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1 Introduction

Income convergence, or a tendency for richer economies to grow slower and for

poorer economies to catch up with the rich, has been studied extensively in the empirical

growth literature. A large part of this literature has investigated the issue of cross-country

income convergence on the assumption of some given, exogenously determined rate of

technological progress, as specified in the Solow (1956) model. This model predicts that

per-capita income in economies with equal rates of population growth, investment and

total factor productivity should converge to a given steady state, because the marginal

product of capital is higher in poorer economies where capital is scarcer. Some earlier

country-level empirical studies (see, for instance, Barro and Sala-i Martin, 1991, 1992a,b)

confirm this prediction, calculating a speed of income convergence at around 2% per year.

Others, however, find little or no evidence to support the notion of convergence.

The insight from the “new growth theory”, namely that advances in technology in-

crease the marginal product of physical capital in already capital-rich economies, helps

explain why one may fail to observe convergence between economies at different stages

of technological development. The mechanism ensuring convergence in the Solow model

– higher marginal product of capital in poorer countries – fails unless technological so-

phistication is controlled for. For instance, Quah (1994) shows that Solow convergence,

conditional only on population growth and investment, is only observed within samples

of similarly developed economies, also known as “convergence clubs”.

In this study, we try to reconcile conflicting empirical evidence on income conver-

gence with the basic tenets of the Solow model by conditioning convergence on techno-

logical sophistication. One way of conditioning convergence is to allow each country to

have its own “fixed effect”. Doing so leads to much higher estimates of the speed of

convergence in the region of 5 to 11% per year (Islam, 1995; de la Fuente, 2002). We do ob-

serve this tendency in our estimations as well, but, as we will show, there are econometric

problems with the fixed-effects specification of the convergence equation, which we ad-
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dress. Therefore, valid controls for technological sophistication should be used instead of

relegating all unobserved heterogeneity to the fixed effects.

Still, relegating all unobserved heterogeneity to the fixed effects may not be enough

because some steady state determinants evolve with time. Identifying appropriate con-

trols to characterise the steady state can be problematic. Earlier attempts to do so by using

years of schooling have proved inconclusive (see for instance Barro and Lee, 1993; Mankiw

et al., 1992; Islam, 1995). One reason for the disappointing performance of schooling in

convergence regressions is that it is measured with a considerable error which attenuates

its regression estimates. A more fundamental reason, however, which would also apply

even if technological sophistication were perfectly measured, is that the abovementioned

studies were carried out at the country level. We argue that, because national economies

are naturally a mix of low-tech (such as agriculture) and high-tech (such as aviation) in-

dustries, a country-level convergence analysis may suffer from aggregation bias. Accord-

ingly, following the footsteps of industry-level studies (Dollar and Wolff, 1988; Bernard

and Jones, 1996a,b; Cameron et al., 2005), we estimate a convergence equation using data

from individual industries.

We proxy technological sophistication with research and development (R&D) expen-

diture per worker. Common intuition suggests that, if R&D is indeed a significant deter-

minant of the steady-state per-capita income, industries will converge to their appropriate

steady states faster than – if at all – to some kind of “average” steady state across the in-

dustries that differ in terms of technological sophistication. Our results show that this

is indeed the case. We find that R&D expenditure per worker is strongly and positively

correlated with per-worker value added growth, and that including it in the convergence

equation increases the speed of convergence considerably. Therefore, convergence is faster

the more similar the industries are in terms of technological sophistication.

The rest of the paper is organised as follows. Section 2 presents a summary of the

key findings in the convergence literature. Regression specification and estimation issues

are discussed in section 3. Section 4 provides a descriptive summary of the data and the
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main variables used in our study. Section 5 shows and discusses our estimation results

and links them to earlier findings. Section 6 concludes.

2 Previous studies

The origin of the idea of income convergence can be traced back to the basic prop-

erties of the neoclassical growth models, which practically ensured the existence of a

transitional growth path to a steady state level of income (Solow, 1956). If the steady state

income is the same for all economies, convergence is said to be unconditional (Barro and

Sala-i-Martin 1992). This being seldom the case, convergence may still exist conditional

on the variables determining for every economy its own steady state. As we will show,

technological sophistication is one of such variables. Although there are several other def-

initions and methodologies to measure income convergence, the two empirical measures

that are most often used in this class of studies are: (1) beta-convergence, or a negative

correlation between growth and initial level of income (Baumol, 1986); and (2) sigma-

convergence, or a reduction in the dispersion of per capita income between economies

(Quah, 1993). This paper is about beta-convergence.

Historically, empirical studies of convergence started with the analysis of cross-sectional

data from countries or regions. In a series of studies, Barro and Sala-i Martin (1991,

1992a,b, 1995) find convergence at a rate of about 2% per year for 48 US states over the

period 1880-1890, 10 Canadian provinces (1961-1991), 47 Japanese prefectures (1955-1990),

90 European regions (1950-1990) and various combinations of OECD countries. Similar

estimates were reported in Levine and Renelt (1992), Neven and Gouyette (1995), Hofer

and Wörgötter (1997) and Martin (2001). The 2% per year speed of convergence,implying

that it would take a region 35 years to eliminate half the initial gap from the steady state

income level, was justified on the grounds of high costs of implementing new technologies

(Sala-i Martin, 1996), but was often criticised as arising from inappropriate measurement

of variables and application of estimation techniques (Vasudeva Murthy and Chien, 1997)

and omission of steady state determinants (Andres et al., 1996).
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One way of gaining control over steady state determinants is to allow for country-

specific fixed effects, which was made possible by the arrival of large internationally com-

parable panel data, such as the Penn World tables. Panel data studies do indeed report

faster convergence. Islam (1995), for instance, using OECD panel data and a model with

country fixed effects, obtains estimates of the rate of convergence varying between 4.3

and 9.3%. More recent panel data estimates tend to report even higher convergence rates,

in certain cases as high as 20% (de la Fuente, 2002; Cuadrado-Roura et al., 1999; Tondl,

1999). Other studies which take into account the endogeneity of the lagged income level in

the convergence equation report somewhat lower estimates for the speed of convergence

(Caselli et al., 1996); and 3-5% in Hoeffler (2002). Our results suggest that correcting for

this endogeneity is important.

Mankiw et al. (1992) and Islam (1995) present an augmented version of the classical

Solow convergence equation, that has the advantage of controlling for human capital, as

a measure of technological differences between countries and regions. They find that the

speed of convergence tends to incease once average years of schooling was included in the

regression (though this variable itself was often found to be insignificant). A number of

studies followed a less structural approach, adding a variety of potential determinants of

economic growth. Examples include financial institutions (Collender and Shaffer, 2003),

and political stability (Savvides, 1995), fiscal policy and openness to trade (Haveman et al.,

2001). The evidence here is mixed, but meta-analytical results in Abreu et al. (2005)

suggest that the inclusion of these variables does lead to higher estimates for the speed of

convergence 1.

The role of technology development itself in the convergence process has also been

in the centre of attention in a number of empirical studies, although it has often suffered

from the usual limitations imposed by data aggregation and variables selection. Earlier

contributions in the wider growth literature, have attempted to proxy the role of technol-

ogy with the inclusion of measures of human capital accumulation (Abramovitz, 1986;

1In their recent meta-study of income convergence, Abreu et al. (2005) show that, though peaking at the
“legendary” 2% per year, the estimates of the speed of convergence vary. Thus, they cite more than 600 studies
reporting estimates ranging from -3.8% to 65.5% per year. They show, however, that a considerable part of this
variation can be explained through addressing relatively few issues surrounding the estimation procedure.
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Mankiw et al., 1992; Behnabib and Spiegel, 1994). More recent ones include more direct

controls for technological differences between regions, in order to examine the effect of

technology defusion (spillovers) or “research capacity” (Coe and Helpman, 1995; Helli-

well, 1992; Parente and Prescott, 1994; Cameron et al., 2005). Our paper falls to the latter

category, using a particular measure of sectoral research intensity to control for the effect

of differences in technological sophistication between countries.

Parente and Prescott (1994) present a model in which the ability to adopt new tech-

nologies relates directly to the growth potential of the economy. Their empirical calibra-

tion of this model shows that cross-country differences in the capability to adopt new

technologies can explain a significant part of the existing growth and income differentials,

and that an increase in the “adaptability” of the laggards can stimulate rapid growth and

catch-up. Similar findings are reached by Cameron et al. (2005) at a more disaggregated

setting. Using a panel of 14 UK manufacturing industries over the period 1970-1992, they

find standardised R&D expenditure to be a significant determinant of innovation and,

ultimately, productivity growth and convergence.

3 Model Specification

The basic convergence model as derived in Solow (1956) is based on a constant re-

turns to scale Cobb-Douglas production function with two inputs, labour and capital, and

exogenous rates of technological progress. Mankiw et al. (1992) add human capital in

the production function (maintaining the assumption of constant returns to scale). Islam

(1995) extends the convergence equation to include country or industry-specific effects.

Drawing on these frameworks, we estimate an extended version of the convergence equa-

tion, with a control for technological sophistication added as follows:

ln
(

INCOMEit2

)
= e−λτ ln INCOMEit1 +

(
1− e−λτ

) α

1− α
ln

sit
EMPit + g + δ

(1)

+
(

1− e−λτ
) φ

1− α
ln rit +

(
1− e−λτ

)
ln Ai + g(t2 − e−λτt1)



INCOME CONVERGENCE AND R&D INTENSITY 7

where i and t are industry and time period identifiers, t1 and t2 denote the beginning

and end, respectively, of a four year period (so τ = 4) 2. INCOME is defined as value

added worker; s is the share of capital investment in total output; EMP is the growth

rate of workers in a particular industry; and r is R&D expenditure per worker, which we

use as a measure of technological sophistication. The parameter α measures the share of

physical capital in the production function, φ is the share of the technology input in the

production function, τ is the length of a period, g and δ measure the rate of exogenous

technological progress and physical capital depreciation, respectively (following common

practice, g + δ is assumed to be equal to 0.05), and Ai is the unobservable industry-specific

term. Finally, λ measures the speed of convergence, i.e. the average rate at which the gap

between per-worker incomes in different industries is reduced each year.

The empirical counterpart of (1) is

ln
(

INCOMEit2

)
= γ ln INCOMEit1 + β1 ln(sit) + β2 ln(EMPit + g + δ)(2)

+β3 ln rit + αi + ρt + eit

where eit is a random error and ρ denotes a vector of period dummies. We estimate

equation (2) on an industry-level panel dataset of 12 OECD countries 3 over the period

1987-1999. The structural parameters of interest, λ, α and φ can be recovered from the

regression estimates as follows:

λ = − ln γ

4
,

α =
β1

1− γ + β1

φ =
β3

1− γ + β1

2See section 4 for a discussion of the choice of time periods
3The countries included in our sample are: Australia, Belgium, Canada, Finland, France, Italy, Netherlands,

Norway, Spain, Sweden, UK, US.
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Equation (1) also implies a testable restriction, that the coefficients of ln(sit) and ln(EMPit +

g + δ) are of equal magnitude and opposite signs. Wald tests carried out on our data gen-

erally do not reject this restriction.

Equation (2) is then estimated with a selection of estimators, namely pooled least

squares, fixed effects, instrumental variables and GMM. A pooled least squares estimator

assumes that the observed variables (s, EMP, r) fully define the relevant income steady

state, so, given these, there should be no systematic differences in steady states across

industries. This assumption is bound to fail in the presence of a variety of industry-

specific factors, important for economic growth but either unobservable or poorly mea-

sured (e.g. institutions, overall level of economic development, geographic determinants)

and therefore concealed in the term Ai which this estimator ignores. As a result of assum-

ing away the persistent differences induced by unobservables, one gets too few income

steady states, so that the average distance to the nearest identified steady state becomes

large and the estimate of the speed of convergence low 4.

The fixed-effect estimator can accommodate industry-specific unobservable effects,

although it may also lead to incorrect inferences about the speed of convergence. Thus,

the fixed-effects estimator assumes the existence of an income steady state peculiar to each

cross-section unit (and thus estimates an α̂i for every i), but at the same time washes out

a great deal of inertia in income dynamics, which may exaggerate the estimated speed of

convergence, leading again to erroneous conclusions 5.

A number of estimation techniques have been proposed to correct the bias in the es-

timation of a dynamic regression such as equation (2) with fixed effects. These include

instrumental variables (Anderson and Hsiao, 1982), various versions of the Arellano-Bond

4In more technical terms, the unbiasedness of an estimate requires γ = E(γ̂). In the case of OLS, this equality
does not hold. The initial level of total factor productivity, which is part of the term αi , is positively correlated
with subsequent levels of labour productivity. Thus cov

(
ln INCOMEit1 , αi

)
> 0, which results in γ̂ > E(γ) and

underestimated speed of convergence since λ = − ln γ
τ .

5The fixed-effects estimator works by subtracting each variable’s cross-section average from every observation
and running OLS on the residuals. In our case (skipping the rest of the variables), the transformed regression
equation would be ln INCOMEit2 − ln INCOMEi = ln INCOMEit1 − ln INCOMEi,−1 + eit − ēi . ln INCOMEit2 is
positively correlated with its contemporaneous error, eit, by construction, so ln INCOMEit1 would be positively
correlated with eit−1 and hence with ēi . Therefore, cov(ln INCOMEit1, eit − ei) < 0, resulting in γ̂ < E(γ) and
overestimated speed of convergence.
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GMM estimator, bias-corrected fixed effects (Kiviet, 1995), minimum distance (Chamber-

lain, 1982), as well as limited- and full-information maximum likelihood estimators. How-

ever, the short span of our data severely limits the choice of the estimators we can apply,

thus ruling out the use of more advanced Arellano-Bond type estimators (see Blundell

and Bond, 1998), as they would require more than three periods per cross section. Simi-

larly, the use of non-IV estimators, such as maximum likelihood, would require more time

periods than we have to ensure consistency. We therefore use basic IV and Arellano-Bond

estimators to obtain consistent estimates for equation (2)’s parameters.

To assess the performance of these two techniques, we run simple Monte Carlo simu-

lations (results presented in Appendix 1). Applying the GMM estimator, we are aware of

the possibility of it carrying a bias because of the weak instruments problem. This prob-

lem is the result of GMM using all available instruments for a given observation, some of

which may be weak, particularly when the dependent variable is persistent (Blundell and

Bond, 1998). Indeed, as our simulations show, the bias of our GMM estimator exceeds

that of IV.

We use the second lag of the dependent variable and lags of regressors as (excluded)

instruments. These instruments are sufficiently strongly correlated with the lagged de-

pendent variable ln INCOMEit1 and they pass the Sargan-Hansen overidentification test.

Each estimator is tried on two specifications of the regression equation. The first includes

only the log initial level of value added per worker, employment and investment growth

rates. The second augments it with our measure of technological sophistication - R&D

expenditure per worker. The difference in the estimates for the speed of convergence

from these two specifications is instructive and suggests that industries similar in terms

of technological sophistication converge faster.

4 Data

Our sample is drawn from OECD’s Structural Analysis (STAN) database. This is

one of the most comprehensive internationally comparable data sources on industry-level

performance currently available. We extract from this dataset information on value added,
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R&D expenditure, investment and employment for a number of manufacturing industries

in 12 OECD countries. All variables have been transformed to real per capita values. The

number of available industries varied from 31 (Netherlands) to 45 (Australia). Not all

data were available for all industries and countries, so the complete sample consists of

326 country-industry pairs.

Because convergence is expected to occur over a period of several years, to reduce

the importance of business cycle component in our data, we operate with three periods

of four years each: 1987-90, 1991-94, and 1995-99 6. This time period length is comparable

to the ones used in previous studies. In particular, some of our preliminary estimations

confirm that the OLS speed of convergence estimates do not differ significantly when the

model is estimated over the entire sample period as opposed to period by period (i.e. one

observation per country-industry pair). This similarity has also been repoted in earlier

studies (see for instance Islam, 1995, 2003).

Table 1 goes about here.

Table 1 summarises our regression variables. Value added per worker averages at

around $45,000 and has been rising over time. Although declining in size and economic

importance, the manufacturing sector in OECD economies has enjoyed steady growth in

value added per worker amounting to 2.5% per year over the observed period, which is

somewhat higher than the OECD average GDP annual growth of approximately 2.1% over

our sampling period.

6The correct implementation of the IV and GMM estimation techniques that we follow, requires at least three
time periods.
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With many industries in decline, the overall employment growth rate is also falling at

a rate of -0.7% per annum. Given that the total employment growth in OECD is averaging

at 0.15% per annum, this figure is indicative of the shift of employment from manufac-

turing to other sectors of the economy (mainly services). Despite the overall reduction in

employment, investment per worker averages a positive 2.2% per annum. R&D expen-

diture averages at $3,601 per worker, or 8% of value added, with a pronounced upward

trend reflecting the increasing technical sophistication of production processes.

R&D varies greatly across industries and countries. Its variance between types of

industries accounts for 51% of the total, suggesting that R&D intensity is largely industry-

specific and depends on returns to technology innovations across different groups of

products. Our data enable us to capture this important source of variation in technolog-

ical sophistication. At the same time, differences in R&D intensities by industry suggest

differences in the degree of importance of R&D for sectoral productivity growth.

The variation in R&D’s country averages accounts for 6% of the total. Although

the driving forces behind this variation are not fully clear, it would be reasonable to

suppose that a considerable part of it is due to differences in industry mix across countries.

Differences in R&D intensities between industries and in industry mix between countries

imply that, if R&D is to matter for growth, countries may or may not converge depending

on how similar their industry mix is.

Figure 1 goes about here.

Figure 1 gives a first impression of unconditional income convergence. The term

‘unconditional convergence’ is used here to imply the absence of controls for factors other
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than the initial level of value added. The slope coefficient of the fitted regression line has

the expected sign and magnitude, implying that less productive industries seem to grow

faster on average. Thus, industry productivity growth appears to reduce its gap with the

sample average by 1.4% per year. This rate is within the range of country-based estimates

found in cross-sectional convergence studies at the country level (Barro and Sala-i Martin,

1991, 1995; Islam, 1995).

There is one important difference, however, between our estimate from Figure 1 and

earlier cross-sectional studies, namely that we operate with individual industries. As

similar industries are likely to converge faster (because, for instance, similar technology

can be more easily adopted), going from the industry to the country level can reduce the

estimated speed of convergence if countries differ in terms of industry mix. Indeed, as

we aggregate our data up to the country level, we find lower in magnitude (1.1% ) and

insignificant speed of convergence. It is therefore conceivable that aggregation may have

been one of the reasons that led earlier, country-level, studies to report low or insignificant

rates of convergence.

5 Estimation Results

Table 2 reports our estimation results for the convergence equation (2) from a variety

of estimators. The pooled OLS estimates suggest a speed of convergence in the region

of 2-3% per year. All variables have intuitive signs, and overall significance is high. The

restriction that the coefficients of EMP and s are equal and of opposite signs is not rejected

by the data. The estimate for the share of capital in total output is somewhat above

the benchmark of 1/3, but it comes closer to it as the R&D variable is introduced in

the equation. Introducing R&D also leads to the increase in the speed of convergence

estimate, which supports conditioning convergence on the steady state parameters other

than employment growth and investment rate.
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Table 2 goes about here

The fixed-effects estimator renders faster speed of convergence and lower share of

capital input, but their magnitudes are improbable: 54.3% per year and 15% of output,

respectively. As we showed in section 3, the short time dimension of our panel (only three

observations per industry-county pair) induces the correlation between the fixed-effects

transformed lagged dependent variable and the error term, and creates an upward bias to

the speed of convergence estimate. We observe the same tendency when simulating the

performance of the LSDV estimator in Appendix 1.

The IV and GMM estimates for the speed of convergence are between the OLS and

fixed-effects. They are higher than OLS, as we allow for industry-specific steady state

effects. But they are also lower than fixed-effects estimates, because the correlation be-

tween the lagged dependent variable and the error term is reduced by instrumenting

INCOMEit1 with its second lag. The diagnostic tests warrant the validity of the restric-

tion imposed on EMP and s, as well as the choice of the instruments. The results of the

overidentification test imply that there is no unaccounted inertia in the error term, oth-

erwise earlier lags of value added per worker, used as instruments, would be correlated

with it. Therefore, the estimate γ for INCOMEit1 is not downward-biased, and the speed

of convergence is not overestimated.

R&D is an important determinant of economic growth. Thus, according to our re-

gressions, a 10% increase in the share of R&D is associated with an additional 0.5-0.6%

of per-worker value added growth, the same as the 0.6% implied by de la Fuente’s (2003)

estimates for the share of R&D expenditures in GDP 7 . The addition of R&D increases

the speed of convergence from 4-6% to 7-9% per year, as conditional convergence would

imply. It also reduces the estimate for the share of capital in output, implying that more

7de la Fuente’s estimate of the speed of convergence is lower than ours (in the region of 3.4% per year), but
his reported results are indeed consistent with our preliminary estimates on the speed of convergence between
economies rather than industries.
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capital-intensive industries are also more R&D intensive. The implied average share of

physical capital in total output is now around 0.3, which is close to the benchmark. The

implied share of the R&D input in total output, also averaged across industries, is about

14-16%.

Even though we took a different approach from most of the earlier literature, our find-

ings are consistent with it, especially if we take data aggregation issues into account. Our

pooled OLS estimates for the speed of convergence are comparable with those reported

in cross-sectional studies employing the same design (Barro and Sala-i Martin, 1992a,b;

Mankiw et al., 1992). That they are slightly on the right side of the spectrum could be

explained through differences in data aggregation levels, as we demonstrated in section 4.

As in Mankiw et al. (1992), we too observe an increase in the speed of convergence once

the measure of technological sophistication (R&D intensity in our case) is added in, and,

as in Islam (1995), we find an increase in the speed of convergence when adding fixed

effects. Both effects are strongly grounded in theory.

The difference between our OLS and fixed-effects estimates, however, is far greater

than in Islam (1995). Part of the explanation for this is that we have fewer time periods

(three versus five), which increases the correlation between the initial level of value added

and the fixed effect 8. Data aggregation level could be yet another explanation for the

smaller difference between the OLS and fixed-effects results in Islam (1995). Given the

pairwise correlations between value added in a certain country-industry pair and its fixed

effect, aggregating industry data up to country level reduces this correlation and thus the

difference between OLS and fixed effects estimates.

6 Conclusions

Our main motivation for this study was to provide a more direct assessment of the

impact of structural and technological differences between countries to the process of

income convergence. To this end, we have estimated a simple conditional income conver-

8As we increase the number of time periods in our simulations, this correlation, and hence the upward bias
to the speed of convergence, becomes smaller.
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gence model in the spirit of Mankiw et al. (1992) and Islam (1995) using industry-level

data for a sample of twelve OECD countries. Our findings can be summarised as follows.

We demonstrate that technological sophistication is an important determinant of income

growth. We also find that conditioning on technological sophistication increases the speed

of convergence between industries. Consequently, our results imply that, because indus-

tries differ in terms of technological sophistication, economies with different industry mix

will converge slower than more similar ones.

Our results yield support to the results reported by earlier studies at the macro level,

arguing the importance of technological sophistication in the process of income conver-

gence. We also show the importance of differences in the industry mix for convergence

between national economies. While industries do differ in terms of R&D intensity, the

mainstream, country-level, research on convergence cannot address such differences in

industry mix between countries, which may partly explain the absence of or very slow

convergence results that are reported in some of these studies. We, therefore, conclude

that sufficient conditioning should be applied at the right level of aggregation to demon-

strate convergence.

Turning to policy implications, aspiring economies should not only emulate the lead-

ers in stimulating R&D spending but also pay attention to their industry mix. Large

variation in R&D intensity by industry type suggests industry-specific returns to new

technology. Therefore, policies to promote technological innovation will be more success-

ful if applied to the right industries.
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Appendix 1: Simulating bias performance of selected panel-data

estimators: OLS, Fixed Effects, IV, GMM

To investigate empirically the bias properties of the estimators applied in this study,

we run Monte Carlo simulations on our assumed convergence regression model (equa-

tion (2)). As is often done in the literature (Hauk and Wacziarg, 2009), we simulate the

variables in the regression model - the beginning-of-period value added per worker, share

of investment in total output, population growth and per-worker R&D expenditure - so

that the moments, pairwise and auto-correlations of the simulated data resemble those of

the corresponding observed variables. The dependent variable, the end-of-period value

added per worker is simulated via equation (2) with an added error term. The error

term is simulated as a series of independent, normally distributed random variables with

variance resembling the empirically observed variance of the error term on our sample.

The parameter values are set close to the regression estimates on which we base our

main story: γ = 0.7, β1 = −β2 = 0.1, and β3 = 0.06. Instrumenting for the IV and GMM

estimators is done in exactly the same way as in the main estimations. The structure of our

simulated data - three time periods and 300 cross-sectional units - also closely resembles

our original dataset.

After simulating the data and applying a random error term to the dependent vari-

able, we estimate equation (2) on a newly generated dataset with all four estimators,
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recording regression coefficients and their standard errors (useful to study efficiency prop-

erties of the estimators). The procedure is repeated 1000 times. We compare the mean of

the estimate with the true coefficient, calculating the bias as a percentage deviation. Table

3 reports the results.

Table 3 goes about here

Our simulation results agree with econometric intuition as outlined in section 3. The

OLS estimator overstates persistency in the dependent variable, producing underesti-

mated speed of convergence, 1.6% compared to the true 8.9% per year. The FE estimator,

on the other hand, assigns too much explanatory power to the fixed effects, overstating

persistency in the per worker value added, which leads to too high an estimate for the

speed of convergence.

The IV and GMM estimates allow for fixed effects, unlike OLS, and, unlike FE, instru-

ment the lagged dependent variable to prevent its correlation with the error term that the

fixed effects transformation involves. These estimates are much closer to the parameters’

true values. The GMM estimates are larger than IV but only because of the greater bias

that the GMM estimates carry. The bias of the GMM estimator is presumably because of

the weak instruments problem, as we anticipated in section 3. GMM performs worse than

IV in terms of the precision of the estimates, also a consequence of weak instruments.
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Figure 1: Unconditional Convergence, whole sample. The fitted line depicts the estimated equation
GROWTH = −0.014INCOME0 + 0.171, corresponding to an average speed of convergence of 1.4% per year.
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Table 1: Descriptive Statistics for the Key Variables

Variable No of Obs. Mean Std. Dev. Min Max

∆INCOMEt 956 0.025 0.049 -0.235 0.213
INCOMEt1 960 43026 43138 7912 777264
INCOMEt2 992 46896 46215 9308 777264
st 750 0.022 0.084 -0.474 0.31
∆EMPt 895 -0.007 0.036 -0.309 0.321
rt 858 3601 6273 5 77542

Notes: ∆INCOME: the average annual growth of value added per worker; INCOMEt1 : Start of period value
added per worker, in PPP equivalent US$, adjusted for CPI inflation; INCOMEt2 : End of period value added
per worker; st: Growth rate of share of capital investment per worker, adjusted for CPI inflation; ∆EMP: Growth
rate of employment; R&D: R&D spending per worker, in PPP equivalent US$, adjusted for CPI inflation.
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Table 3: Simulation Results

True OLS LSDV
coefficient mean std. error mean std. error

Dependent variable: ln INCOMEt2

ln (INCOMEt1) 0.7 0.94 0.008 0.224 0.033
ln(st)− ln(EMPt) 0.1 0.063 0.022 0.09 0.034
ln(rt) 0.06 0.011 0.003 0.055 0.035

implied speed of convergence 0.089 0.016 0.374
implied share of physical capital 0.25 0.512 0.104
implied share of R&D capital 0.15 0.092 0.064

True IV GMM
coefficient mean std. error mean std. error

ln (INCOMEt1) 0.7 0.662 0.124 0.603 0.292
ln(st)− ln(EMPt) 0.1 0.097 0.038 0.097 0.041
ln(rt) 0.06 0.057 0.037 0.059 0.039

implied speed of convergence 0.089 0.103 0.127
implied share of physical capital 0.25 0.223 0.196
implied share of R&D capital 0.15 0.132 0.12


