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We derive asset-pricing and portfolio-choice implications of a dynamic
incomplete-markets model in which consumers are heterogeneous in several respects:
labor income, asset wealth, and preferences. In contrast to earlier papers, we insist on
at least roughly matching the model’s implications for heterogeneity—notably, the
equilibrium distributions of income and wealth—with those in U.S. data. This approach
seems natural: Models that rely critically on heterogeneity for explaining asset prices are
not convincing unless the heterogeneity is quantitatively reasonable. We find that the class
of models we consider here is very far from success in explaining the equity premium
when parameters are restricted to produce reasonable equilibrium heterogeneity. We
express the equity premium as a product of two factors: the standard deviation of the
excess return and the market price of risk. The first factor, as expected, is much too low
in the model. The size of the market price of risk depends crucially on the constraints on
borrowing. If substantial borrowing is allowed, the market price of risk is about
one one-hundredth of what it is in the data (and about 15% higher than in the
representative-agent model). However, under the most severe borrowing constraints
that we consider, the market price of risk is quite close to the observed value.
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1. INTRODUCTION

A recent strand of literature, starting with papers by Marcet and Singleton (1990),
Telmer (1993), Lucas (1995), Den Haan (1996a), and Heaton and Lucas (1996), has
explored whether incomplete asset markets and heterogeneity among consumers
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can help explain asset pricing anomalies such as the equity premium puzzle [see,
e.g., Mehra and Prescott (1985) or the recent survey by Campbell (1997)]. One
way of summarizing the results from the earlier part of this literature is as follows:

1. It is, at least in principle, possible to generate larger equity premia with this set of
models.

2. For large equity premia to result, however, significant equilibrium heterogeneity in
consumption (and intertemporal marginal rates of substitution) is necessary.

3. Only one asset (a riskless asset or a market portfolio) goes a long way in terms of
providing reasonable insurance for agents, thus preventing such heterogeneity from
occurring in equilibrium.

4. As a result, this framework does not appear capable of explaining the asset pricing
puzzles without relying on (unreasonably) high idiosyncratic income variance, (un-
reasonably) tight borrowing constraints, or transactions costs (which can be analyzed
without heterogeneity).

From the perspective of these papers, then, the success in explaining asset prices
with this endeavor has been partial at best.

A much more optimistic perspective, however, is offered in the recent paper by
Constantinides and Duffie (1996), who are able to construct an analytical frame-
work with which they illustrate how a low risk-free rate and a large risk premium
are possible as equilibrium phenomena in an incomplete-markets heterogeneous-
agent model. The key ingredient in their model is the assumption that (log) labor
income follows a random walk (with drift). This assumption and its implications
for individual consumption processes, the authors argue, are at least not at apparent
odds with empirical studies of individuals.

In the present paper, we construct a model along the lines of the above studies:
We consider a dynamic model with heterogeneous agents in which idiosyncratic
risk is only insurable partially and indirectly by holding aggregate assets (a risk-
less bond and aggregate capital). The principal purpose of this undertaking is to
evaluate the equilibrium asset prices and portfolio choices that obtain under these
assumptions. Our paper adds value to the existing literature, first, by pointing to
the necessity of restricting the set of incomplete-markets models to those with rea-
sonable implications for heterogeneity (a point to be elaborated below). Second,
we explore the implications for the equity premium and the market price of risk
for the class of models we thus are restricted to.

At this stage of the incomplete-markets asset pricing research program it seems
important to subject the models’ implications for heterogeneity to more strin-
gent tests: The most recent literature has results in which asset prices look more
empirically reasonable, but the question is whether these results rely on assuming
quantitatively unreasonable heterogeneity. Earlier papers [e.g., Telmer (1993), Den
Haan (1994, 1995, 1996a), Heaton and Lucas (1995, 1996), and Lucas (1995)],
which are less successful in generating realistic asset prices, are not different in
their basic approach, but they differ in some of the modeling details: They build on
a model framework with two infinitely lived agents [as opposed to the continuum
of agents of Constantinides and Duffie (1996)], and they use different processes
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for the idiosyncratic income shocks.1 Our present framework—one with a large
number of agents—is designed to replicate some of the key features of real-world
heterogeneity. This framework allows us to derive an alternative set of implica-
tions for asset prices and to discuss the role of the specific assumptions used in the
existing literature.

Although the two-agent models have been parameterized in as reasonable a way
as possible, their population structure makes them hard to confront with cross-
sectional data on individuals. Such data, for example, reveal significant dispersion
in consumption growth rates across agents, and the assumption of two agents
forces any heterogeneity in the model to have direct aggregate consequences, or
direct consequences for average consumption variability. This is potentially an
important restriction; in a continuum-of-agents model, asset prices may end up
being determined by (the intertemporal marginal rates of substitution of ) a very
small group of agents. Because only the equilibrium interactions can tell who will
be in this group, it is hard a priori to guess what the difference is between two-
agent and many-agent versions of the same setup. These points are illustrated in
our discussion below of how the market price of risk is determined in the present
model.

Constantinides and Duffie, at another end of the spectrum of possible models,
do consider a richer population structure, but they reach their results only by
restricting the income processes of agents to a very narrow class. It turns out, as
we show in this paper, that this restriction leads to a distribution of asset holdings
in the population that is highly unrealistic: By construction,every agentin the
economy has to have the same level of asset holdings. Given that real-world asset
holdings are quite dispersed among consumers, in fact significantly more so than
are individual earnings, this feature of the Constantinides and Duffie model seems
highly problematic.2 Relatedly, in terms of asset price determination, a feature
of the Constantinides and Duffie model is that all agents have interior portfolio
decisions, i.e., the group of agents determining asset prices is the whole population.

The economic framework that we use is based on our earlier work in Krusell
and Smith (1996b) where we introduce aggregate productivity shocks into the
continuum-of-agents, precautionary-savings version of the neoclassical growth
model studied by Aiyagari (1994). Our earlier paper shows that equilibria in that
framework could be characterized without using all moments of the income and
wealth distributions (a result we refer to as “approximate aggregation”), and thus
that it is computationally feasible to explore this class of models. There, however,
we consider only one asset—aggregate (risky) capital. The introduction of a second
asset—a riskless bond—into this environment is an important robustness check
but poses nontrivial computational problems. The bond market needs to clear at
each date and state, and to see whether this is possible with a bond price that can
only depend on a few moments of the wealth distribution is the main challenge in
this respect. We find, fortunately, that an extension to our computational algorithm
for finding equilibria works quite well in the two-asset model, and that equilibrium
quantities are very similar in the one- and two-asset versions of the model.
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Like Mehra and Prescott (1985) and R´ıos-Rull (1994), who compute equity pre-
mia in contexts without idiosyncratic risk, and like the studies of two-agent models
with idiosyncratic risk and incomplete markets, we find that the equity premium
in our model is nowhere near that observed in postwar U.S. data.3 However, our
model is able to produce values for the market price of risk which are closer to
the data. This result is not without interest, because one can argue that the NYSE-
based measure of the market price of risk is much closer to its model counterpart
than is the NYSE return premium. The model’s risky asset is the aggregate capital
stock, only a small part of which consists of NYSE assets. Thus, one should not
expect the model equity premium to coincide with the NYSE return premium (in
particular, the return on aggregate capital fluctuates much less than do NYSE stock
returns). However, one can extract implications from NYSE data for the market
price of risk (which is a per-unit measure), even though these data do not contain
direct measures of the return to total capital. If the model’s borrowing constraints
are very tight, the implied values for the market price of risk are very large, indeed,
as large as those seen in the data. With very lax constraints, the market price of
risk falls to a substantially lower level (it falls by about a factor of 100), at which
point it is only 15% higher than in the corresponding representative-agent model.

Calibrated versions of the present model and the two-agent models thus have
in common that they imply unrealistic asset prices (unless borrowing is severely
restricted). However, the economics behind these results are different in some im-
portant respects. Whereas individual consumption variability is quite limited in
the two-agent frameworks—agents are able to use the assets to trade to almost
perfectly insured positions—we find substantial individual consumption variabil-
ity. For example, the unconditional standard deviation of individual consumption
is about four times that of aggregate consumption, and at any moment in time the
variation in consumption growth rates across consumers is very large. On the face
of it, this finding may seem like great news for asset prices, at least relative to the
two-agent economies. However, increasing idiosyncratic consumption variability
by an order of magnitude (holding aggregate consumption variability constant)
is not sufficient for significantly raising either the equity premium or the market
price of risk.

To see why, consider the portfolio first-order condition for any agent who holds
both assets. This condition, which resembles the pricing-kernel condition from a
standard representative-agent model, can be used to express the ratio of the ex-
pected excess return on equity to its standard deviation—a ratio that we define to
be the market price of risk for our economy—as a function of the joint distribu-
tion of the agent’s future marginal utility of consumption and the equity return.
Although the variability of individual consumption enters the determination of
the market price of risk through this formula, the effects of simply increasing id-
iosyncratic volatility on the market price of risk are not clearcut. In particular, to
understand how the market price of risk changes, it is crucial to know how the added
volatility is related to the equity’s return. This point is made by Mankiw (1986),
who shows that the equity premium can actually fall with increased idiosyncratic
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consumption variability if the added variability is concentrated in states in which
the equity return is high. Mankiw’s argument suggests that an increased market
price of risk requires the idiosyncratic consumption volatility to be higher in bad
times than in good times.

We use the above arguments to derive a bound for the market price of risk
that applies in incomplete-markets economies. This bound makes clear the role
of idiosyncratic consumption volatility, and it shows how Mankiw’s argument
applies in our context. In our economy, because employment is more likely in good
aggregate states, the variability of individual consumption is negatively correlated
with the asset return. Therefore, at least on a qualitative level, the idiosyncratic
risk in our model does contribute to an increase in the market price of risk and to
an increase in the equity premium.

From a quantitative perspective, however, very large fluctuations in individual
consumption are needed to produce enough suffering from risk to warrant a large
increase in the market price of risk. This observation goes back to the work by
Lucas (1987), Cochrane (1989), Atkeson and Phelan (1994), Krusell and Smith
(1996a), Tallarini (1996), and others: Even if idiosyncratic consumption variability
is raised by what seems to be a large amount, insurance in this class of models is
still excellentin terms of utility.

The key equilibrium determinant of the market price of risk in an incomplete-
markets economy is thus the variability in marginal utility of the agents who hold
both risky and riskless assets. For our parameterizations, this ends up being a small
subset of the agents.4 Such an agent’s view about risk depends on his asset position
and on his current income and preference shocks. In economies with very tight
restrictions on borrowing, these agents turn out to be quite poor and to expect very
large (i.e., well above average) fluctuations in consumption and marginal utility;
hence the high market price of risk. In contrast, when the borrowing constraint
is more lax, the agents with interior portfolio solutions are in much more of an
average position, and do not suffer much from fluctuations.

Our results on the market price of risk are not directly comparable to those in
existing models, because the calibrations differ and the assumptions on the set of
assets differ (many of these studies also do not report the market price of risk).
Telmer (1993) also obtains high values for the market price of risk when borrowing
is severely constrained, but these values are accompanied by large negative values
for the risk-free rate.5 Lucas (1995) finds high values as well, but with a different set
of assets and a different calibration. Finally, Constantinides and Duffie (1996) can
obtain any market price of risk, but as we pointed out, this virtue is accompanied
by sharply counterfactual implications for wealth heterogeneity.

We organize the paper as follows. In Section 2 we describe our general frame-
work of analysis. We present the results in steps. In the first step, we discuss the
role of persistence of individual shocks. To make this discussion as transparent
as possible, we restrict attention to a setup without aggregate uncertainty. Specifi-
cally, we show how the distribution of asset holdings in the Aiyagari (1994) model
contracts as the labor income process becomes more and more persistent. This
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discussion, which is limited to the determination of the riskless rate and which
also explores the connection with Constantinides and Duffie (1996), is contained
in Section 3.1. Thereafter, in Section 3.2, we report the results from the model with
aggregate uncertainty and equity-premium and portfolio-choice implications. In
addition to income shocks, there are preference shocks in this model: ex ante iden-
tical agents have different discount factors ex post, which introduces differences
in savings behavior among agents that are sufficient to make the distribution of
wealth much more skewed and thus conform with that observed in the data. This
section also contains our bounds calculations for the market price of risk. Section 4
concludes.

2. THE MODEL

2.1. Primitives

We describe the full model in this section. Whereas the agents are ex ante identi-
cal, there is ex post heterogeneity deriving from two sources: idiosyncratic, only
partially insurable shocks to labor productivity and to the discount factor. That is,
at each point in time, two agents may differ in their current productivity and degree
of patience and, as we see later, in accumulated wealth.

Our framework is a version of the stochastic growth model. There is a large
(measure 1) population of infinitely lived consumers. There is only one consump-
tion good per period and preferences satisfy

E0

∞∑
t=0

βtU (ct ).

The accumulative discount factorβt follows the stochastic process

βt = β̃βt−1,

and we assume thatβ̃ is a finite-state Markov chain. We defer further description of
this process to Section 3.2; in Section 3.1,β̃ is assumed to be constant. For the
period utility function, we useU (c) = log(c).

The aggregate technology is standard:

y = zkαl 1−α,

whereα ∈ [0, 1], y is output,k is the aggregate capital input (i.e., the sum of
individual agents’ holdings of capital),l is the aggregate labor input (i.e., the sum
of individual agents’ labor supplies, measured in efficiency units), andz is a shock
to aggregate productivity. Capital accumulation is also standard:

k′ = (1 − δ)k + i,
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with δ ∈ [0, 1], wherek′ denotes capital next period andi investment. Finally, the
total resourcesy can either be consumed or invested.

The shock to aggregate productivity takes on one of two values:z∈ {zb, zg},
with zg > zb. The matrix [

πgg πbg

πgb πbb

]
describes the evolution of the aggregate shock:πss′ is the probability that the
aggregate shock next period iszs′ given that it iszs this period.

In each period, each agent is endowed with one unit of time that is devoted to
production because agents do not value leisure. The productivity, or efficiency,
of an agent’s endowment of time is denoted byε. The labor productivity shock
ε is independent of the preference shock and evolves in an idiosyncratic fashion
according to one of two stochastic processes. In Section 3.1,ε follows an AR(1)
in logs:

logε′ = ρ logε + ε′,

whereε is i.i.d. and normally distributed. This income process is used to examine
the behavior of the model as the autoregressive parameterρ is increased toward
1. In this context, we assume a law of large numbers that states that the (cross-
sectional) average of labor productivity is constant across time. Total labor supply
(measured in efficiency units) therefore can be normalized to 1 without loss of
generality. Finally, in this setup, an agent’s productivity shock and the aggregate
productivity shock are assumed to be independent of each other.

In Section 3.2, we do not consider permanent shocks and therefore use a simpler
process for labor productivity. In particular, we assume thatε ∈ {0, 1}: The agent
is employed whenε = 1 and unemployed whenε = 0. We also assume that unem-
ployed agents receive an exogenous amountg of goods, which can be interpreted
as the value of home production (it is thus a form of unemployment insurance).6

We assume thatg is independent of market conditions. In this setup, unlike in
Section 3.1, the individual and aggregate shocks follow a joint first-order Markov
structure, where we allow aggregate conditions to affect idiosyncratic ones in a
manner suggested by Mankiw (1986). In particular, the condition that adverse ag-
gregate shocks have the effect of increasing idiosyncratic income risk, and thus the
cross-sectional income variance, takes a very natural form here: The probability
of becoming unemployed is higher in bad times. We useug andub to denote the
unemployment rates in good and in bad times, respectively.7 The marginal distri-
bution of the aggregate productivity shock is the same as in Section 3.1, i.e., it is
determined by the transition matrix given above. The joint transition process for
(z, ε) is as follows: 

πgg00 πbg00 πgg10 πbg10

πgb00 πbb00 πgb10 πbb10

πgg01 πbg01 πgg11 πbg11

πgb01 πbb01 πgb11 πbb11

 ,
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whereπss′εε′ is the probability of transition from state(zs, ε) today to(zs′ , ε′)
tomorrow. For consistency with the above marginals and unemployment rates, the
transition probabilities need to satisfy

πss′00 + πss′01 = πss′10 + πss′11 = πss′

and
us

πss′00

πss′
+ (1 − us)

πss′10

πss′
= us′

for all (s, s′).

2.2. Market Arrangement

There are two assets available for net saving and for protection against risk: There
is a riskless bond, and there is aggregate capital. It is assumed that all agents face
the same returns on these assets. It should be clear how the assets can be used to
protect against risk: The two assets’ returns are linearly independent, and so, they
can be used to span a larger space than if there were only one asset. Because the
idiosyncratic and the aggregate shocks are correlated, it is clear, moreover, how the
risky capital asset can be used, particularly to protect against the idiosyncratic risk.
Agents who are afraid of becoming unemployed identify capital as an asset that
pays off in precisely the opposite way in which they wish to insure: It pays poorly
when times are poor and any given agent is more likely to be unemployed and
thus in need of income. Because employment status is positively autocorrelated,
we therefore anticipate that unemployed agents particularly will desire a portfolio
with relatively little capital.

We usek andb to denote the individual’s beginning-of-period holdings of capital
and bonds, respectively. We restrict end-of-period asset holdings as follows:k′ ≥
k > −∞, b′ ≥ b > −∞. These restrictions reflect the need to rule out Ponzi
schemes but also can be used as a way of limiting the effective ability of agents to
smooth consumption. The restrictions onk′ andb′ imply that next period’s wealth
cannot fall below a lower bound.

Letting the total amount of capital in the economy be denotedk̄ and the total
amount of labor supplied̄l , our constant-returns-to-scale production function im-
plies that the price of one unit of labor services isw(k̄, l̄ , z) = (1−α)z(k̄/l̄ )α and
that the return to capital services isr (k̄, l̄ , z) = αz(k̄/l̄ )α−1 − δ. It is an important
feature of this environment that all agents who save in capital receive the same
return.

Because we employ a recursive definition of equilibrium, we need to specify
the relevant set of aggregate state variables. By this, we mean, loosely speaking,
those current variables that have independent impact on current or future equilib-
rium prices.8 Our set of state variables, then, contains the aggregate productivity
shock and the distribution of agents over their individual wealth, preference, and
employment status. The individual’s vector of wealth,ω (which we define as the
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total value of labor income and gross asset income), currentβ̃, and employmentε
is his relevant individual-specific state variable: Agents that differ with respect to
this vector will, in general, behave differently with respect to savings propensities,
portfolio choices, and so on. The distribution variable over this vector,0, thus
keeps track of how many agents are, say, in each wealth interval for each value of
the preference/employment status. Note that whether an agent carried his wealth
in capital or bonds is not relevant as a separate state variable: The portfolio choice
is a control variable in this setup.

The equilibrium law of motion for the aggregate state variable is jointly given
by the transition matrix forz, which is exogenous, and by a functionH , which is
endogenous:0′ = H(0, z, z′). The role of the aggregate state variable and its law
of motion from the point of view of the individual is, of course, to predict future
prices. The equilibrium pricing functions are given by the two expressions forw

andr above, wherēk can be computed by integrating the wealth distribution and
l̄ is given by 1− u; and the bond pricing functionq(0, z).9

The individual’s optimization problem thus can be cast in terms of the following
dynamic programming problem:

vi (ω, ε; 0, z) = max
c,k′,b′{U (c) + β̃i E[v j (ω

′, ε′; 0′, z′) | z, ε]}

subject to
c + k′ + q(0, z)b′ = ω, (1)

ω′ = (r (k̄′, l̄ ′, z′) + 1)k′ + b′ + ε′w(k̄′, l̄ ′, z′) + (1 − ε′)g, (2)

0′ = H(0, z, z′), (3)

(k′, b′) ≥ (k, b), (4)

where the subscript on the value function indicates the value of the discount factor;
the laws of motion forz, β̃, andε are implicit in the expectations operator. The
decision rules coming out of this problem are denoted by the functionsf k

i and f b
i :

k′ = f k
i (ω, ε; 0, z) andb′ = f b

i (ω, ε; 0, z). We suppress the subindexi when we
refer to the vector of decision rules.

A recursive competitive equilibrium then is summarized by a law of motion
H , the individual’s functionsv, f k, and f b, and pricing functions(r, w) andq
such that(v, f k, f b) solves the consumer’s problem;r andw are competitive
(i.e., given by marginal productivities as expressed above);H is generated byf k,
i.e., the appropriate summing up of agents’ optimal choices of capital given their
current status in terms of wealth and employment; andf b generates bond market
clearing, i.e.,

∫
f b(ω, ε; 0, z) d0 = 0.

3. FINDINGS

We first discuss the effects of persistence in individual income shocks (Section 3.1)
in the context of no aggregate shocks, and then move on to the model with aggregate
uncertainty in Section 3.2.
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3.1. Effects of Persistence in Individual Income

We now analyze a special case of the model in Section 2: We setzg = zb and
βt = β̃

t
, whereβ̃ is a constant. This special case does not allow us to study risk

premia, but it does allow nontrivial determination of the risk-free rate of interest
and of the implications for equilibrium wealth dispersion. Our model here is very
closely related to the neoclassical growth-model setup with partially uninsurable
income risk in Aiyagari (1994) and also is quite similar to the endowment econ-
omy that Huggett (1993) studies for the purpose of analyzing the risk-free rate
puzzle.10

3.1.1. Calibration. We calibrate the model in this section to a period of a year,
and select the discount factor and the depreciation rate in approximate accordance
with Aiyagari (1994). To be able to characterize equilibria also for the case with
a unit root in log labor income, it is necessary to prevent the distribution of labor
productivities from spreading out indefinitely. This can be done in several ways, and
we follow Constantinides and Duffie (1996) who assume a (constant) positive risk
of dying in an alteration of their baseline model.11 We assume that this risk,πd, is
0.02, leading to an effective discount rate of about 0.96, and we assume that newly
born agents receive an initial level of capital equal to the mean capital stock.12

We use a capital share of 0.36 and a borrowing (or short-sales) constraint for
capital of zero. In sum, our parameter vector is(β̃, α, δ, πd, k) = (0.98, 0.36, 0.10,
0.02, 0).

For the parameters of the labor income process, we let the autocorrelationρ vary
across experiments (we useρ ∈ {0.5, 0.98, 0.99, 1}) and maintain a constant value
of the conditional standard deviation of log labor income.13 We set the latter so
that, atρ = 1, the unconditional standard deviation of log labor income is similar
to that used in Aiyagari’s study. More precisely, we set the standard deviation ofεt

equal to 0.04 and we select its mean so that, when integrated over the population,
the total labor input in efficiency units equals 1.

We solve for the prices in the stationary equilibrium of this economy using the
method described by Aiyagari (1994). To solve for the decision rules of a typical
agent, given prices, we iterate on the value function in Bellman’s equation using
cubic splines to interpolate between grid points (see the Appendix for a more
complete description of the algorithm and for a discussion of its accuracy). When
ρ, the degree of idiosyncratic labor income persistence, is equal to 1, the resulting
unit root in log labor productivity prevents us from using a discrete-state Markov
chain to approximate the process governing the evolution of log labor productivity.
Instead, for all values ofρ, we perform numerical integration using eight-point
Gaussian quadrature.

3.1.2. Equilibrium: Wealth dispersion and the risk-free rate.The results from
varying ρ—the degree of idiosyncratic income persistence—are contained in
Table 1.
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TABLE 1. Effect of increased idiosyncratic income persistence

ρ

Variable 0.50 0.98 0.99 1.00

Equilibrium interest rate, % 4.12 4.07 4.06 4.07
Aggregate capital 11.60 11.67 11.68 11.66
SD of capital 1.47 6.42 5.94 0.36
Skewness of capital −0.03 2.58 3.60 4.98
Gini coefficient of capital 0.067 0.255 0.217 0.018

The table shows that the risk-free rate and several aspects of the distribution
of capital are nonmonotone inρ. At low values forρ, aggregate capital and the
standard deviation, skewness, and Gini coefficient of the distribution of capital
across agents are all low. As persistence is increased, these variables all increase.
However, asρ gets close to 1, some striking facts appear: The distribution of capital
(almost) collapses onto one point! Atρ = 0.99, the standard deviation equals 5.94,
and atρ = 1, it equals 0.36. Similarly, the Gini coefficient for the asset distribution
goes from 0.217 to 0.018. Finally, the skewness (as well as the kurtosis) of the
capital distribution is monotone increasing inρ.

Thus, at high enough levels of persistence, as shocks in some sense become
worse and worse, agents are more and more averse to holding low levels of capital:
With a low level of capital and high income persistence, the chance of a string of
bad shocks that takes the agent down to very low consumption levels is larger. On
the other hand, the rate of return on savings is significantly below the discount rate,
and so, agents are also more unwilling to hold high levels of capital: When an agent
is well insured, what mainly matters for his savings decision is the riskless rate
relative to the discount rate. Recall that the average holdings of capital in this
economy are endogenous, so that, for example, more risky processes lead to higher
average capital holdings. In addition, the return to capital is determined by the
marginal productivity of capital, so that the capital stock cannot increase too much
without significantly lowering the return to capital. In other words, the higher the
average capital holdings, the lower is the return, and hence the more will well-
insured agents dissave, and hence the limit to the increase in the economywide
stock of capital asρ goes to 1.

3.1.3. Wealth dispersion in the Constantinides and Duffie model.At this point
it is useful to recall the results of Constantinides and Duffie (1996). They use a
slightly different individual income process and show that an equilibrium with no
trade obtains under certain conditions. In this equilibrium, which has aggregate
uncertainty as well, all agents hold exactly the same portfolios by construction.
To clarify the connection between this result and the one we obtain here, let us
consider the constraints faced by an agent in the Constantinides and Duffie model.
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When there is no aggregate uncertainty, the agent’s budget reads

cit + psi,t+1 = Ii t + (p + d)si,t

at time t , wherei refers to the individual,si is the individual’s share of the ag-
gregate asset,p is the price of the asset,d its dividend, andIi the individual’s
income. The process for income is as follows:Ii t = ezit − d, with zit following
a random walk whose innovation is normally distributed with mean−y2/2 and
variancey2, i.e., zit has negative drift and an innovation variance that increases
with the absolute value of the drift. This particular combination of innovation
drift and variance ensures that the economywide (average) incomeI has a con-
stant mean over time ifzi 0 is normally distributed, because normality implies
thatE(ezi,t+1) = eE(zi,t+1)+Var(zi,t+1)/2 = eE(zit )−y2/2+[Var(zit )+y2]/2 = eE(zit )+Var(zit )/2 =
E(ezit ), where theE’s and Var’s are the cross-sectional expectation and variance
operators, respectively.14 Also note that one peculiarity in this framework is that
labor income can be negative.

To see why the Constantinides and Duffie formulation yields a no-trade equi-
librium, note that the first-order condition to the agent’s problem reads as follows,
assuming an interior solution15:

qc−σ
i t = β̃Et

[
c−σ

i,t+1

]
,

whereq ≡ 1/[(p+ d)/p] denotes the equivalent of the price of a one-period risk-
less bond with a face value of 1.16 This equation can be rewritten as follows:

q = β̃Et

[(
ci,t+1

cit

)−σ
]
.

In a no-trade situation, the asset holding is constant over time:sit = si . Using this
in the equation, we obtain

q = β̃Et

[(
ezi,t+1 − d + si d

ezit − d + si d

)−σ
]
.

This equation is satisfied for all agents (that is, for allzit ’s andsi ’s) only if si = 1
for all agents. In other words, no trade implies equal asset holdings. In this case,
the last equation becomes

q = β̃Et
[
e−σ(zi,t+1−zit )

] = β̃eσ(1+σ)y2/2.

This equation expresses the equilibrium risk-free rate (i.e.,q−1) as a function of
fundamentals. We see thatq−1 < β̃

−1
, and that the gap is increasing iny, the pa-

rameter governing the variance and (negative) drift of the idiosyncratic shocks to
income growth, and increasing in the degree of risk aversion. In other words, the
risk-free rate can be made arbitrarily small by increasing the variance of individual
shocks alone.
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Note as a curiosity of the solution that it implies that the real value of assets
carried forward equalsp, i.e., all agents in the economy are right at the borrowing
constraint (see note 15 for further details).

3.1.4. Comparisons. There is a straightforward interpretation of the Constan-
tinides and Duffie equations in terms of a model with capital and production: Let
d = (r − δ)k̄, p = k̄, sit = kit /k̄, andezit = wεi t , in which case the budget can
be rewritten as

cit + ki,t+1 = wεi t − (r − δ)k̄ + (1 + r − δ)kit ,

which is close to the budget constraint in the neoclassical model that we examine in
this paper. There is only one difference: the addition of the negative term−(r −δ)k̄
on the resource side of the constraint. For our calibration, this term is small relative
to the other resource terms in the budget. The fact that it is small in relative terms
explains why theρ = 1 case of the Aiyagari setup is similar, but not identical, to
the Constantinides and Duffie case. Thus, the wealth distribution collapses, but it
does not quite collapse onto one point (the standard deviation of the distribution
is a little larger than zero).

3.1.5. Remarks. The Constantinides and Duffie model with permanent shocks
leads to a striking and counterfactual result—the no-trade steady state has complete
equality in asset holdings—and the model we look at has the same essential features
when shocks are permanent. A few remarks are worthwhile at this point. First, the
omission of aggregate uncertainty in our discussion is not critical to our central
message in this section; it is straightforward to amend the setup to include aggregate
shocks and argue that the asset distribution will collapse.

Second, the no-trade result in Constantinides and Duffie’s paper is often “ex-
plained” with reference to the fact that shocks are permanent. The logic is as
follows. For an agent to want to borrow when hit by a negative shock, it seems
necessary that the agent also expect better times in the future relative to other
agents: Otherwise, the borrowing does not help in smoothing consumption over
time. However, when shocks are permanent, the current shock is the best predictor
of future shocks, and so, in relation to others at least, better (or worse) times are
never expected. The results from the Aiyagari-style model makes clear that this
line of reasoning is incomplete: This model has permanent shocks, but there is
trade nevertheless. It is clear, for example, that the form of preferences and the
precise way in which shocks are permanent matters for whether there will be trade
or not.

Third, can we conclude that permanent labor income shocks always lead to an
equilibrium with a(n essentially) collapsed wealth distribution? We cannot. For
example, with different preferences, assets do not need to be equal across agents:
With a negative exponential utility function, any asset distribution is a steady state
with no trade if the income shocks follow a random walk in levels (this is easy
to check). However, a random walk in levels is problematic because it implies
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that income and consumption will be negative with probability 1 for all agents.
Another way out is as follows. It is possible to amend the Constantinides and Duffie
model to allow for heterogeneity in asset holdings by letting agents have different
labor income processes. If, namely, agenti has Ii t = ezit − si d, then a no-trade
equilibrium in which agenti holdssi units of the asset is possible.17 However, this
makes labor and asset income negatively correlated in the population. Finally, a life-
cycle model with a unit root in (log) labor income may not lead to a counterfactual
wealth distribution. This possibility is under investigation by Storesletten et al.
(1996).

Fourth and finally, we would like to point out that the collapse of the asset
distribution could to a large extent also have been anticipated from the work of
Deaton (1991). Deaton analyzes the decision problem of an agent facing the kind
of shocks assumed in Constantinides and Duffie’s model, and he shows that, when
q > β̃e−σ(1+σ)y2/2 (using our notation from above), there is an absorbing state:
zero asset holdings (which equals the borrowing constraint in his setting). That
is, agents draw down on their asset holdings and when zero is reached they stay
there forever and let consumption equal labor income. Deaton, however, does not
show that the limit caseq = β̃e−σ(1+σ)y2/2 leads to the same outcome, and does
not remark that a stationary equilibrium can be constructed using this equation to
pin down the equilibrium price.

3.2. Aggregate Uncertainty

The preceding section established what we consider a central, and counterfactual,
implication from assuming permanent idiosyncratic shocks to (log) labor income:
It leads to a collapse of the asset distribution, which in reality is much more dis-
persed than the distribution of labor income. However, there area priori reasons
to rule out permanent income shocks as well. Heaton and Lucas (1996) and others
argue, with reference to studies of individuals, that individual shocks are not per-
manent. Actually, their argument for using a model with only temporary shocks
can be strengthened. In a model such as those we discuss here, agents can only be
interpreted as dynasties (because they live forever). Thus, the appropriate counter-
part of the model’s labor income process in the data is really not the process for
given individuals: It is the income process offamilies. And here there is less dis-
agreement: There is significant regression to the mean if one compares children’s
income to that of their parents [for a discussion, see Stokey (1996)]. In other words,
even if individuals’ income processes had a unit root component in the data, one
should not calibrate the present kind of model to have a unit root.

In what follows, we present results from our full model with aggregate un-
certainty and less-than-permanent shocks to individual income. We first present
results from a model that has no preference shocks and illustrate that the wealth
distribution so derived also has much less skewness than in the data. This neces-
sitates a departure from that framework, and we go on to show that our particular
approach—to use (a small amount of ) randomness and ex post heterogeneity in
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discount factors—is at least reasonably successful at replicating the distribution
of asset wealth. Thus, it is the asset pricing implications from this last framework
that we argue should be taken the most seriously.

3.2.1. Calibration. We stay in the spirit of Heaton and Lucas (1996) and
Aiyagari (1994) and calibrate the income processes to have less than full persis-
tence. We do this in the simplest possible way by using a two-state Markov process
as representing employment and unemployment. Our calibrated model also has ag-
gregate risk, which we calibrate by letting the value of the technology shock be
1.01 in good times and 0.99 in bad times (the model in this section is calibrated to
quarterly data). The unemployment rate is chosen to equal 0.04 in good times and
0.1 in bad times. These values for the technology shock and the unemployment
rate lead to fluctuations in the macroeconomic aggregates, which have roughly
the same magnitude as the fluctuations in observed postwar U.S. time series. The
amount of home-produced goods (the unemployment insurance) is equal to around
9% of the average employed wage. This parameter plays the role of making bad
shocks less bad, and hence agents are less averse to holding low levels of assets,
which is a significant help in matching the left tail of the asset distribution. We
select the values of the stochastic process for(z, ε) so that the average duration of
both good and bad times is eight quarters and so that the average duration of an
unemployment spell is 1.5 quarters in good times and 2.5 quarters in bad times.
We also imposeπgb00π

−1
gb = 1.25πbb00π

−1
bb andπbg00π

−1
bg = 0.75πgg00π

−1
gg .18

3.2.2. Numerical implementation.As in Krusell and Smith (1996b), the com-
putational methods here focus on finding stationary stochastic equilibria only. A
stationary stochastic equilibrium is a recursive equilibrium described by an ergodic
setD of distributions (i.e., a set such that once there, the economy never leaves the
set) and an invariant probability measureP over this set. This means that we will
be looking for functionsH andq that approximate their true counterparts overD.

Our earlier work explored the similarities of marginal propensities to consume
across agents in this economy. When marginal propensities are the same, equilib-
rium prices depend only on total wealth, and not on its distribution. We outlined
an algorithm with the following key elements:

1. Agents perceive that prices depend only on a subset of the moments of0 and that the
laws of motions for these moments depend only on this same set of moments.

2. The resulting behavior for individual savings is simulated over a long period of time,
and it is thus possible to compare the behavior of the moments in question.

3. If the simulated time series for the moments are very close to those perceived by the
agents, the obtained behavior is argued to reflect very small deviations from perfectly
rational expectations, and we thus would have a candidate approximate equilibrium.

It turned out in the set of models we studied that it was sufficient with one moment
to obtain remarkably small prediction errors.

In the present setup, we follow our original algorithm as closely as possible,
because it is,a priori, likely that only the mean will matter for prices in this
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environment as well. In particular, one interpretation of our original results is that
the idiosyncratic uninsurable risk that gives rise to the deviations from aggregation
leads to only very little dispersion in the sensitivity to risk among poor and rich
agents. Here, the idiosyncratic risk is likely to be even better protected against,
because there is a larger set of assets available for insurance.

To simplify presentation, we thus describe our computational algorithm with0

represented by one moment only; the inclusion of more moments is conceptually
straightforward. In addition, we simplify here by assuming thatβ̃ is deterministic
and the same for all agents. Thus, letH andq be represented through

log k̄′ =
{

a0 + a1 log k̄ if z = zg

b0 + b1 log k̄ if z = zb,
(5)

q =
{

c0 + c1 log k̄ if z = zg

d0 + d1 log k̄ if z = zb.
(6)

Further, define the following problem for an individual agent:

v(ω, ε; k̄, z) = max
k′,b′ {U (ω − k′ − qb′) + β̃E[v(ω′, ε′; k̄′, z′) | ε, z]} (7)

subject to (2), (4), (5), and (6). Now, the most straightforward extension of our
earlier methods would be to iterate onH andq by solving (7) and generating time
series fork̄ and total bondholdings. The hope would be that there is a vector (a0,
a1, b0, b1, c0, c1, d0, d1) such that there is a close fit for̄k and such that total
bondholdings almost always are close to zero. Unfortunately, this procedure does
not work in our economy. The problem is that total bondholdings turn out to follow
something close to a autoregressive process with a coefficient just below 1; this
means that even though total bondholdings can be set to sum to zero on average
over time by choice of the mentioned vector, they will display large, long swings,
thus not enabling anything close to market clearing at all dates and states.19

To achieve market clearing in bonds, we use an alternative procedure. This
procedure is of independent interest, because it can be applied to any kind of
additional market-clearing condition in this type of model.20 Assume that agents
solve the following problem at each point in time:

ṽ(ω, ε; k̄, z, q) = max
k′,b′ {U (ω − k′ − qb′) + βE[v(ω′, ε′; k̄′, z′) | ε, z]} (8)

subject to (2), (4), (5), and (6). Thus, agents make portfolio choices based on an
arbitrary current valueq for the bond price, and perceive their indirect utility of
wealth to be given by thev function defined in problem (7). That is, agents take
the current price to equalq and perceive future prices to be given by the function
(6). This problem will generate portfolio decision rulesf̃ k and f̃ b which depend
explicitly on the value forq. For any given distribution0, it then typically will
be possible to find at least one valueq that clears bond markets exactly. We thus
employ the following algorithm:
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(1) Solve problem (7) given a vector(a0, a1, b0, b1, c0, c1, d0, d1) representing the law of
motion for total capital and the bond-pricing function.

(2) Simulate using problem (8):
(a) Fix an initial wealth/employment distribution for a large number of agents and an

initial value forz.
(b) Solve problem (8) and iterate onq until the bond market clears exactly.
(c) Find next period’s wealth/employment distribution by using the decision rules just

obtained and by drawing new values for the shocks.
(d) Repeat a large number of times, obtaining a long times series, of which the first

part is discarded.
(3) Use the obtained time series to regress logk̄t+1 andqt on constants and loḡkt for each

value ofz.
(4) Use some metric to compare the coefficient estimates to those taken as given by the

agents. If they are the same, proceed to the next step in the algorithm. If not, update
the coefficient vector and go to step 1.

(5) Upon convergence of the parameter vector, goodness-of-fit statistics can be used to
evaluate how far the individual’s expectations are from being perfectly rational. If
the fit is not satisfactory, use different functional forms forH andq and/or add more
moments.

Before we proceed to the results, let us define what we mean by the equity
premium, conditional on the current state variablesk̄ andz, in this setup. In any
given period, it is given by

P(z′ = zg | z)(r (k̄′, l̄ ′, zg) + 1) + P(z′ = zb | z)(r (k̄′, l̄ ′, zb) + 1) − q−1,

wherek̄′ is determined by (5) andq is the market-clearing bond price in the given
period.21 This definition of the equity premium reflects the fact that the value of
the firm is equal to the value of the aggregate capital stock, whose price per unit,
expressed in units of the current consumption good, is 1.

3.2.3. Solution and simulation parameters.We solve the consumer’s problem
(7) by computing an approximation to the value function on a grid of points in
the state space. We use cubic spline and polynomial interpolation to compute the
value function at points not on the grid. This numerical algorithm is similar to
one used by Krusell and Smith (1996b). The Appendix describes the algorithm in
detail and discusses its accuracy. The Appendix also describes the approach that
we use to solve problem (8) and to find the market-clearing bond price. In our
simulations we include 10,000 agents and 3,500 time periods, where we discard
the first 1,000 periods. The initial wealth distribution in each of the simulations is a
typical wealth distribution from an economy in which the only asset is productive
capital [such economies are examined in detail by Krusell and Smith (1996b)].

3.2.4. Results for the model without preference shocks.

3.2.4.1. Predictions for quantities and prices.We first present the model without
preference shocks. We consider two different borrowing constraints for bonds: The
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extreme case of no allowed borrowing in bonds—b = 0—and the more generous
b = −2.4, which amounts to around half of an agent’s average annual income.
Short sales are not allowed for capital:k = 0. The equilibrium laws of motion
for aggregate capital are as follows (we report the case of a loose bond constraint
only; the equilibrium laws of motion, and their fits, are quite similar across the
models here and those considered later):

log k̄′ = 0.092+ 0.963 logk̄,

R2 = 0.999999

in good times and

log k̄′ = 0.082+ 0.965 logk̄,

R2 = 0.999999

in bad times. Using our simulated sample (consisting of 2,500 time periods) we
plot tomorrow’s aggregate capital against today’s aggregate capital. This graph
(see Figure 1) is a clear illustration of the fit.

FIGURE 1.Tomorrow’s vs. today’s aggregate capital: top line= good aggregate state, bottom
line = bad aggregate state.
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The bond pricing function also can be approximated very closely usingz andk̄
alone:

q = 0.899+ 0.0519 logk̄ − 0.006(log k̄)2,

R2 = 0.99999999

in good times and

q = 0.904+ 0.0502 logk̄ − 0.006(log k̄)2,

R2 = 0.99999999

in bad times. Using our simulated sample, we plot today’s market-clearing bond
price against today’s aggregate capital. Again, the fit is excellent. See Figure 2.

Our earlier paper [Krusell and Smith (1996b)] contains a careful examination
of the robustness of the finding that there is “approximate aggregation” in the
sense that the law of motion for aggregate capital depends only slightly on the
distribution of the wealth. This paper also contains a detailed discussion of the
reasons underlying this result. Suffice it to say here that the main arguments carry
over to this model, i.e., the effective insurance achieved with only one asset in this
class of models is excellent in utility terms (although individuals’ consumptions
vary significantly, indeed much more than does aggregate consumption). Another
asset, of course, only strengthens the argument.

FIGURE 2. Bond price vs. aggregate capital: top line= bond return in good times, bottom
line = bond return in bad times.
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FIGURE 3. Portfolio decision rules of an employed agent: thick line= capital, thin line=
bonds.

In the economy with tight constraints, all agents are at the zero-bond constraint,
but few agents are constrained in capital. In contrast, when the bond constraint
is relaxed to−2.4, we see many agents piling up at each of the constraints for
capital and bonds (about a quarter of the population at the former and more than
half at the latter). This finding comes from the extreme nature of portfolio choices
of agents in this model: Only about 10% of the population are at interior portfolio
solutions (on average, 25% of the population is against the short-sales constraint
on capital, whereas 65% of the population is against the borrowing constraint on
bonds). Poor/unfortunate agents hold bonds and go as short in capital as they can
(to zero in this case), whereas rich/fortunate agents borrow as much as they can in
bonds and put all their savings into capital. Figure 3 illustrates the portfolio choice
of a typical employed individual and Figure 4 illustrates the portfolio choice of a
typical unemployed individual (the figures are drawn for a given set of values for
the aggregate state variables). A key feature of these figures is that only employed
agents within a narrow wealth range have interior portfolio decisions.

Some summary equilibrium statistics are reported in Table 2.22 The reported
statistics are sample means computed using our simulated sample consisting of
2,500 time periods.

Table 2 shows that the equity premia generated by our framework are not much
closer to those we see in the data than are those in other studies (recall that the
average postwar equity premium is a little below 2% on a quarterly basis).23

The variation in the equity premium across good and bad aggregate states is not
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TABLE 2. Aiyagari-style model without preference shocks

Borrowing constraints Risk-free rate, % Equity premium, % Mean capital
on bonds and capital Good times Bad times Good times Bad times average

b = 0, k = 0 1.04 0.90 0.0181 0.0116 11.66
b = −2.4, k = 0 1.06 0.93 0.00015 0.00015 11.65

FIGURE 4. Portfolio decision rules of an unemployed agent: thick line= capital, thin line=
bonds.

substantial. A tightening of the borrowing constraint, however, does lead to a large
increase in the equity premium in relative terms: in particular, the equity premium
increases by two orders of magnitude when no borrowing is allowed.

3.2.4.2. Equity premium and market price of risk: a theoretical digression.The
analytical tools developed by Hansen and Jagannathan (1991) can be used to gain
a better understanding of the determination of the equity premium in our model.24

Consider an agent with an interior portfolio solution.25 The Euler equations for
such an agent imply that

Ez′,ε′ | z,ε,I [m
′(R′

e − Rf )] = 0, (9)

whereEx | y represents integration with respect to the distribution ofx for a given
value ofy, wherex andy can be vectors. In (9),Rf = q−1 is the risk-free rate in
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the current period,R′
e is the realized gross return on capital (net of depreciation)

in the next period,m′ ≡ βU ′(c′)/U ′(c) is the agent’s intertemporal marginal rate
of substitution, andI contains the individual and aggregate state variables relating
to wealth ((ω, 0), or (ω, k̄) in our computational procedure). Now,

Ez′,ε′ | z,ε,I [m
′(R′

e − Rf )] = Ez′ | z,ε,I {Eε′ | z′,z,ε,I [m
′(R′

e − Rf )]}
= Ez′ | z,ε,I {(R′

e − Rf )[Eε′ | z′,z,ε,I (m
′)]},

where we are using, in turn, the definition of conditional expectation and the fact
that the excess return on equity does not depend on the idiosyncratic shockε′.26

This means that equation (9) can be rewritten as

Ez′ | z,ε,I {[Eε′ | z′,z,ε,I (m
′)](R′

e − Rf )} = 0. (10)

This equation is at the core of asset pricing in incomplete-markets economies. As
in the representative-agent model, it involves the expectation of a product of the
excess return and a factor reflecting intertemporal marginal rates of substitution.
However, in the incomplete-markets model, the entire expectation is individual-
specific, and the intertemporal marginal rate of substitution factor is anaverage of
future statesfor the individual under consideration.27

Following Hansen and Jagannathan (1991), the definition of covariance can be
used to rewrite equation (10) as

Ez′ | z,I (R′
e − Rf ) = σz′ | z,I (R′

e − Rf )

×
{
−corrz′ | z,ε,I [R

′
e − Rf , Eε′ | z′,z,ε,I (m

′)]
σz′ | z,ε,I [Eε′ | z′,z,ε,I (m′)]
Ez′ | z,ε,I [Eε′ | z′,z,ε,I (m′)]

}
, (11)

where corrx | y denotes conditional correlation andσx | y denotes conditional stan-
dard deviation (both with respect to the distribution ofx, giveny). The conditional
expected equity premium therefore can be viewed as the product of two terms, the
first being the conditional standard deviation of the equity return and the second
being what we define to be the market price of risk. In our setup, by virtue of
the two-state process forz and the fact that the marginal utility of consumption
(averaged across the employment outcome) is low when the aggregate productiv-
ity shock (and hence the return on equity) is high, the correlation that appears in
equation (11) is exactly−1.28 In the particular case of two aggregate states, thus,
we have that

Ez′ | z,I (R′
e − Rf )

σz′ | z,I (R′
e − Rf )

= σz′ | z,ε,I [Eε′ | z′,z,ε,I (m′)]
Ez′ | z,ε,I [Eε′ | z′,z,ε,I (m′)]

, (12)

i.e., the market price of risk simply equals the ratio of any unconstrained agent’s
(conditional) standard deviation of theaverage valueof m′ divided by his (condi-
tional) expectation of this same object. By construction, this ratio is the same for
all unconstrained agents.
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Equation (12) is very useful for analyzing the determination of the equity pre-
mium. To increase the equity premium in our model economies, one must either
increase the volatility of the equity return or increase the market price of risk (or
both). We find that our incomplete-markets model (with or without borrowing)
displays slightly less volatility in aggregate capital (and hence less volatility in the
equity return) than does its representative-agent (complete-markets) counterpart.
Thus, for the incomplete-markets model to give an increase in the equity premium,
it must have a higher market price of risk.

3.2.4.2.1. What determines the market price of risk?Equation (11) focuses the
attention on the time-series properties ofEε′ | z′,z,ε,I [m′], i.e., on the average value of
an individual’s marginal rate of substitution across realizations of the idiosyncratic
risk, conditional on the aggregate state. It therefore can be misleading to focus on
the amount of idiosyncratic risk as the sole determinant of the market price of risk.
To illustrate this point, note that becauseσz′ | z,ε,I [Eε′ | z′,z,ε,I (m′)] < σz′,ε′ | z,ε,I (m′),
it follows that

σz′ | z,ε,I [Eε′ | z′,z,ε,I (m′)]
Ez′ | z,ε,I [Eε′ | z′,z,ε,I (m′)]

<
σz′,ε′ | z,ε,I (m′)
Ez′,ε′ | z,ε,I (m′)

.

The ratio on the right-hand side of this equation often has been used in the literature
[see, e.g., Weil (1992) or Telmer (1993)] to obtain an upper bound on the market
price of risk implied by a given economic model. By using conditioning infor-
mation, we obtain the tighter bound indicated in equation (12): In our economy
with two aggregate states, the bound is an equality; when there are more aggregate
states, it is an upper bound [see Cochrane and Hansen (1992) for a similar use
of conditioning information]. In contrast, the boundσz′,ε′ | z,ε,I (m′)/Ez′,ε′ | z,ε,I (m′)
is not a good indicator of the potential magnitude of the market price of risk in
a model with idiosyncratic risk.29 Whereasσz′,ε′ | z,ε,I (m′) clearly increases with
the amount of idiosyncratic risk, thus suggesting a potentially higher market price
of risk, so does the difference between the looser and the tighter bound, because
Varz′,ε′ | z,ε,I (m′) − Varz′ | z,ε,I [Eε′ | z′,z,ε,I (m′)] = Ez′ | z,ε,I [Varε′ | z′,z,ε,I (m′)]! In our
model economies, for example, the looser bound is as much as eight times larger
than the tighter bound. These results help explain how it is possible that the market
price of risk remains small in our model economies despite the fact that, unlike
in many previous models in the literature, individual consumption is much more
volatile than aggregate consumption (in the model without preference heterogene-
ity, for example, the standard deviation of individual consumption is about four
times that of aggregate consumption).

Given these arguments, what would constitute a sufficient condition for an in-
crease in the market price of risk? At this point, it is helpful to recall Mankiw’s
(1986) analysis. In our model, as in Mankiw’s, two features of the environment are
crucial for understanding the qualitative effects of idiosyncratic risk on the equity
premium: the convexity of marginal utility and the relative standard deviations



                

410 PER KRUSELL AND ANTHONY A. SMITH, JR.

of the idiosyncratic shock in the good and bad states. To see why, suppose for
the moment that there is no idiosyncratic risk, so that there is no cross-sectional
variation in consumption levels. Letc be the consumption of a typical agent in the
current period and letc′ be the consumption of a typical agent in the next period;
assume thatc′ takes on the valuecg if the good state obtains tomorrow andcb

if the bad state obtains tomorrow. The marginal utility of consumption tomorrow
therefore takes on the two valuesU ′

g ≡ U ′(cg) andU ′
b ≡ U ′(cb). Lettingπ be the

conditional probability of the good state occurring tomorrow, it is easy to see that
Ez′ | z,k̄[U ′(c′)] = πU ′

g+(1−π)U ′
b andσz′ | z,k̄[U ′(c′)] = π1/2(1−π)1/2(U ′

b−U ′
g),

where we have assumed thatcg > cb, in which caseU ′
b − U ′

g > 0. The market
price of risk therefore can be written

σz′ | z,k̄

[
βU ′(c′)
U ′(c)

]
Ez′ | z,k̄

[
βU ′(c′)
U ′(c)

] = σz′ | z,k̄[U ′(c′)]
Ez′ | z,k̄[U ′(c′)]

= π1/2(1 − π)1/2(U ′
b − U ′

g)

πU ′
g + (1 − π)U ′

b

. (13)

As long asU ′
b − U ′

g > 0, this expression is increasing in the value ofU ′
b. Now

imagine introducing a mean-preserving spread in consumption levelsin the bad
state only.30 As one can see from equation (11), to compute the market price
of risk in this setup, we need to replaceU ′

b in equation (13) with theaverage
marginal utility of consumption in the bad state, and this average is greater than
U ′

b if and only if U ′ is convex. Here, because we are using constant-relative-risk-
aversion preferences, the marginal utility is indeed globally convex. Introducing
mean-preserving idiosyncratic variation in consumption in the bad state therefore
has the effect of increasing the average marginal utility of consumption in the bad
state, thereby increasing the market price of risk as expressed in equation (11). A
similar argument holds if one introduces mean-preserving spreads in consumption
in both the good and bad states in such a way that the average marginal utility of
consumption in the bad state increases by more than the average marginal utility
of consumption in the good state.31

In our economy the cross-sectional standard deviation of labor income is (ignor-
ing variations in the wage rate) roughly 50% larger in the bad state than in the good
state. Although individuals do smooth consumption in response to idiosyncratic
shocks, the higher cross-sectional variation in labor income in the bad state causes
the cross-sectional dispersion of intertemporal marginal rates of substitution to be
larger in the bad than in the good state.32

3.2.4.2.2. Market price of risk: quantitative findings. Having established the role
and determinants of the market price of risk in our economy, what are its quantita-
tive properties in the computed equilibrium? In the incomplete-markets model with
a loose borrowing constraint, the market price of risk is around 0.0025 (averaged
across a typical realization for the aggregate state) whereas in the representative-
agent version of our model it is 0.0022. In the model without borrowing, the market
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price of risk increases dramatically to around 0.211. The increase in the market
price of risk therefore explains why the equity premium in the model without bor-
rowing is so much larger than the one in the model with borrowing. Similarly, the
equity premium is only slightly higher in the incomplete markets with borrowing
than in the representative-agent model.

As shown by Hansen and Jagannathan (1991), observed asset returns can be
used to provide a lower bound on the actual market price of risk. For example, as
reported by Lettau and Uhlig (1997), quarterly returns data for a market portfolio
such as the S&P 500 yield a lower bound on the market price of risk of about 0.27.
Our model without borrowing therefore generates a market price of risk that is
reasonably close to the one in the data.33

It is also possible to understand why the borrowing constraint is so important
for the market price of risk in our model. As explained in note 21, asset prices in
the no-borrowing economy are determined by the agent with the highest subjective
evaluation of the bond payoff. This is an unemployed agent who is just indifferent
between holding no capital and holding positive amounts of capital. Such an agent
has very low wealth today, and so, the agent’s consumption in the next period is
very sensitive to the outcome of the employment shock. Moreover, because the
employment shock is persistent, this agent is much more likely to be unemployed
in the next period if the bad aggregate state rather than the good aggregate state
obtains. Therefore, conditional on the realization of the aggregate state, the vari-
ance of this agent’s consumption (looking across realizations of the employment
outcome) will be much higher in the bad aggregate state than in the good aggregate
state. From equation (13), it is clear that in this case the market price of risk will
be very high.

On the other hand, when significant borrowing is permitted, it turns out that
the agents who determine asset prices (i.e., the agents with interior portfolio de-
cisions) are employed and have much higher wealth than in the economy without
borrowing. This makes the future marginal utilities fluctuate much less: First, the
persistence of the employment shock implies that, for these agents, the probability
of unemployment in the next period is only moderately higher in the bad state
than in the good state. Second, the higher wealth of these agents provides them
with insurance against bad realizations of the employment shock, which is quite
effective in utility terms. This last point goes back to the analyses of Lucas (1987),
Cochrane (1989), Atkeson and Phelan (1994), Krusell and Smith (1996a,b), and
Tallarini (1996): Within this class of models, agents can achieve insurance that is
near perfect in utility terms without making it near perfect in consumption terms. It
thus would take an order-of-magnitude higher consumption variability to increase
the market price of risk in this economy.

3.2.4.3. Predictions for the distribution of wealth. Table 3 has the implications of
the model for the (average) shape of the wealth distribution (wealth in the table
refers to asset wealth).
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TABLE 3. Distribution of wealth

% of wealth held by top Fraction with Gini
Model 1% 5% 10% 20% 30% wealth< 0, % coefficient

b = 0 3 11 20 35 47 0 0.26
b = −2.4 3 13 23 39 52 0.5 0.33
Data 30 51 64 79 88 11 0.79

There is a large gap between the models and the data.34 The Gini coefficients
are much too low in the model, which reflects a failure to match the data at both
ends of the distribution: The rich do not save enough, and the poor save too much.
Note, finally, from this table that looser constraints allow the wealth distribution to
spread out somewhat. In addition, the positive rate-of-return difference in portfolios
between rich and poor contributes to the distribution of wealth spreading out, but
this effect is not a major one because the equity premium is small.

Explanation of the extreme relative skewness of the wealth distribution is an
open question. In what follows, we adopt a relatively simple structure that has the
ability to generate a more dispersed wealth distribution for a given distribution
of income shocks. For a more detailed discussion of different ways in which
the wealth distribution can be matched, see our earlier paper and Quadrini and
Rı́os-Rull (1996).

3.2.5. Results for the model with preference shocks.We now turn to the model
with preference shocks. As will be apparent, this model is capable of roughly
matching the wealth distribution, and it is therefore the model whose asset pricing
implications we argue should be taken the most seriously.

The preference parameters are chosen in line with our earlier paper: We subject
the experiment to the requirements that the differences in discount factors are not
large, and that their distribution is symmetric around its mean. More precisely, we
assume that̃β can take on three values—0.9858, 0.9894, and 0.9930—and that the
transition probabilities are such that (1) the invariant distribution forβ ’s has 80%
of the population at the middleβ and 10% at each of the otherβ̃ ’s; (2) immediate
transitions between the extreme values ofβ̃ occur with probability zero; and (3)
the average duration of the highest and lowestβ̃ ’s is 50 years. We choose the latter
number to match roughly the length of a generation, because we view the model
as capturing some elements of an explicit overlapping-generations structure with
altruism (i.e., parents care about the utility of their children) and less than perfect
correlation in genes between parents and children (i.e., there is “regression to the
mean” in the rate at which the current generation discounts the utility of future
generations).

We omit the laws of motion for aggregate capital and the bond functions; they
are similar to our previous case, and the fit is still excellent. In particular, although
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TABLE 4. Distribution of wealth

% of wealth held by top Fraction with Gini
Model 1% 5% 10% 20% 30% wealth<0, % coefficient

b = 0 20 46 61 74 79 0 0.66
b = −2.4 23 55 73 87 92 11 0.82
Data 30 51 64 79 88 11 0.79

marginal propensities to save are now more dissimilar across agents, almost all
wealth is now held by richer agents among whom marginal propensities do not
differ much, and this group in effect determines total wealth accumulation.35 As
before, the equilibrium portfolio choices are largely characterized by corner solu-
tions in theb = −2.4 case, and about 4% of the population have interior solutions
(on average, about 58% of the population is against the short-sales constraint for
capital and about 38% of the populations is against the borrowing constraint for
bonds). For each type of agent, as indexed by currentβ̃ and employment status,
there is an intermediate range of wealth levels for which an interior solution ob-
tains; for lower values, the agent holds no capital, and for higher values, the agent
is at the lower bound for bonds. For unemployed agents, the wealth ranges with
interior solutions occur at very high levels of wealth, whereas for employed agents
they occur at fairly low levels of wealth.

Table 4 summarizes the wealth distributions in our models with preference
heterogeneity (as in the model with a constantβ̃, we consider one version with
b = 0 and one withb = −2.4).

The differences between these and our previous results are striking. The Gini
coefficients go up significantly to the range observed in U.S. data; there is a large
concentration of agents at low (including negative) levels of asset holdings; and
although the fraction of wealth held by the 1% richest is still not quite as high as
in the data, it is close. Note also that the effect of the borrowing constraint is quite
visible: When negative values for bonds are allowed, it leads to an increase in the
steady-state Gini coefficient from 0.66 to 0.82.

As discussed by Krusell and Smith (1996b), the behavior of the model without
preference heterogeneity is very similar to the behavior of its complete-markets
(representative-agent) counterpart. Thus it is perhaps not too surprising that the
model without preference heterogeneity does a poor job of explaining observed
asset prices. The model with preference heterogeneity, however, behaves very dif-
ferently in some respects than a complete-markets (representative-agent) model. In
particular, the model with preference heterogeneity displays significant departures
from permanent-income behavior (the consumption-output correlation, for exam-
ple, is much higher in the model with preference heterogeneity than in the model
without preference heterogeneity). This model therefore holds some promise of
doing a better job of matching asset prices. The model’s implications for asset
prices are contained in Table 5.
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TABLE 5. Aiyagari-style model with preference shocks

Borrowing constraints Risk-free rate, % Equity premium, % Mean capital
on bonds and capital Good times Bad times Good times Bad times average

b = 0, k = 0 1.00 0.85 0.0183 0.0117 11.91
b = −2.4, k = 0 1.02 0.89 0.00017 0.00016 11.84

Although the wealth distribution in this version of the Aiyagari model is quite
realistic, asset prices are not: Equity premia are minute regardless of the tightness
of borrowing constraints. As in the model without preference heterogeneity, the
large difference in the equity premia between the models with and without bor-
rowing can be explained by differences in the market price of risk, which is (on
average) about 0.214 in the model without borrowing and about 0.0026 in the
model with borrowing.36 The model with preference heterogeneity (and a realistic
wealth distribution) therefore leads to small increases in both equity premia and
market prices of risk relative to the model without preference heterogeneity (and an
unrealistic distribution of wealth). Although these are steps in the right direction,
the model with preference heterogeneity and borrowing falls well short of the data
in its asset-pricing behavior.

4. CONCLUSIONS

In this paper we study a class of asset-pricing models based on partially uninsurable
income risk and wealth heterogeneity. Compared to the existing studies of similar
setups, we emphasize the importance of focusing on the models’ implications for
heterogeneity: Unless the heterogeneity that the model generates is quantitatively
reasonable, we do not think the asset-pricing implications can be taken very seri-
ously. When this principle is applied to the models with unit roots in (log) labor
income that we look at here, the associated asset prices indeed need to be taken
with a big grain of salt, because the asset distributions in these models tend to
be collapsed: All agents hold the same (or nearly the same) amounts of assets.
In the data, by contrast, assets are distributed across agents in a highly skewed
fashion. We thus argue the need to move on to models with more realistic asset
distributions, and we consider one such model in this paper.

The implications for asset prices in the models we are willing to take seriously
are quite consistent with the findings in the earlier papers by Telmer (1993), Den
Haan (1996a), and Heaton and Lucas (1996): We are far from being able to explain
asset prices. In this sense, our news is not good, or, to put it in less negative terms,
our news is really no major news. The little bit of news that we provide concerns
the market price of risk: In our model, tight borrowing constraints can lead to a
large market price of risk.

Does our paper close the door to all explanations for the large observed average
equity premium that are based on heterogenous agents and incomplete insurance?
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Given our findings regarding the importance of borrowing constraints, one di-
rection for future research is to introduce other kinds of frictions, such as costs
of adjusting aggregate capital, as in Cochrane (1991) and Christiano and Fisher
(1995), or transactions costs, as in Aiyagari and Gertler (1991) and Heaton and
Lucas (1995, 1996). Adjustment costs, in particular, make capital less useful rela-
tive to bonds as an asset for buffering both aggregate and idiosyncratic shocks, so
that the equity premium has to increase to induce consumers to hold capital.37

The model that we construct to match the wealth distribution—a model with
randomness in agents’ preferences—is not the only possible model that can achieve
this goal. The exploration of alternative frameworks for studying asset prices and
wealth distribution has really only begun. Here as well, exploring frictions and
incorporating more institutional detail may prove fruitful.

NOTES

1. Den Haan (1996b) also looks at models with a continuum of agents.
2. This result could perhaps have been anticipated from the earlier work by Deaton (1991), who

considered the decision problem faced by a consumer living in a Constantinides and Duffie world (for
the case of a constant interest rate). Deaton showed that under certain conditions such a consumer has
a tendency to deplete all asset holdings and set consumption equal to current income forever after.
Constantinides and Duffie close the partial-equilibrium Deaton model by setting the interest rate so
that consumers behave in exactly this way, in the case in which there is no outside asset, or so that
agents draw down on their holdings of the aggregate asset exactly to the point where they all hold the
per-capita stock of this asset.

3. Rı́os-Rull (1994) studies an overlapping-generations model with production and with consumers
who live for 55 periods. He considers only aggregate risk and computes asset prices for various
assumptions on to what extent this risk can be shared among agents of different ages.

4. The portfolio-choice implications from our baseline model are that most agents specialize com-
pletely, i.e., they hold either only bonds or only capital; and poor (particularly unemployed) agents
hold bonds, and less poor agents hold capital. At each point in time, there is only a very narrow band
of wealth levels (which depends on the agent’s employment status) such that the agent does not choose
a corner solution for his portfolio problem.

5. See Table II of Telmer (1993).
6. Note that in this case total resources are equal toy + ug, whereu is the (state-dependent)

unemployment rate.
7. Because the unemployment rate takes on only two values, we have effectively assumed a law of

large numbers for idiosyncratic shocks. The total supply of labor is therefore 1− ug in good times and
1 − ub in bad times.

8. This definition is circular to some extent, because it may happen that if a variable is included, it
will have independent impact on prices, whereas if it is not, there still exists an equilibrium. When there
are multiple equilibria in this sense, it is less obvious how to characterize the whole set of equilibria.

9. Because aggregate bondholdings must equal zero,

ω̄ ≡
∫
ω d0 = (r (k̄, z) + 1)k̄ + (1 − u(z))w(k̄, z) + u(z)g.

Givenω̄ andz, this equation has a unique solution fork̄.
10. Other papers that study dynamic general equilibrium economies with incomplete markets in-

clude Aiyagari (1994), Casta˜neda et al. (1994), Coleman and Liu (1994), and Huggett (1995, 1996).
11. An alternative would be to have negative drift in the process for log labor income.
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12. This particular assumption is also an effort to stay within a framework that is as close to that of
Constantinides and Duffie (1996) as possible.

13. In his experiments, Aiyagari letsρ vary from 0 to 0.9 and maintains a constant unconditional
standard deviation of log income. We keep conditional variance constant to isolate the effects of
changing the degree of persistence in individual income.

14. With individuals dying at a constant rate, the evolution of total income also depends on the
starting income of newborns and on the death rate.

15. In this section, as in Constantinides and Duffie (1996), we assume that the period utility function
takes the formU (c) = (1 − σ)−1c1−σ , whereσ > 0 is the coefficient of relative risk aversion.

16. There is, at least implicitly, a borrowing constraint in the Constantinides and Duffie model;
otherwise, agents could run up a debt of any size to provide for complete insurance or a Ponzi scheme.
The loosest possible constraint allowing the agent to pay off any debt almost surely equals− I q/(1−q),
where I is defined as the lowest labor income realization [see Aiyagari (1994) for details]. That is, in
the Constantinides and Duffie formulation, the loosest possible constraint on the total value of asset
holdings is that it never go belowdq/(1 − q) = d/(d/p) = p. In our formulation, this lower bound
is simply a nonnegativity requirement, because we haveI = 0.

17. One could also allow for heterogeneity in asset holdings in the Constantinides and Duffie model
by letting Ii t = si (ezit − d) (we thank John Heaton for suggesting this possibility). This formulation,
however, is very hard to reconcile with some of the key features of the wealth and income data: About
10% of the U.S. population has negative net worth, and the earnings distribution is much less dispersed
than is the wealth distribution.

18. Because of the high computational costs (especially in the two-asset version of the model), we
do not report results for values of risk aversion greater than 1. In Krusell and Smith (1996b), we find
that higher values of risk aversion tend to strengthen the approximate aggregation result. Higher values
of risk aversion would clearly make the asset prices in our model economies look better relative to the
data. However, in light of the findings reported in this paper, it seems clear that unless risk aversion
is very high, the asset-pricing implications of our model will continue to be very far from the data
(provided borrowing constraints are not severe).

19. This form for total bondholdings derives from the fact that the individual’s log savings are close
to linear in log wealth with a coefficient just below 1 in this kind of growth model; see Krusell and
Smith (1996b).

20. For example, although we did not use this procedure in Krusell and Smith (1996b) to solve the
model in the case where labor supply is endogenous, it could have been applied there.

21. Note that this is the conditional expected equity premium. One could also define the ex post
equity premium asr (k̄′, l̄ ′, z) + 1 − q−1. By the law of iterated expectations, the unconditional ex-
pectations of the conditional expected equity premium and of the ex post equity premium are equal to
each other.

22. Note that the equilibrium for the economy withb = 0 can be calculated by looking at an
economy in which capital is the only asset. In particular, we define the price of the bond to be the
highest subjective price of the payoff the bond would give in the population (as measured by the
expected intertemporal marginal rate of substitution evaluated at the bond payoff ). This price would
lead all agents to hold negative amounts of bonds if they could, except that individual whose subjective
bond price is selected as the market price; this individual is therefore indifferent at zero bondholdings.
It turns out that this individual is an unemployed agent who is just willing to hold positive amounts of
capital.

23. Rouwenhorst (1995), who studies a complete-markets model with production, finds equity
premia of roughly the same size as the premium that we find for the model with the loose borrowing
constraint.

24. We thank Harald Uhlig for helpful discussions about the results in this section.
25. In the model without borrowing, consider instead the agent who determines the bond price as

discussed in note 21.
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26. In more explicit terms, this derivation reads as follows:

g∑
i =b

1∑
j =0

m′(R′
e − Rf )P(z′ = zi , ε

′ = j | z, ε, I )

=
g∑

i =b

1∑
j =0

m′(R′
e − Rf )P(ε′ = j | z, ε, z′, I )P(z′ = zi | z, ε, I )

=
g∑

i =b

[
1∑

j =0

m′ P(ε′ = j | z, ε, z′, I )

]
(R′

e − Rf )P(z′ = zi | z, I ).

27. Constantinides and Duffie (1996) rewrite the agent’s Euler equation in a parallel way. In their
setup, the expectations are not individual-specific, because all agents’ intertemporal marginal rates of
substitution follow the same process in the equilibrium they construct.

28. Letx be a random variable that equalsx1 with probability p andx2 with probability 1− p. Let
f andg be arbitrary functions such thatf (x1) 6= f (x2) andg(x1) 6= g(x2). Then corr[f (x), g(x)] is
either 1 or−1 depending on the sign of [g(x2) − g(x1)]/[ f (x2) − f (x1)].

29. Lettau and Uhlig (1997) make a similar point.
30. Exactly what needs to be changed in terms of economic primitives for this experiment is not

clear, of course, because consumption is endogenous.
31. Note that if the average marginal utility of consumption increases by more in the good state

than in the bad state, then the market price of risk falls.
32. A similar mechanism accounts for the ability of the model of Constantinides and Duffie (1996)

to explain equity premia. In particular, see equation (19) of their paper and the discussion that follows.
33. Thus, the failure of the no-borrowing model to generate equity premia anywhere near those in

the data therefore can be attributed to the lack of variability in aggregate capital (and the consequent
lack of variability in the return on equity).

34. The wealth distribution data are taken from Wolff (1994) and D´ıaz-Giménez et al. (1996).
35. The fit does worsen somewhat for the laws of motion for aggregate capital, but the fit for the

bond-pricing function is still remarkable.
36. It is straightforward to derive a version of equation (11) that takes into account the idiosyncratic

variation in discount rates. Note that the conditional correlation that appears in this version of equation
(11) is again equal to−1.

37. Aiyagari and Gertler (1991) and Heaton and Lucas (1995, 1996) show that models with trans-
actions costs can be successful in generating low bond returns/large equity premia provided that these
transaction costs are of a certain form and minimum magnitude.
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APPENDIX

Here we give a description of the numerical techniques used to solve the consumer’s dynamic
programming problem (7). The algorithm is similar to one used by Johnson et al. (1993).
We also describe how we solve the associated optimization problem (8) and how we find
the market-clearing bond price in step 2b of the algorithm described in Section 3.2.2.
The algorithm is described in the context of the model without preference shocks; it is
straightforward to modify the algorithm to keep track of the additional state variable in the
model with preference shocks.

The objective of the numerical algorithm for solving problem (7) is to approximate the
four functionsv(ω, 1; k̄, zg), v(ω, 1; k̄, zb), v(ω, 0; k̄, zg), andv(ω, 0; k̄, zb). We accom-
plish this task by approximating the values of the functions on a coarse grid of points in
the(ω, k̄) plane and then using cubic spline and polynomial interpolation to calculate the
values of these functions at points not on the grid. The numerical algorithm is in many ways
analogous to value function iteration.

The following steps describe the numerical procedure. First, choose a grid of points in
the(ω, k̄) plane (we give some details below about how we choose these points).

Second, choose initial values for each of the four functions at each of the grid points.
We generally use the value function for the economy with only one asset [see Krusell and
Smith (1996b)] as the initial condition for each of the functions.
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Third, for each of the four(z, ε) pairs, maximize the right-hand side of Bellman’s
equation at each point in the grid. In this maximization, we allow the agent to select any
values for capital and bondholdings. We use various interpolation schemes to compute the
value function at points not on the grid (we describe the interpolation schemes in greater
detail below). To find the optimal choices for capital and bondholdings, we use an algorithm
that allows for the possibility that consumers will be at a corner. In particular, at each grid
point in the agent’s state space, we first determine whether the agent has an interior portfolio
solution. We make this determination by (1) setting the choice for bondholdings equal to
the lower bound on bondholdings, solving for the implied optimal capital holding using a
one-dimensional search procedure, and calculating the implied utility level; (2) proceeding
to a choice for bondholdings that slightly exceeds the borrowing constraint and repeating
the procedure; if the utility so calculated is lower, stop, and determine that a corner solution
for bonds has been obtained; if not, then go to the corner for capital and restart a parallel
procedure. If, by following steps 1 and 2, we find that the agent has an interior portfolio
solution, we use a bisection procedure to search over holdings of one of the assets, solving
for holdings of the other asset as in step 1. When performing the search in step 1, we use
a Newton–Raphson procedure unless the agent is at a corner with respect to both assets,
in which case we use a bisection search procedure. This algorithm for finding the optimal
portfolio choice relies on single-peakedness of payoffs in portfolio weights but is fast and
gives very accurate approximations to the wealth ranges with interior portfolio decisions.
Once we have computed the optimal values for capital and bondholdings, we insert these
values into the right-hand side of Bellman’s equation to obtain a new value for the value
function at the specified grid point.

Fourth, compare the new optimal values generated by the third step to the original values.
If the new values are close to the old values, then stop; otherwise, repeat the third step until
the new and old values are sufficiently close.

We now comment on the choice of a grid in the(ω, k̄) plane and on the interpolation
schemes that we use. Because there is generally not much curvature in the value function in
thek̄ direction, we use a small number of grid points in this direction and we use polynomial
interpolation to compute the value function for values ofk̄ not on the grid. If there arenk

points in thek̄ direction, then polynomial interpolation fits a polynomial of ordernk − 1
to the function values at these points (so that the polynomial fits the values exactly). This
polynomial is then used to compute the value function in between grid points. We compute
the value of the interpolating polynomial using Neville’s algorithm, as described by Press
et al. (1994, Ch. 3). This algorithm avoids the numerical instabilities associated with com-
puting the coefficients of the interpolating polynomial. We generally use four equally spaced
points in thēk direction.

In the ω direction, there is generally a fair amount of curvature in the value function,
especially for values ofω near zero. In this direction, therefore, we use cubic spline in-
terpolation, which fits a piecewise cubic function through the given function values, with
one piece for each interval defined by the grid. This piecewise cubic function satisfies the
following restrictions: (1) It matches the function values exactly at the grid points, and (2)
its first and second derivatives are continuous at the grid points. Cubic splines can be com-
puted efficiently by solving a set of tridiagonal linear equations [see, e.g., the description
in Press et al. (1994, Ch. 3) or de Boor (1978, Ch. 4)]. We generally use roughly 70 grid
points in theω direction, with many grid points near zero (where there is a lot of curvature)
and fewer grid points for larger values ofω (where there is less curvature). We find that
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our results are not sensitive to increasing the number of grid points in either theω or k̄
directions.

To combine these two interpolation schemes, we therefore proceed as follows, wherenω

is the number of grid points in theω direction andnk is the number of grid points in thēk
direction. First, for each of thenω values ofω, use polynomial interpolation to compute the
value function at the desired value ofk̄. This set of interpolations yieldsnω values of the
value function, one for each value ofω on the grid. Second, use cubic spline interpolation
using thenω values to calculate the value function for values ofω that are not on the grid.
Note that because the values ofk̄ at which interpolated values must be computed are known
at the beginning of each of the iterations on the value function (specifically, there are 2nk

such values—nk points in thek̄ direction times two possible outcomes fork̄
′, givenk̄), the

required cubic splines need be computed only once for each iteration of the algorithm; once
computed, it is easy to use these splines to calculate interpolated values.

We now describe how we compute the decision rules defined by problem (8) for a given
value ofq. Because the values of̄k and z are given by their current realizations in the
simulations, we need only consider how agents’ decisions vary with the individual state
variablesω andε. For each value ofε, we compute optimal savings and portfolio decisions
on a grid of points forω using the algorithm described above. To determine optimal decisions
at points not on the grid, we proceed in two steps. First, we use linear interpolation between
grid points to compute the optimal level of total savings for wealth levels that are not on the
grid. Second, to determine how savings is split up between the two assets, we use a bisection
procedure to locate the endpoints of the wealth ranges over which the agent has an interior
portfolio decision. For values of wealth in this range, we approximate the optimal choice for
capital using cubic spline interpolation between grid points. The optimal choice for bonds
is then determined by the optimal level of total savings and the definition of savings. For
values of wealth outside this range, the optimal choice for holdings of one of the assets is
at a corner; the optimal choice for the other asset can then be determined from the optimal
level of savings and the definition of savings.

Finally, to compute the market-clearing bond priceq?, we need to solve the equation
D(q) = 0, whereD(q) is the aggregate demand for bonds given a bond priceq. We use a
combination of methods to findq?. First, we bracketq? with the two values

qlow = (1 − 10−6)q̂ and qhigh = (1 + 10−6)q̂,

whereq̂ is the bond price predicted by the approximate bond-pricing function, givenk̄ and
z. We then use a bisection procedure until, at the current bond price, at least some agents
have an interior portfolio decision. Specifically, the bisection procedure works as follows:

1. Compute the midpointq = (qlow + qhigh )/2.
2. Compute optimal decision rules, givenq.
3. If all agents are short in bonds, then the bond price is too high: Setqhigh = q.
4. If all agents are long in bonds, then the bond price is too low: Setqlow = q.
5. Return to step 1 and continue iterating until at least some agents have an interior

portfolio decision.

We then switch to a version of the secant method described by Press et al. (1989, Ch. 9), or, if
this method fails, to Brent’s method as described by Press et al. (1989, Ch. 9). For each new
candidate bond priceq, we solve for the decision rules of agents and then estimateD(q)
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by computing total bondholdings given the current distribution of wealth in our simulated
sample. We continue iterating using either the secant method or Brent’s method untilD(q)

is close enough to zero (i.e., less than 10−3). Although we could continue iterating using the
bisection method, we find that switching to a more efficient root-finding algorithm leads to
large computational savings.

Throughout the numerical work, our central concern is accuracy rather than speed or
computational feasibility. For this reason, we use tight convergence criteria (percentage
changes between successive iterations of less than 10−6 in most cases) and we choose rea-
sonably large values for the number of grid points (when solving the consumer’s problem),
the number of quadrature points (when computing the conditional expectation in the con-
sumer’s problem for the case of an AR(1) productivity shock), the number of agents in the
simulated cross-sectional distributions, and the length of the simulations. That is, the numer-
ical results do not change appreciably when we choose smaller values for these parameters
of the numerical algorithm. We find that, given a good initial condition, iterations on the
value function lead to monotonic convergence (as predicted by the contraction mapping
theorem). In all cases, converged decision rules conform to the predictions of economic
theory. As discussed in the main text, theR2’s for the aggregate laws of motion and the
pricing functions are very high in all cases, indicating that the inclusion of additional mo-
ments would change the results only slightly. Other goodness-of-fit measures [see Krusell
and Smith (1996b) for further details] also show that the aggregate laws of motion and the
pricing functions fit very well.


