefficient and momentum coefficient were 0.01 and
0.001. The values of momentum and learning coefficient were
changed to achieve the least value of an OF. Table A2 in the
Supplementary Appendix shows the details of the computations.

4.2 Choice of the Best Input Combinations
Table 3 indicates the first-best input scenario to the third-best
input scenario for all stations. As observed inTable 4, MAT,MIT,

TABLE 3 | The optimum input variations for various scenarios.

Combination Γ

Isfahan

RH, MAT, MIT, WS, NS, and R 0.0567
RH, MAT, WS, NS, and R 0.0672
RH, MAT, MIT, WS, NS 0.07812

Sari

RH, MAT, MIT, WS, NS, and R 0.04567
RH, MAT, WS, NS, R 0.05678
RH, MAT, MIT, R, NS 0.0781

Tabriz

RH, MAT, MIT, WS, NS, and R 0.02567
RH, MAT, WS, NS 0.03567
RH, MAT, MIT, WS, NS 0.05671

Ahvaz

RH, MAT, MIT, WS, NS, and R 0.04567
RH, MAT, WS, NS 0.06781
RH, MAT, MIT, WS 0.08921

Yazd

RH, MAT, MIT, WS, NS, and R 0.03567
RH, MAT, WS, NS, and R 0.0672
RH, MAT, MIT, WS, NS 0.0781

Shahrekord

RH, MAT, MIT, WS, NS, and R 0.0345
RH, MAT, WS, NS, and R 0.0567
RH, MAT, MIT, WS, NS 0.0678

Tehran

RH, MAT, MIT, WS, NS, and R 0.0345
RH, MAT, WS, NS, and R 0.0567
RH, MAT, MIT, WS, NS 0.0672
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TABLE 4 | Statistical results for different models based on error indexes.

Model RMSE
(mm)

MAE
(mm)

NSE R2 SI RMSE
(mm)

MAE
(mm)

NSE R2 SI

a:Isfahan (Training) b:Isfahan (Testing)

IMM 0.221 0.210 0.98 0.98 0.05 0.345 0.298 0.97 0.95 0.07

ANN-CSA
0.455 0.245 0.96 0.96 0.12 0.455 0.398 0.96 0.94 0.14

ANN-SCA
0.567 0.256 0.95 0.94 0.15 0.567 0.412 0.94 0.93 0.16

ANN-FFA 0.612 0.267 0.92 0.92 0.17 0.672 0.525 0.91 0.91 0.18
ANN-GA 0.614 0.273 0.91 0.91 0.20 0.781 0.612 0.90 0.90 0.23
ANN 0.721 0.289 0.90 0.88 0.22 0.812 0.789 0.88 0.89 0.24

c:Sari (Training) d:Sari (Testing)

IMM 0.256 0.246 0.96 0.97 0.07 0.346 0.312 0.94 0.96 0.09

ANN-CSA
0.345 0.325 0.95 0.95 0.08 0.367 0.356 0.92 0.94 0.12

ANN-SCA
0.456 0.367 0.94 0.94 0.11 0.498 0.489 0.90 0.92 0.14

ANN-FFA 0.672 0.567 0.90 0.91 0.12 0.712 0.623 0.86 0.90 0.18
ANN-GA 0.789 0.612 0.88 0.90 0.2 0.855 0.712 0.85 0.89 0.21
ANN 0.891 0.689 0.86 0.88 0.26 0.925 0.891 0.76 0.87 0.28

e:Tabriz (Training) f:Tabriz (Testing)

IMM 0.231 0.198 0.98 0.96 0.06 0.312 0.456 0.94 0.95 0.09

ANN-CSA
0.345 0.246 0.97 0.95 0.09 0.434 0.467 0.90 0.94 0.15

ANN-SCA
0.455 0.342 0.96 0.95 0.14 0.566 0.560 0.89 0.92 0.18

ANN-FFA 0.567 0.455 0.94 0.93 0.16 0.672 0.670 0.88 0.90 0.23
ANN-GA 0.672 0.467 0.92 0.91 0.24 0.711 0.700 0.86 0.88 0.27
ANN 0.721 0.567 0.90 0.89 0.28 0.824 0.811 0.82 0.87 0.29

g:Tehran (Training) h:Tehran (Testing)

IMM 0.312 0.298 0.95 0.98 0.04 0.455 0.345 0.92 0.96 0.06

ANN-CSA
0.456 0.312 0.92 0.95 0.07 0.567 0.412 0.90 0.94 0.12

ANN-SCA
0.467 0.325 0.91 0.94 0.09 0.612 0.455 0.88 0.92 0.12

ANN-FFA 0.512 0.334 0.90 0.92 0.14 0.718 0.467 0.86 0.90 0.16
ANN-GA 0.612 0.345 0.89 0.90 0.18 0.812 0.478 0.82 0.88 0.22
ANN 0.624 0.356 0.87 0.88 0.20 0.891 0.489 0.80 0.87 0.25

i: Yazd (Training) j: Yazd (Testing)

IMM 0.234 0.112 0.96 0.96 0.05 0.235 0.116 0.94 0.95 0.08

ANN-CSA
0.243 0.189 0.95 0.95 0.06 0.256 0.167 0.92 0.94 0.09

ANN-SCA
0.356 0.267 0.92 0.93 0.14 0.367 0.298 0.90 0.93 0.16

ANN-FFA 0.412 0.389 0.91 0.90 0.19 0.444 0.398 0.89 0.91 0.20
ANN-GA 0.545 0.456 0.89 0.89 0.21 0.576 0.478 0.87 0.90 0.23
ANN 0.672 0.512 0.87 0.87 0.22 0.698 0.549 0.81 0.89 0.24

k: Training (Shahrekord) l:Testing (Shahrekord)

IMM 0.312 0.287 0.92 0.97 0.04 0.398 0.312 0.94 0.96 0.09

ANN-CSA
0.376 0.298 0.90 0.96 0.06 0.367 0.333 0.91 0.94 0.10

ANN-SCA
0.389 0.312 0.89 0.95 0.07 0.444 0.355 0.90 0.94 0.09

ANN-FFA 0.398 0.345 0.87 0.92 0.12 0.489 0.378 0.87 0.91 0.15
ANN-GA 0.444 0.398 0.86 0.91 0.16 0.567 0.412 0.84 0.90 0.26
ANN 0.545 0.540 0.85 0.90 0.19 0.612 0.544 0.82 0.89 0.23

(Continued on following page)
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RH, WS, NS, R, and RH were the best input scenarios for all
stations because they had the least values of Γ. For example, the Γ
of MAT, MIT, RH, WS, NS, R, and RH as the best input
combination in Isfahan was 0.0567 while it was 0.0672 and
0.07812 for the (RH, MAT, WS, NS, and R) and (RH, MAT,
MIT, WS, and NS) as the second best and the third best input
combination. Thus, the combination of MAT, MIT, RH, WS, NS,
and R was used as the best input combination to the models for all
stations.

This study used the hybrid gamma test to choose the best input
combination because the authors face 26–1 input combinations.
The results indicated that using all input variables provided the
best performance. However, it does not mean that the modelers
need six input variables to predict evaporation in the next case
studies or other research. This study only encourages the
modelers to use advanced methods such as the hybrid gamma
test for selecting the best input combination. The utilization of the
hybrid gamma test is not limited to the number of input variables.
The researchers of the current study accessed six input variables,
but the other researchers can predict the evaporation with any
number of inputs. The reasons for the use of the hybrid gamma
test are as follows: 1) Before the modelers used the hybrid
gamma test, it was unclear that using all input variables
provided the highest accuracy. However, the previous
researchers also proved that using all input variables cannot
always give the highest accuracy. Qasem et al. (2019) accessed
four input variables for predicting evaporation, but the best
input combination included three input variables. They
indicated that it is not obvious having all input variables to
make better predictions. This issue should be checked. The
increasing number of inputs cannot always increase the
accuracy. When the modelers did not use the advanced
methods for choosing the best input combination, the
different input scenarios should be defined for predicting
evaporation. This issue leads to increasing time. As Qasem
et al. (2019) did not choose the best input combination using
an advanced test, they represented seven input scenarios. When
the modelers define input scenarios, these scenarios may not
cover the best input scenario. For these reasons, the authors
need to use the advanced gamma test. 2) the researchers can use
a hybrid gamma test with any number of input variables. The
aim of the method is not to say that the modelers always need all

inputs for predicting evaporation. The study aims to encourage
the modelers to use advanced methods for choosing the best
input combination. For example, suppose the modelers access
three input variables. In that case, the modelers can investigate
the effect of each input on the outputs based on removing each
variable input from the initial input combination one by one.
However, this method is not suitable when the modelers face a
large number of input data. If the modelers use the hybrid
gamma test, the gamma test automatically gives the best input
combination without requiring additional efforts to compute Γ
and Vratio for 23–1 input scenario. 3) If the correlation
coefficient between the inputs and outputs is used, the
researchers only can identify the most effective inputs.
Afterward, they must manually provide the different input
scenarios. Thus, the gamma test can be a good alternative to
correlation because the hybrid method automatically gives the
best input combination without requiring defining 26–1 input
combinations.

4.3 Analysis of Results for Different Stations
Table 4 shows the performance of different models in the
different stations. Table 4A shows the results in the training
level in the Isfahan station. The R2 of the ANN-CSA was 0.92 in
the Isfahan station, but it was 0.90, 0.88, 0.85, and 0.82 for the
ANN-SCA, ANN-FFA, ANN-GA, and ANN models. The IMM
decreased the MAE of the ANN-CSA, ANN-SCA, and ANN-
FFA, ANN-GA, and ANN model by 14, 18, 22, 24, and 28%,
respectively. The ANN model obtained the lowest NSE and R2.
The results also indicated that the ANN-CSA had higher NSE and
R2 compared to the ANN-SCA, ANN-GA, ANN-FFA, and ANN
models. Table 4B shows the performance of models in the testing
level for the Isfahan station. The IMM improved the RMSE values
of the ANN-CSA, ANN-SCA, ANN-FFA, ANN-GA, and ANN
model by 25, 40, 48, 56, and 57%, respectively. Table 4C shows
the results for the Sari station at the training level. The RMSE of
the ANN-CSA was 0.345 mm/day, while it was 0.456, 0.672,
0.789, and 0.891 for the ANN-SCA, ANN-FFA, ANN-GA, and
ANN models. The ANN-CSA’s performance was better than the
ANN-SCA, ANN-FFA, ANN-GA, and ANN models but the
IMM model decreased MAE and RMSE of the ANN-CSA
model. The MAE of the IMM in Table 4C was 0.246 mm/day,
while the MAE of the ANN-CSA, ANN-SCA, and ANN-FFA,

TABLE 4 | (Continued) Statistical results for different models based on error indexes.

Model RMSE
(mm)

MAE
(mm)

NSE R2 SI RMSE
(mm)

MAE
(mm)

NSE R2 SI

m:Ahvaz (Training) n: Ahvaz (Testing)

IMM 0.323 0.289 0.96 0.98 0.05 0.398 0.312 0.94 0.96 0.08

ANN-CSA
0.355 0.323 0.94 0.95 0.06 0.367 0.333 0.91 0.94 0.09

ANN-SCA
0.367 0.345 0.92 0.94 0.09 0.444 0.355 0.90 0.93 0.12

ANN-FFA 0.378 0.369 0.89 0.92 0.15 0.489 0.378 0.87 0.91 0.21
ANN-GA 0.412 0.389 0.87 0.90 0.23 0.567 0.412 0.84 0.89 0.26
ANN 0.445 0.412 0.85 0.89 0.27 0.612 0.424 0.82 0.87 0.29
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ANN-GA, and ANN models was 0.325 mm/day, 0.367 mm/day,
0.567 mm/day, 0.612 mm/day, and 0.689 mm/day, respectively.
However, the IMM model’s accuracy was based on using the
outputs of all models as the inputs improved the accuracy of all

models. The testing results of models in the Sari station were
observed in Table 4D. Leta et al. (2018) evaluated the
performance of the hydrological models based on NSE, and
four classes were defined for the NSE values: (NSE > 0.80:

FIGURE 2 | The box plots for the models.
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very good), (0.70 < NSE ≤ 0.8: good), (0.5 < NSE ≤ 0.7:
satisfactory), and (NSE ≤ 0.50: unsatisfactory). Regarding this
classification, the IMM performance, ANN-CSA, ANN-SCA,
ANN-FFA, and ANN models were very good, and the
performance of the ANN model was good. Table 4E presents
the accuracy of the models for the Tabriz station at the training
level. The RMSE of the ANN-CSA was 0.345 mm/day, while it
was 0.455 mm/day, 0.567 mm/day, 0.672, and 0.721 for the ANN-
SCA, ANN-FFA, ANN-GA, and ANN models. It means that the
CSA was a reliable training algorithm for training ANN but
providing a synergy among different models increased the CSA’s
accuracy. The performance of models indicated that the IMMhad
the best accuracy among other models. Regarding the highest
RMSE andMAE and the lowest NSE and R2, the ANNmodel had
the lowest performance. Table 4 shows the accuracy of models in
the testing level of the Tabriz station. Regarding the classification
of Leta et al. (2018) for the R2 value, (R2 > 0.85: very good), (0.75 <
R2 ≤ 0.85: good), (0.60 < R2 ≤ 0.75: satisfactory), and (R2 ≤ 0.60:
unsatisfactory), the performance of the IMM, ANN-CSA, and
ANN-SCA, were very good and the performance of the ANN-
FFA, ANN-GA, and ANN models were good, respectively.
Table 4G shows the accuracy of the models for the Tehran
station at the training level. The ANN-CSA MAE was
0.312 mm/day, while it was 0.325 mm/day, 0.334 mm/day,
0.345 mm/day, and 0.356 mm/day for the ANN-SCA ANN-
FFA, ANN-GA, and ANN models. As observed in Table 4G,
the IMM decreased RMSE of the ANN-CSA, ANN-SCA, ANN-
FFA, ANN-GA, and ANN models by 32, 34, 40, 50, and 51%,
respectively. Regarding the classification of R2 and NSE based on
the study of Leta et al. (2018), the accuracy of the ANNmodel was
perfect and good.Table 4H presents the accuracy of the models in
the Tehran station at the testing level. The MAE of the IMM was
0.112 mm/day, while it was 0.189 mm/day, 0.267 mm/day,
0.267 mm/day, 0.389 mm/day, 0.456 mm/day, and 0.512 mm/
day for the ANN-CSA, ANN-SCA, and ANN-FFA, ANN-GA,
and ANN models, respectively. Table 4I shows the training
results for the Yazd station. The hybrid ANN models had
higher NSE and R2 than the standalone ANN models.
Table 4J shows the testing results for the Yazd station.
Regarding the classification of R2 and NSE based on the study
of Leta et al. (2018), the ANN model had a good performance at
the testing level. The ANN-CSA decreased MAE of the ANN-
SCA, ANN-FFA, ANN-GA, and ANN models by 57, 61, 70, 76,
and 79%, respectively. Table 4K shows the training results for the
Shahrekord station. The RMSE of the IMM in Table 4K was 18,
21, 22, 30, and 43% lower than those of the ANN-CSA, ANN-
SCA, ANN-FFA, ANN-GA, and ANN Models. Table 4L shows
the testing results for the Shahrekord station. As observed in
Table 4L, regarding the classification of R2 and NSE values of the
study (Li et al., 2013), the ANN model’s performance was
satisfactory and good based on the R and NSE values.
Table 4M shows the training results for the Ahvaz station.
The performance of the ANN model was worse than the other
models. Table 4N shows the testing results for the models in the
Ahvaz station. This section’s analysis results were the same as
with the study of Seifi and Soroush (2020). They reported that
ANN model’s performance coupled with the optimization

algorithms was better than the ANN model. The current study
results agreed with those studies of Malik et al. (2020b),
Mohamadi et al. (2020). Malik et al. (2020b) used the multiple
model-ANN for predicting evaporation. The multiple ANN
model’s abilities were benchmarked against the SVM, multi-
gene genetic programming (MGGP), and decision tree models.
It was reported that the RMSE of the multiple model-ANN was
lower than those of the other models. Mohamadi et al. (2020)
coupled the ANN models with FFA and shark algorithm for
predicting evaporation. It was observed that the hybrid ANN
models performed better than the ANN models. Wu L. et al.
(2020) reported the high capability of the optimization
algorithms to improve the MLA’s accuracy. Moayedi et al.
(2021) coupled ANN with an electromagnetic optimization
algorithm. They reported that the hybrid new ANN model
was an accurate model for predicting evaporation. Figure 1B
in Supplementary Appendix shows the scatterplots of models.
The results indicated that the IMM had the highest accuracy. All
data sets were used to draw scatter plots. The results of Table 4
indicated that the IMM model had the highest accuracy in all
stations. As observed in Figure 2B, the box plots of the MAE
values indicated that the IMM had the best accuracy among other
models. However, the value of the MAE other models in the
different stations is variable. If the values of errors such as MAE
and RMSE of models in one station are more than other stations,
the following reasons can be considered: 1) The climate of regions
affects the accuracy of models. The data should be selected in a
way that covers the entire climate of the region. For example, air
pressure is an important parameter that can be used as another
input variable. This parameter can play an important role in
predicting evaporation in some stations. 2) Measurement of data
may be associated with more errors at some stations. This issue
may lead to an increase in errors. The mentioned reasons can be
modified in the next studies although the IMM model had the
lowest accuracy in all stations.

The IMMmodel in this study had better results than the other
models. Since this model used the advantages of multiple hybrid
ANN models, the results of IMM were better than the other
model. Each of the individual ANN models has advantages and
disadvantages. Thus, the use of the advantages of all models in an
ensemble structure could improve the accuracy of hybrid and
standalone ANN models. Among different optimization
algorithms, CSA has better results than the other optimization
algorithms. The agents of CSA shared their information together.
Also, the leader as the best solution guided the other solutions to
update their status. Thus, CSA has robust abilities for global and
local searches. The mentioned advantages of CSA caused it to
have better results than the other algorithms. It should be
considered that the leap and waking mechanism are the
important operators because these operators help the CSA to
escape from the local optimums. The solutions with low quality
using these mechanisms increase their quality. The SCA has
better performance than the FFA and GA, but the CSA
outperformed the SCA. Although the SCA has good accuracy,
its performance highly relies on random parameters. The SCA in
this study outperformed the FFA and GA because the users used
the sensitivity analysis. If the users only want to use the suggested
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FIGURE 3 | The CPU time of models with and without fuzzy reasoning.
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values of random parameters in the original paper, it may lead to
high errors. The modelers should adopt the random parameters
based on their modeling process and data points. However, the
ability of CSA to escape from local optimums was higher than the
SCA because the CSA used leap and wake operators. The FFA had
better accuracy than the GA. While a leader (global solution)
guided the other solutions in the CSA and SCA to improve their
quality, the FFA provides a new solution based on the ith and jth
solutions. The ANNmodels did not use optimization algorithms.
They used classical training algorithms. The results of the used
ANN models of the current study were worse than the optimized
ANN models because the classical training algorithms had a
lower ability than the optimization algorithms in finding optimal
solutions.

Table 4 also shows the SI values. The performance of models in
the Isfahan station indicated that the IMM performance was
excellent in the testing and training level, while the performance
of the ANN model was fair in the training and testing level. It was
observed that the IMM had excellent performance in the Tehran
station in the testing and training levels. The performance of the
ANN-CSA was excellent in the Tehran station. Among hybrid
ANNmodels, the ANN-GA had the weakest performance based
on the adequate performance in the testing and training level of
the Sari station. The IMM and ANN-CSA had excellent
performance in the Tabriz station in the training level, while
the ANN-SCA and ANN-FFA performance was good at the
training level.

The IMM and ANNmodel’s performance in the Ahvaz station
was excellent and lacking in the training and testing levels.
Finally, the performance of the IMM, ANN-CSA, and the
ANN-SCA was excellent in the Shahrekord stations. Figure 2
shows the boxplots of the observed and predicted data. As
observed in this figure, the IMM model provided more
accurate results than the other models in the different stations.
The ANN-SCA among different hybrid models provided the
most accurate results. The ANN model as the standalone

FIGURE 4 | Radar charts for comparing the models using CRMSE.

TABLE 5 | The obtained results from the Wilcoxon test over different stations.

Compared algorithms p

Isfahan

CSA vs. SCA 0.0032
CSA vs. FFA 0.0028
CSA vs. GA 0.0012

Tabriz

CSA vs. SCA 0.0071
CSA vs. FFA 0.0065
CSA vs. GA 0.0014

Sari

CSA vs. SCA 0.0051
CSA vs. FFA 0.0043
CSA vs. GA 0.0022

Rast

CSA vs. SCA 0.0052
CSA vs. FFA 0.0032
CSA vs. GA 0.0023

Ahvaz

CSA vs. SCA 0.0064
CSA vs. FFA 0.0045
CSA vs. GA 0.0026

Tehran

CSA vs. SCA 0.0057
CSA vs. FFA 0.0028
CSA vs. GA 0.0012

Shahrekord

CSA vs. SCSA 0.0052
CSA vs. FFA 0.0023
CSA vs. GA 0.0014
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model provided the worst results among different models. To
understand the difference in the models’ performance with and
without fuzzy reasoning, the CPU time of the models is reported
in Figure 3. As observed in Figure 3, the hybrid ANN model
predicted evaporation over a shorter time than the standalone
ANNmodel. The models with fuzzy reasoning had a shorter time
than the models without reasoning fuzzy. For example, the time
of ANN-CSA based on fuzzy reasoning in Sari, Isfahan, Tabriz,
Yazd, Ahvaz, Tehran, and Shahrekord stations were 210, 220,
200, 190, 197, 200, and 190 s, while the CPU time of the ANN-
CSA without reasoning fuzzy in Sari, Isfahan, Tabriz, Yazd,
Ahvaz, Tehran, and Shahrekord stations was 245, 260, 256,
220, 206, 340, and 370 s, respectively. The IMM was the best
model for predicting evaporation. The current study results
agreed with those studies of Norouzi et al. (2020) and Shabani
et al. (2021). These studies indicated that the IMM model could
improve the MLAmodels’ accuracy based on receiving outputs of
different models as inputs. Thus, they can provide a robust
synergy among different models.

Although the current study models had a high efficiency for
predicting evaporation, a comparison with classical methods
such as the M5Tree model and multivariate adaptive
regression spline (MARS) is required. M5Tree models use
the input and output data to provide a decision tree. The
MARS constructs several splines and a number of knots
between these splines to predict target variables. The MARS
uses the basis function for allocating data in each spline.
Figure 4 shows the radar chart for the models based on
CRMSE. As observed in this figure, the CRMSR of the
IMM, ANN-CSA, ANN-SCA, ANN-FA, ANN-GA, ANN,
M5Tree, and MARS was 0.123, 0.156, 0.198, 0.178, 0.192,

0.221, 0.234, 0.456, and 0.567 in the Isfahan station,
respectively. The CRMSR of the IMM, ANN-CSA, ANN-
SCA, ANN-FA, ANN-GA, ANN, M5Tree, and MARS at the
testing level was 0.119, 0.134, 0.167, 0.185, 0.191, 0.312, 0.325,
and 0.378 in the Yazd station, respectively.

In this study, the Wilcoxon test was used to show the
superiority of the CSA to the other algorithms. It is a
nonparametric statistical test to show the significance of the
results. The significance of the superiority of the CSA to the
other algorithms is observed in Table 5 based on p values, which
are lower than 0.05. In all stations, the CSA outperformed other
algorithms. The p values determine the significance level of the
twomethods. Amodel is statistically significant in this study if the
model results in a p-value less than 0.050.

Figure 5 compares algorithms based on a number of function
evaluations (NOFE) (population size*number of iterations). As
observed in this figure, the CSA with lower NOFE outperformed
the other algorithms in different stations. For example, the NOFE
of CSA, SCA, FFA, and GA was 15,000, 20,000, 25,000, and
30,000, respectively, in the Isfahan station. The GA had the
highest NFOE and the worst performance in all stations.

4.4 Further Discussion
Regarding the obtained results in this study, the following points
should be considered: As evaporation relies on the various climate
parameters, a robust preprocessing method is required to
determine the best input combination for predicting
evaporation. The collection of data and preparing the structure
of models are the challenges of this paper. However, the current
paper’s soft computing models need enough data points to
achieve the best accuracy.

FIGURE 5 | The heat map of NOFE.
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The performance of anMLA can be global when themodel can
predict evaporation under different climate conditions. The IMM
model was the best model for different synoptic stations in
different climate conditions in this study. The used IMM
model of the current study is suitable for predicting other
hydrological variables such as rainfall, temperature, and
streamflow. It can be used in different fields such as drought
and flood control. The IMM models are better than the Bayesian
average model because these models do not require statistical
computations such as prior and posterior distributions. The
models of the current study can be used for predicting
evaporation under climate change. The information and data
of the climate scenarios can be used as the inputs to the used soft
computing models of the current paper for predicting
evaporation. The models of the current study can be used for
predicting evaporation in different regions of the world.

The optimization algorithms improve the accuracy of the
models based on statistical error indexes and CPU time. The
fuzzy reasoning based on identifying and removing the weak
weights decreases the computational time. The subsequent
studies can focus on the input uncertainties and uncertainties
of model parameters. In this study, an improved GT could
identify the best input combination accurately. Another
approach for identifying the best input combination is using a
multi-objective optimization algorithm. It is enough to define two
objective functions where the first objective function is used to
determine the ANN parameters, while the second objective
function is utilized to determine the best input combination.
The multi-objective algorithms use the Pareto front and the
conception of the nondominated solutions for finding the best
solution. The other MLAs such as ANFIS, SVM, and decision tree
models can be coupled with the current study’s optimization
algorithms to improve the model’s accuracy. The application of
the introduced models in the current study is not limited to
predicting evaporation. The new models can be used for
predicting other variables such as temperature, rainfall,
streamflow, and other variables. The new models can be used
as effective tools for predicting evaporation when there is not
enough data. The climate data may not be accessible for all
modelers, and thus, the latitude, longitude, and the number of
days can be used as the inputs to the models for predicting
evaporation. All error indexes showed the superiority of the IMM
models. The successive researchers can use a multi-criteria
decision model to assign a rank to each model. The results of
the current study improved the accuracy of the previous research.
Qasem et al. (2019) used the support vector machine (SVM),
ANN, wavelet ANN, and wavelet SVM (WSVM) for predicting
evaporation. They predicted monthly evaporation using 288 data
sets based on the different input combinations. Their best model
used temperature and solar radiation as the input. The results
indicated that the RMSE and MAE of the best model was 0.701
and 0.525 in the test stage for the Tabriz station of Iran, while the
current study based on the IMM model gave the RMSE of 0.312
and MAE of 0.256, respectively. Also, the RMSE and MAE of the
ANN-SCA indicated that the used ANN-SCA provided better
results than that of the study of Qasem et al. (2019). Mohamadi
et al. (2020) used the hybrid ANN and ANFIS models to predict

evaporation based on 156 data sets. The relative humidity,
temperature, and sunny hours were the best input scenario. The
best hybrid model was the ANFIS-shark algorithm. The MAE of
the ANFIS-shark algorithmwas 1.165 and 1.269 in the training and
testing level, while the current study models based on 1,000 data
points provided lower MAE in the compassion of Mohamadi et al.
(2020). Malik et al. (2020b) used multi-genetic programming,
SVM, multivariate adaptive regression spline, and multiple
ANN models to predict evaporation in two India stations. They
used the 324monthly data points for the Pantnagar station and 156
monthly data sets for the Ranichauri station. The study results
confirmed that the multiple ANN models similar to the IMM
model of the current study had the best results. While the multiple
ANN models of the current study used the different hybrid ANN
models, the multiple ANN model of Malik et al. (2020b) used the
outputs of the multigenetic programming, SVM, multivariate
adaptive regression spline, and decision tree model. The results
indicated that the RMSE of themultiple ANNmodel of the study of
Malik et al. (2020b) in the testing level 0.536 and 0.638 for the
Pantnagar and Ranichauri stations while the IMM model used in
the current study for more data points provided lower RMSE in
comparison of the study ofMalik et al. (2020). Ghorbni et al. (2018)
predicted daily evaporation for 1,080 data sets. The ANN-firefly
algorithm for predicting two stations in Iran, namely, Talesh and
Manjil, was used. The maximum temperature, minimum
temperature, relative humidity, wind speed, and sunshine hours
were used as the inputs to the models. The RMSE andMAE for the
1,090 data sets of ANN-FFA were 0.887 and 0.62 in the training
and 1.007 and 0.709 in the testing level of the Talesh station. The
comparison of results with the current study indicated that the
current study models, especially the IMM, provided better results
than the study of Ghorbni et al. (2018).

The results of the current study are useful for water resource
management and agriculture management. The current study
models can be useful for the optimal operation of dam
reservoirs when the decision-makers need to estimate the
evaporation accurately in the continuity equation (Ehteram
et al., 2020; Seifi et al., 2020; Sammen et al., 2021; Seifi et al.,
2021). Additionally, the IMM model and other introduced
models of the current study can be useful for predicting other
hydrological variables such as runoff, rainfall, temperature,
and streamflow. Thus, the application of models is not limited
to the current study. Also, these models had a high potential
for predicting evaporation for future periods based on climate
scenarios. First, the modelers can predict the climate input
data based on climate scenarios and models. Afterward, the
inputs of the future period are inserted into the models to
predict evaporation for future periods. Using all input data
cannot always give the best accuracy. Qasem et al. (2019) used
different input combinations for predicting evaporation. The
best input combination used temperature and solar radiation.
They used ANN models, and the results indicate that the ANN
models based on temperature and solar radiation gave better
results than the ANN models based on input combinations of
temperature, solar radiation, relative humidity, and wind
speed. The importance of the used GT in this study is
related to the same issue. In this study, using all input data
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gave the best accuracy, but regarding the results of other
studies such as Qasem et al. (2019), the determination of
the best inputs based on GT is an important issue because
the input combinations with fewer inputs may give better
results. In this condition, if the modelers use the coupled
GT, they may not test different input scenarios. When the
modelers have different input data, they can use the GT for
decreasing computational costs. It should be considered the
modelers in the original version of GT have to compute the Γ
and Vratio for different scansions. When the GT was coupled
with the optimization algorithms, the coupled GT could be the
best input combination because the name of the input variables
is inserted into the optimization algorithms. Afterward, the
algorithm provides the random population-based on
introduced decision variables to give the best input
combinations among the entire probable forms.

The model parameters and inputs to the models are the
sources of uncertainty. The robust optimization algorithms can
be used for estimating model parameters. Thus, the uncertainty of
model parameters may decrease using robust optimization
algorithms. The subsequent studies can quantify uncertainty in
the modeling process.

5 CONCLUSION

Predicting evaporation is an important issue for water resource
management. Predicting evaporation is a complex process because
it depends on the different climate parameters. Thus, identifying
effective parameters on evaporation and developing robust models
for predicting evaporation is an important issue. In this study, a
new hybrid model, the ANN-CSA, based on fuzzy reasoning
conception, was used to predict Iran’s seven synoptic stations’
daily evaporation. Then, the ANN-CSA’s ability was benchmarked
against the ANN-FFA, ANN-SCA, ANN-GA, and ANN models.
Then, the models’ outputs were utilized as the ANN model to
predict the daily evaporation based on the inclusive multiple
models. The fuzzy reasoning was used to remove the redundant
weights of the ANNmodel. To identify the best input scenario, the
CSA was coupled with the Gamma test. The hybrid Gamma test
decreased time for selecting the best input scenario. The RMSE of

the IMM in the Isfahan station was 0.221 mm/day while the RMSE
of the ANN-CSA, ANN-SCA, ANN-FFA, ANN-GA, and ANN
model was 0.455 mm/day, 0.567 mm/day, 0.612 mm/day,
0.614 mm/day, and 0.721 mm/day, respectively. The NSE of the
IMM mode in the testing level was 0.94, while it was 0.92, 0.90,
0.86, 0.85, and 0.82 for the ANN-SCA, ANN-FFA, ANN-GA, and
ANN models, respectively, in the Sari station. The results for the
other stations indicated that the IMM performed better than the
other models. The models’ relative error indicated that the ANN-
CAS performed better than the ANN-FFA, ANN-SCA, ANN-GA,
andANNmodels. The current study’s general results indicated that
the IMM and reasoning conception are two critical tools for
predicting hydrological variables. One of the limitations of the
current study is gathering input data. Also, the use of ANN-CSA
has challenges because the CSA has many computational levels. It
needs to the high ability of modelers. Additionally, the adjusting of
CSA parameters is an important issue. If the modelers do not
accurately set the CSA parameters, it may lead to error
computations.

The next studies also can investigate the effect of other inputs
such as number of days and air pressure for predicting evaporation.
The results of the current study are useful for optimal operation of
reservoir dam, water resource management, agriculture, and
irrigation management.
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