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Summary. In the present paper  we study truncated projections for the fan- 
beam geometry in computerized tomography.  First we derive consistency 
conditions for the divergent beam transform. Then we study a singular value 
decomposition for the case where only the interior rays in the fan are pro- 
vided, as for example in region-of-interest tomography. We show that the 
high angular frequency components of the searched-for densities are well 
determined and we present reconstructions from real data where the missing 
information is approximated based on the singular value decomposition. 

Subject Classifications: AMS(MOS): 65R10; CR: 61.2. 

1 Introduction 

The mathematical  model describing x-ray computerized tomography is the so- 
called x-ray transform. In two dimensions it coincides with the Radon transform 
which assigns a real-valued density distribution f its integrals over all straight 
lines. For  an overview of the state-of-art results see Natterer [9]. 

Describing the unit vectors tosS 1 by c0=co(~0)=(cosq~,sinq~) T we get with 

�9 - ( co - co ~0 + - (-- sm q~, cos q~)T the standard parametrization of the rays lead- 

ing to the Radon transform 

~f ( s ,  co) = S f ( s  co + t col) dt (1.1) 
R 

with s~R. This notation is best suited for the parallel geometry where x-ray 
source and detector are moved to sample all parallel lines over the patient. 
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This was used in the first scanners and has the disadvantage that the sampling 
time is far to long for the resolution which is now achievable. Therefore in 
the so-called fan-beam geometry a single x-ray tube is mounted on a gantry 
and moved around the patient. Opposite that tube is a set of detectors sampling 
at an instance all the rays emanating from the tube. In that geometry we use 
the divergent beam transform parametrized by two directions or simply by 
two angles c~ and ft. The source position is dco(a+Tr/2) where d denotes the 
radius of the source circle. If we scale our object such that it is compactly 
supported in the unit circle then d is larger than 1, in practical situations between 
2.5 and 3.5. Furthermore /3 denotes the angle of a ray with the center ray 
connecting the source position with the origin 0. Between the two parametriza- 
tions there is the relation 

~f(a, fl)= ~ f (d  sin fl, ~o(a + fl)), (1.2) 

with ae[0 ,2rc[  and f l e [ - ~ ,  ~],  where ~b=arcsin(1/d). In [2] the operator  
is called the divergent beam transform. Based on this coordinate transform fast 
reconstruction algorithms are developped which allow for parallel processing 
and hence real-time inversion, as long as the data are sampled on a regular 
mesh. 

In [-6] we performed a stability analysis based on a singular value decomposi- 
tion of the limited angle transform when restrictions are posed on the angular 
range ~o=rn(q~). In the present paper we study the region-of-interest problem 
when only the subset of diagnostic relevance is covered by x rays. When for 
example the spinal chord is examined there is no point in wasting radiation 
on the rest of the abdomen. In our notation (1.2) this means that we study 
restrictions on fl and hence on s in the original parametrization. First one has 
to mention a nonuniqueness result by K.T. Smith [2] saying that even in the 
region of interest it is not possible to recover the density uniquely and that 
the functions in the nuUspace are almost constant there, thus allowing for detect- 
ing the boundaries of the organs but not their actual densities. In the present 
paper we first derive consistency conditions for the fan-beam geometry in form 
of a singular value decomposition of the divergent-beam transform. Then we 
repeat the nonuniqueness result for the truncated projections and we reduce 
the singular value decomposition for this interior transform to the eigenvalue 
problem of some compact  operators. The stability problem is then discussed 
based on these operators. Finally we present reconstructions from real data. 
They show that the sophisticated regularization of this ill-posed problem gives 
extremly good results. 

2 Consistency Conditions for the Fan-Beam Geometry 

We consider the Radon transform as mapping between L2(12 ) and L 2 ( Z  , w -1) 
where 12 is the unit disk, Z = [ - 1 , 1 ]  x S  1 is the unit cylinder and w is the 
weight w(s) = (1 - s2) 1/2. 
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Lemma 2.1. Let ~:  L2((2 )-+ L2(Z , w-1). Then ~ has the singular value decomposi- 
tion 

{vm.~, um,~; ~m,~} 
with 

where 
m>O,  - m < _ l < m  and m + l  even 

v,,.l(x) = ~-  1/Z(m+ 1) 1/z Ix[ ~ P~'J~)/2 (2 Ix] z -- 1) e izarg~x), (2.1) 

u,,. l(s, co) = n - 1 w(s) Urn(s) e 't~~ (2.2) 

~,.,~=2n~/Z(m+ I) -5/2, (2.3) 

where the P,(~" ~) are the Jacobi-polynomials and the U,, are the Chebyshev-polyno- 
mials of  the second kind. 

Proof  See [5, 7, 9]. 

The singular functions {v,,,~} form a complete orthonormal system in the 
closure of the range of the adjoint operator which is equal to the orthogonal 
complement of the null space, and the {Ur,.~} are a complete orthonormal system 
in the closure of the range of the operator. They have the following property 

~Vm,  l~Orn, lUm, l and ~*Um, l=O-m, lVm, l . 

With this result we can characterize the range of the transform. 

Corollary 2.2. Let ~ :  L2(f2)--*L2(Z, w- l ) .  Then geL2(Z, w -1) is in the closure 
of  the range of  ~ if and only if 

gts, c o ) = w t s ) ~  U,,(s) ~ g,,.,e izr (2.4) 
m = O  l = - - m  

r e + / e v e n  

The function g is in the range of  ~ if  it has the representation (2.4) and 

~(m+l) ~ jgm,~]2<oo. 
m = O  1 = - - m  

m + / e v e n  

(2.5) 

Proof From Lemma 2.1 follows the representation of the functions in the closure 
of the range of ~.  Applying Picard's criterion yields (2.5). 

As further corollary we find Helgason's consistency conditions characterizing 
the closure of the range of ~ by the three conditions 

g(s, co)=0 for ]s[> 1, 

g(s, co)=g(-s, -co), 

g(s, co) s k ds is a homogeneous polynomial of  degree k in co. 
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Regularity assumptions on g dependent on f in suitable Sobolev spaces corre- 
spond to (2.5). 

In the next step we want to restate this result for the fan-beam geometry. 
We introduce the notation 

and 

W(fl) = d cos fl w- I (d sin fl), 

V,,(fl) = ~-1 w(d sin fl) U,,(d sin fl), 

Q = [o, 2 ~] x I--  ~, ,~]. 

We derive the following consistency conditions for the fan beam geometry, see 
also [4]. With ~ we denote the angle between the x2-axis and the line connecting 
the origin with the x-ray source. 

Theorem 2.3. Let ~ :  L2(Y2)~Lz(Q, W). Then g is in the closure of the range 
of ~ if and only if 

o o  

g(~, fl)= ~ e i'('+") ~ gl.k Viii + 2k(fl) (2.6) 
l e Z  k = O  

and g is in the range of ~ if it has the representation (2.6) and 

~ ([ll + 2k) tgz, k] 2 < ~176 
l e Z  k = O  

Proof This is a consequence of Lemma 2.1 and a reorganization of the double 
s u m .  

In contrast to the parallel geometry there are no such simple analogues 
as Helgason's consistency conditions. We have for example 

2 ~  

g(~, fl) dg= 2~z ~" go, k V2k(fl). 
0 k = 0  

3 Indeterminacy and Singular Value Decomposition of the Interior Problem 

In the sequel we consider truncated projections in the following sense. We assume 
that ~f (~ ,  r) is given for all ~e[0, 21r] and 

I f l l<B<O.  (3.1) 

We denote by 

QB = I]O, 2 ~] • I ] -  ~, B] 

the set where the data are given. We first have to state the following result. 
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Lemma 3.1. Let ~ f  be given on Qs. Then f is not uniquely determined by these 
data, even not when restricted to those x with 

Ixl ~ a :=d sin B. (3.2) 

This result is proved by simply constructing a function in the null-space 
for the so-called interior problem, 

= {feLz(f2): ~ f ( e ,  fl)=0 for almost all (~, fl)eQB}. 

If we chose an even h e C ~ [ - 1 ,  1] with h ~ 0  and h(s)=0 for [sl<a, then we 
see that 

g(e, fl) = h(d sin fl) 

is in the range of ~ and that, applying Cormack's inversion formula, [9], we 
get 

00 
f i x ) =  ----1 j. (s2_lxl2)_a/2h,(s)ds" 

7r Ix[ 

This function f is not identically equal to zero and hence a nontrivial member 
of ~ .  Instability problems are reported by constructing special elements in 
the range of ~ see [ 1, 8]. 

Now we start computing a singular value decomposition for ~ as mapping 
between L2(f2 ) into Lz(QB , W). We denote by 

and get 

From this we find 

~m,l(~, fl) = Um.l (d sin fl, co (a + fl)) 

~v.,.~(~, fl)= 2 ~  q',,.,(~, ~). 
Vm+l 

(3.3) 

(3.4) 

( ~ *  ~ Vm, l, Vn, k~L2(12) : ( ~ Vm, l, ~ Vn, k~L2(QB, W) 

4~ 

l/(m+ 1)(,,+ 1) 
4 

d ~ cos fl w(d sin fl) Um(d sin fl) U~(d sin fl) 
~ / ( m + l ) ( n + l )  -s  

2~ 
. e.~-k~d~ ~ d"-k~'d~ 

o 

4~ 2 
J w(s) Um(s) Un(s) ds. 

=6Z'k [ /(m+ 1)(n+ 1) ~z - ,  

That means that the scalar product is zero for 14: k. On the other hand, according 
to the singular value decomposition given in Lemma 2.1 and the fact that the 
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v,~.t form a complete system in Lz(f2) only those m, n show up that have the 
same parity as k and are not smaller than ]kl. Hence we consider for l = k  
the operators 

- - a  

and express the value of the scalar product by the operator AIu r = AN(a  ) as 

(~*~Vlk l+ Zm, k, Vlkf+ Z,,k)L:(O)=(Dt~l~tlklDikl)m,=:(Alkl),~,, (3.5) 

where the diagonal operator Dk is given by 

2~/~ m>0 .  kl/ V ;l' 
Using the relation of the Chebyshev-polynomials with trigonometric functions; 
i.e., 

sin (m + 1) 
Urn(cos ~ ) -  sin ~ ' 

we get with b = arccos a 

~/2 

(Ak)mn = 4 ~ sin (k + 2 m + I) ~ sin (k + 2 n + 1) ~ d 
7~ b 

resulting in the representation 

J~k = l - T + Hk 

where I is the identity, T is the Toeplitz-operator 

(T),.~ = s (m -- n) 

and Hk are the Hankel-operators 

(Hk)mn =- $ (k  n t- 1 + m + n) 

where finally 

1 sin(21b) 
s ( l )  = 

rc l 

In the full data case the operator 'tk is, because of b = 0, the identity and we 
immediately find the eigenvalue-eigenvector-decomposition of ~*  ~. The opera- 

/ 

tor Tis  denoted by Slepian [-10] as p(oo, ~) .  

Lemma 3.2. 7he operators -4k are linear continuous operators from 12 into 12 
with 

IIAkll < 1. 
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Proof. Let k be fixed. We represent the opera to r  -4k as a product  of  simple 
operators.  Let G: lz--*L2(I, w-l ) ,  I=1 - - -  1, 1] be defined as 

i2~d=(dm)~m=o o ,(Gd)(s)= w(s) ~ ~ dk Uk(S). 
k = O  

Form Parseval 's  relation it follows that  G has norm 1. The  adjoint  opera to r  

G*: L2(I,w-l)~12 
is given by 

a'f:((a*f)m):=O=(~ iUm(S)f(s)ds)~=o:a-lf" -1 
With the characterist ic function Zo of the interval [ - - a ,  a], 0 < a < t we define 
the t ime-limiting ope ra to r  Ea: L2(I, w- t) ~ L2(I, w- 1) simply by 

(Ea f )  (x) ~- Xo(X) f(x). 

It is clear that  IlEall 1 and * -  = Ea - E . .  Hence  the product  opera to r  

G.=E.G: 12~L2(I,w -1) 

is linear, bounded  and we have G* = G* E..  The opera to r  

G* G. = G* E.  E.  G = G* Ea G = G -  1 Ea G 

is a linear and cont inuous  mapp ing  f rom 12 into 12 with 

[2 (sin((m+n+2)b) sin((m-n)b)) 
(G, Ga)m = I n \  m + n + 2  m--n m4:n; 

1 2 b-~ 1 s i n ( 2 ( m + l ) b )  

where b=a rccos (a ) .  In order  to represent  the ope ra to r  "4k with the help of  
G* G~ we finally need the shift ope ra to r  

Bk : 12 ~ 12 

defined as 

(Bkd),,={du for m = 2 / t + k  
0 otherwise. 

Because of ]]Bkdll = Hdll we see ]lBkll----- 1. Finally we u s e  (B~d)n=dk+2n t o  get 

Ak = B* G - ~ E~ GB k, (3.6) 

which means  that  the no rm of-3k is less or  equal  1. 
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Theorem 3.3. The symmetric operators Ak,  k >O are compact operators between 
12 and have norm 

4re 
II Ak 1[ < (3.7) 

= k + l "  

Proof. The operators A k are compositions of the continuous operators Ak with 
norm 1, see Lemma 3.2, and the compact diagonal operators Dk with norm 
2~1/2(k+ 1)-1/2 

As a consequence we see that the A k have a pure point spectrum. For fixed 
k we denote the eigenvalues of Ak by 2k,. and the eigenvectors by Xk, 

As Xk,. = 2k. U Xk. u" (3.8) 

These eigenvectors form the unitary transform Xk and we use this coordinate 
transform to find another complete orthonormal system on L2(f2) by 

~/ik,.= ~ (XlkI,.),. VlkI+2,..k, (3.9) 
m:O 

1 
& ' "  = 2 ]/2~,~=o ~ (xlkr'")m ~ l  + z,,.~ 1/21kl, ,(Ikl + 2 m +  1) (3.10) 

Theorem 3.4. The operator ~ :  L2(O )--+ L2(QB, W) has the singular value decompo- 
sition 

{~k,., Ak,., Zk,.} (3.11) 

with k e Z  and m>=O and ~9, A and 2 given in (3.8), (3.9), (3.10). 

Proof This follows from the construction of the above used functions. 

4 Stability Considerations 

In this section we study the operators A k and -4k in order to get more information 
on the singular values and the singular functions. Clearly from the Theorems 
3.3 and 3.4 we have 

Zk,u<2 
k + l "  

The question is now how fast the rk,u decay as function of/~. 
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A first result is provided by the nonuniqueness theorem in Lemma 3.1. There 
we constructed a circular symmetric function in the null space, whose expansion 
coefficients are determined with the help of A 0, a fact that we restate in the 
following form. 

Theorem 4.1. The operator Ao is not injective. 

Next we consider the high angular frequencies; i.e., large Ik[. 

Theorem 4.2. The operators 71 k converge for  k ~ oo pointwise to the regular opera- 
tor I -  T. 

Proof  We show that the Hk converge pointwise to 0. Using 

71 k = I - -  T +  H k 

we get 

IlHkl} < I1 elk ]l + l ] I -  T]l < 2 

as a consequence of Theorem 3.3 and the result of Slepian [-10]. That means 
that the HHkH are uniformly bounded. Now let {ez: ieN} be the set of canonical 
unit vectors in 12. Then 

IlHke, ll 2= (Hk)j,(e,)i = ](Hk)j,t 2 
j=O  i 2=0 

< 
~z~ j~o (k + 1 +j)2 

,+. , ; )  
= ~ - 2  j j = 0  

1 1 k + L - 1  1 

2_. 6 rc 2 j :  j = 0  

which converges to 0 for k ~ oo. Hence, Hk converges pointwise on M--span  {el: 
l eN}  to 0. M is dense in 12, therefore with the Banach-Steinhaus theorem 
follows the convergence of Hk to 0. 

This result shows that the high angular frequencies are uniquely determined 
by the truncated projections. 

Theorem 4.3. Let f~JVB. 7hen the two statements are equivalent: 
i) f has a f inite series expansion, 

ii) f - 0 .  

Proof  Obviously i) follows from ii). Now assume that f has a finite series expan- 
sion; i.e., 

M 

f =  ~ ~ f,,l v,,l 
m=O l ~ --m 

rtl + I even 
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Table 5.1. Singular values of the finite section (5 x 5) approximation of  I -- T, Hk and  Ak for a =0 .6  

I -- T Ikl Hk ,4k 

0.989244165313 
0.798896832552 
0.268315779263 
0.021332998715 
0.000391405274 

0 0.365234381123 0.999984877681 
0.156495747749 0 977888883151 
0033515367982 0.332562371221 
0.007220493882 0.003158801636 
0.000381971377 0.000001726279 

10 0.059402003065 0.990985805446 
0.049746920445 0.777553851287 
0.000574205487 0.305385603857 
0.000301763384 0.013663237606 
0.000001859933 0.000522067577 

100 0.007893909505 0.988741851803 
0.007264783812 0.804485806662 
0.000001447839 0.261682502510 
0.000000946172 0.022273992662 
0.000000000132 0.000367399988 

and that it is not identically equal to zero, then 

M (M -- I/])/2 

~f(~'fl)= 2 eit(~'+O) Z g]l[+2k, lV~l] +2k(fl) 
1= - M  k = 0  

with 
gm, l=O'rn,l frn. t. 

Integrating with respect to c~ we compute the function 

2g 

1 So ~f(c~'fl)e-i'~d~ qt(/3) =-~n 
( M  - 11l) /2 

=eill3 E glll+2k, l V[/I + 2k, 
k=O 

hence 
e -  "p w-  ~(d sin fl) qz(fl) 

is a polynomial in d sin/3 of  degree at most M, which has at most  M zeroes 
for ~3el--B, B] in contrast to the assumption that feJt@ 

The "bad" functions that are constructed in [1, 8] contain essentially compo-  
nents belonging to small singular values. But this information is incomplete 
as far as this is only  a small  portion of  the possible contributions. The above 
results give much more insight in this incomplete data problem. 

5 Numerical  Results 

The theoretical results of the last sections show different behaviour of the opera- 
tor Ak for small and large k. In the following we first present some numerical 
results for the case of finite section approximations of the compact operators 
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i I 

Fig. 5.1a--c. Numerical approximation to singular functions ~5.~(x, 0) for a large and two small singu- 
lar values. The region of interest is marked 

A k respectively for Ak- In Table 5.1 we compare the singular values of 
Ak = I - - T - - H  k and H k for different values of k and for  the regular operator  
I - T .  In accordance to Theorem 4.2 we observe that for large k the singular 
values of I lk  become smaller and that  '4k approaches I - -  T. The result is reported 
for M - -  4 in the notation of  the proof  of Theorem 4.3. 

Next we consider the singular functions. In Fig. 5.1 we see that  for a large 
singular value the singular function in 5.1a) is well concentrated within the 
region of interest. In contrast  to that  the singular functions belonging to small 
singular values are flat in that region as predicted by theoretical results in [2, 
9], see b), c). But they are large at the border and at the outside of that region. 
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A 

C !.-'. . . . . . . . . .  

Fig. 5.2a~1. Reconstruction of a head cross sechon, a full data, b full data zoomed to region of 
interest, e reconstruction from the interior 84 rays with standard algorithm, d reconstruction from 
interior 84 rays with consistent approximation of the data m the missing range 

,th ~ 

,dii 

"4  
C '  

C D 

Fig. 5.3a~1. Reconstruction of abdomen cross section, a full data, b full data zoomed to region 
of interest, c reconstruction from the interior 164 rays with standard algorithm, d reconstruction 
from interior 164 rays w~th consistent approximation in the missing range 
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Of course some of the rays are travelling also through that part, so the data 
also contain information on that region. Due to that behaviour of the singular 
values simple algorithms give reasonable reconstructions with a shift in the 
absolute value of the searched-for densities and they show the contrast of the 
objects in the interior. Near  the border of the region of interest they deteriorate, 
see [3, 9]. 

We used the truncated singular value decomposition of the above studied 
operator and computed approximations of the data in the missing range without 
introducing further information as boundary of the body or so. For realistic 
tests data from a S I E M E N S  scanner were provided. In the case of the skull, 
see Fig. 5.2, we compared the result from the complete set of data with the 
one where we used from the complete set of 704 rays per direction only the 
interior 84 rays. In the picture showing the abdomen, see Fig. 5.3 we used the 
interior 164 rays in order to cover more than the spinal chord. In both cases 
there are no visible differences of the pictures with complete and truncated 
data in the region of interest. 
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