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Abstract

When investors have incomplete information, expected returns, as measured by
an econometrician, deviate from those predicted by standard asset pricing models
by including a term that is the product of the stock’s idiosyncratic volatility and
the investors’ aggregated forecast errors. If investors are biased this term generates
a relation between idiosyncratic volatility and expected stocks returns. Relying on
forecast revisions from IBES, we construct a new variable that proxies for this term and
show that it explains a significant part of the empirical relation between idiosyncratic
volatility and stock returns.
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1 Introduction

According to textbook asset pricing theory, investors are only rewarded for bearing aggregate

risk and, consequently, idiosyncratic volatility should not be priced in the cross section of

stock returns. However, numerous recent empirical studies have documented a relation

between stock returns and idiosyncratic volatility. In particular, Ang, Hodrick, Xing, and

Zhang (2006), Jiang, Xu, and Yao (2007) and Brockman and Yan (2008) provide evidence of a

negative relation for the US stock market, and Ang, Hodrick, Xing, and Zhang (2008) confirm

in a recent study that a similar relation also holds in other markets. There is however no

consensus as to the direction of this effect. Indeed, Malkiel and Xu (2001), Spiegel and Wang

(2005) and Fu (2005) find positive relations between idiosyncratic volatility and expected

returns, while Longstaff (1989) finds a weakly negative relation.

We propose a simple model of firm valuation under incomplete information that sheds

some light on the ambiguous link between idiosyncratic volatility and stock returns. Specif-

ically, we assume that investors observe aggregate shocks as well as the cash flows of all

firms but have incomplete information about idiosyncratic shocks and therefore have to

estimate the growth rates of cash flows. Rather than modeling the learning mechanism

at the individual level, we assume that the investors’ perceptions can be summarized by a

single subjective probability measure that is equivalent to the objective or “true” probability

measure. Because investors behave rationally the CAPM holds under their subjective prob-

ability measure in the sense that expected returns under this measure only reflect exposure

to aggregate risk. But it fails under the objective measure as expected returns under that

measure also depend on the investors’ forecast errors. Indeed, the idiosyncratic shocks

perceived by investors are a combination of the true idiosyncratic shocks and forecast errors

that cannot be disentangled given the available information. Since idiosyncratic volatility is

defined as the loading of the firm’s stock returns on the perceived idiosyncratic shocks, this
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implies that expected returns under the objective probability measure contain an additional

term that is given by the product of the firm’s idiosyncratic volatility and the investors’

aggregated forecast error. This additional term, which we refer to as the idiosyncratic

volatility effect, is the basis for our explanation of the relation between idiosyncratic volatility

and stock returns.

As explained by Timmermann (1993; 1996) and Leuwellen and Shanken (2002) among

others, unconditional tests do not capture the expected returns as perceived by investors.

Rather, they measure a combination of these perceived expected returns that are solely due to

aggregate risk exposure, and forecast errors that are due to incomplete information. Since the

weight of the forecast errors in this combination is given by the firm’s idiosyncratic volatility

it follows that idiosyncratic volatility can have an impact on expected returns as measured by

regressions. It is important to observe that the deviation from the CAPM which is implied

by our model under the objective measure is not due to a missing factor. Indeed, the idio-

syncratic volatility effect that we identify is generated by the investors’ aggregated forecast

errors and, hence, does not represent a reward for exposure to a systematic risk factor. The

presence of such a component in expected returns is entirely due to incomplete information

and cannot be generated by introducing additional state variables into an otherwise standard

model.

If investors are unbiased in aggregated terms, that is if they consider the correct un-

derlying model and use Bayes’rule to update their beliefs, or equivalently if there exists a

representative agent with unbiased beliefs, then their aggregated forecast errors are zero

on average. In this case the idiosyncratic volatility effect predicted by our model is by

construction equal to zero on average and, therefore, does not affect unconditional estimates

of expected returns. While it may be natural to assume that investors are Bayesian at the

individual level, this assumption does not necessarily imply that the aggregation of their

beliefs is itself Bayesian (see e.g. Detemple and Murthy (1997), Berrada (2006) and Jouini
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and Napp (2007)) and one should therefore expect that their perceptions are biased in

aggregate terms. If that is indeed the case then the idiosyncratic volatility effect is different

from zero on average and, hence, affects unconditional estimates of expected returns. The

existence and direction of this bias, and whether or not it can help us understand the

empirical relation between idiosyncratic volatility and stock returns are the main questions

we address in the empirical part of the paper.

We focus our empirical investigation on two important implications of the model. First,

firms with high idiosyncratic volatility should underperform when news are bad, and overper-

form when news are good. In the context of our model, where the growth rates of cash flows

are unobserved, bad news correspond to situations where realized earning growth is smaller

than expected and induce negative perceived shocks on returns through the mechanism

highlighted above. Since stocks with high idiosyncratic volatility are more exposed to

this shock, they should underperform following bad news. An identical reasoning suggests

that high idiosyncratic volatility stocks should underperform following good news. This

implication of the model relates to the vast literature on the post-earning announcement

drift, see e.g. Ball and Brown (1968), Watts (1978), Foster, Olsen, and Shevlin (1984) and

Bernard and Thomas (1990). We contribute to this literature by proposing a model that not

only explains the response returns to news but also predicts a stronger effect on the return

of high idiosyncratic volatility stocks.

Second, our model predicts that if there appears to be a relation between idiosyncratic

volatility and stock returns in the data, then this relation should not remain significant when

controlling for the idiosyncratic volatility effect. This implication of our model provides a

potential explanation for the empirical results documenting a cross sectional relation between

idiosyncratic volatility and stock returns. Note that while our model predicts the existence

of such a relation it is silent about its direction and, therefore, can be consistent with both

a negative relation (e.g. Ang et al. (2006; 2008), Jiang et al. (2007) and Brockman and Yan
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(2008)) and a positive relation (e.g. Malkiel and Xu (2001), Spiegel and Wang (2005) and

Fu (2005)).

To test the predictions of our model, the first step is to construct a proxy for the idio-

syncratic volatility effect. Since this effect is defined as the product of a stock’s idiosyncratic

volatility and the investors’ aggregated forecast errors we need proxies for both quantities.

Following standard practice we measure a stock’s idiosyncratic volatility in a given month by

the standard deviation of the residuals from the 3 factor model of Fama and French (1993)

run at a daily frequency. To approximate the investors’ aggregated forecast errors about

the growth rates of cash flows we use the average of analyst forecast revisions for end-of-

year earning growth obtained from the I/B/E/S database and standardize this measure to

obtain comparable quantities across firms. Our proxy for the idiosyncratic volatility effect

is computed for each firm at a monthly frequency using all analyst forecasts from January

1982 to December 2007.

When we split the sample in good and bad news groups, the first implication of the model

is remarkably well verified. Indeed, we find that portfolios of high and low idiosyncratic

volatility stocks behave very differently following good and bad news and that the risk-

adjusted effect goes in the direction predicted by the model. In particular, portfolios of high

idiosyncratic volatility stocks have significant and largely positive alpha after good news and

a significant and largely negative alpha after bad news. Furthermore, the magnitude of the

average idiosyncratic volatility effect for ten idiosyncratic volatility-sorted portfolios is very

close to the magnitude of the alphas. In particular, the difference between alpha and our

proxy for the idiosyncratic volatility effect is not statistically significant for eighteen out of

the twenty portfolios we construct.

In the split sample, the evidence is mixed relative to the second implication of the

model. Controlling for the idiosyncratic volatility effect reduces the magnitude and statistical

significance of the alphas of the decile portfolios but fails to completely explain the cross-
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sectional relation between idiosyncratic volatility and stock returns. As this may be due to

the presence of outliers we repeat the same regressions after applying a monthly filter that

eliminates 1% of most extreme idiosyncratic volatility effects as well as those firms which are

followed by less than five analysts in the given month. The results for the filtered sample are

more in line with the predictions of the model. In particular, controlling for the idiosyncratic

volatility effect now makes the alpha insignificant on 5 of the decile portfolios in the bad news

group. Unfortunately, controlling for the idiosyncratic volatility effect still has a marginal

impact on the alphas in the good news group and we therefore cannot conclude that the

second implication of the model holds in the split sample. These results are confirmed by a

detailed analysis of the returns on a portfolio that is long in high idiosyncratic volatility stocks

and short in low idiosyncratic volatility stocks. In particular, we show that controlling for

the idiosyncratic volatility effect completely eliminates the alpha of the long/short portfolio

in the bad news group but as little effect on that of the good news group.

To investigate the validity of the model’s second implication we perform a number of

tests on the whole sample. Specifically, we follow Ang et al. (2006; 2008) in constructing ten

portfolios sorted on the previous month’s idiosyncratic volatility and compare the alphas of

these portfolios to the corresponding idiosyncratic volatility effects implied by the model.

As in Ang et al. (2006) we find a negative relation between idiosyncratic volatility and stock

returns in the whole sample. In particular, a portfolio that is long in high idiosyncratic

volatility stocks and short in low idiosyncratic volatility stocks produces a negative and

significant alpha of −66 basis points per month. When comparing the alphas of the decile

portfolios to the predictions of our model we find that the idiosyncratic volatility effect

decreases as idiosyncratic volatility increases, and that its magnitude explains about half

of the negative abnormal risk-adjusted return on the long/short portfolio. To confirm this

finding we conduct a regression analysis which shows that controlling for the idiosyncratic

volatility effect eliminates the alpha of the long/short portfolio. Remarkably, the estimated
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coefficient on the idiosyncratic volatility effect is not significantly different from the value of

one predicted by the model.

In summary, we find significant empirical support for the predictions of our model. In

particular, the idiosyncratic volatility effect that we identify explains the different behavior

of high and low idiosyncratic volatility stocks following good and bad news, and can account

for a sizeable part of the cross-sectional relation between idiosyncratic volatility and stock

returns. To ascertain the robustness of these empirical findings, we repeat the statistical

tests with alternative proxies for the idiosyncratic volatility effect as well as alternative

sampling frequencies and show that the result remain qualitatively unchanged. In the final

section of the paper, we also perform further tests to successfully verify that our incomplete

information based explanation of the cross-sectional relation between idiosyncratic volatility

and stock returns is different from both the dispersion of analyst forecasts effect of Diether,

Malloy, and Scherbina (2002), and the return reversal effect of Huang, Liu, Rhee, and Zhang

(2010).

This paper belongs to the growing literature that relies on incomplete information models

to explain properties of asset returns and/or corporate policies. For example, Pastor and

Veronesi (2003) show that the need to learn about firms’ profitability explains the seemingly

high valuation of young firms; Brennan and Xia (2001) show that incomplete information

can generate excess volatility; Alti (2003) shows that incomplete information can explain

the investment/cash flow sensitivity puzzle even in the absence of financing frictions; and

Décamps, Mariotti, and Villeneuve (2005) and Grenadier and Malenko (2010) study the

impact of incomplete information on the exercise of real options and show that it can help

explain some features of the investment policies observed in practice. A extensive and up-

to-date survey of the applications of incomplete information and learning in finance can

be found in Pastor and Veronesi (2009). The papers that are perhaps the most closely

related to ours are Timmermann (1993; 1996) and Leuwellen and Shanken (2002) who show
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that, when investors must learn about future expected cash-flows, empirical tests can find

patterns in the data that significantly differ from those perceived by investors. We add to

the contribution of these papers by showing that such a mechanism can create a relation

between idiosyncratic volatility and stock returns even if only systematic risk is priced in

the market, and by providing a way to empirically measure the corresponding idiosyncratic

volatility effect.

The remainder of the paper is organized as follows. In Section 2 we present the valuation

model. In Section 3 we identify the idiosyncratic volatility effect and present testable

implications. In Section 4 we present the data used in our tests, discuss the construction

of our proxy for the idiosyncratic volatility effect and presents our empirical results. We

conclude in Section 5. The appendix provides the details on the computation of firm values

in the model as well as proofs omitted from the main text.

2 The model

In this section we build a simple continuous-time model of firm valuation under incomplete

information. As in Berk, Green, and Naik (1999), we work in a partial equilibrium setting

in the sense that we take the pricing kernel as given. This gives us the tractability we need

in order to focus on the relation between idiosyncratic volatility, incomplete information and

stock returns.

2.1 Information structure

We consider an economy in which many firms are active. The instantaneous cash flow of

firm i evolves according to

dXit = Xitθitdt+Xitσ
⊤
iadBat +XitσiidWit
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where the process Bat ∈ R
n is a Brownian motion that affects all firms, Wit is a firm specific

Brownian motion that is independent from both aggregate shocks and the specific shock of

firm j 6= i, and the constants σia ∈ R
n and σii 6= 0 represent the sensitivity of the firm’s cash

flows to aggregate and idiosyncratic shocks. The growth rate of the firm’s cash flows, θit, is

a stochastic process but its precise dynamics do not affect our results and therefore are left

unspecified.

A key feature of our model is that investors have incomplete information about the

growth rates of the firms’ cash flows. More precisely, we assume that investors observe the

aggregate shock as well as the cash flows of all firms but do not observe the firm specific

shocks and therefore have to estimate the growth rates before they can value firms. Rather

than modeling the investors’ individual perceptions, we assume that their views can be

summarized by a probability measure Ps that is equivalent to the objective probability

measure Po, and under which the cash flow evolves according to

dXit = Xitmitdt+Xitσ
⊤
iadBat +XitσiidBit. (1)

In this equation, the process mit represents the investors’ perception of the growth rate of

the cash flows of firm i, and the process

Bit = Wit +

∫ t

0

σ−1
ii (θiτ −miτ ) dτ =

∫ t

0

σ−1
ii (dXiτ/Xiτ − σ⊤

iadBaτ −miτdτ) (2)

is a Brownian motion under the equivalent probability measure Ps with respect to the

information set F = (Ft)t≥0 available to investors. As was the case for the growth rates,

the precise dynamics of the investors’ perceived growth rates are not crucial for the purpose

of this paper and therefore are left unspecified.

If investors are in aggregated terms Bayesian, or equivalently if there exists a represen-

tative agent with Bayesian beliefs, then mit is an unbiased estimator of the true growth rate
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and its dynamics can be obtained by application of standard filtering results, see Liptser

and Shiryaev (2001). While it may be natural to assume that investors are Bayesian at the

individual level, this assumption does not necessarily imply that the aggregation of their

beliefs is itself Bayesian. In particular, Detemple and Murthy (1997), Berrada (2006) and

Jouini and Napp (2007) among others have shown that in standard equilibrium models with

heterogenous Bayesian investors the beliefs of the social planner who determines prices are

not Bayesian except in very special cases. This implies that one should expect the aggregate

perception, mit, to be biased in the sense that mit 6= θ̂it ≡ Eo[θit|Ft] and we show in the

next sections that such a bias is key in generating a relation between idiosyncratic volatility

and stock returns.

2.2 Firm valuation

To compute stock prices we assume that any security can be valued by discounting its future

cash flows using a stochastic discount factor that evolves according to

dξt = −rtξtdt− ξtκ
⊤
t dBat, ξ0 = 1. (3)

In this equation, the processes rt and κt ∈ R
n are measurable with respect to the information

set F available to investors and represent, respectively, the risk free rate and the market prices

associated with each of the aggregate sources of risk.

This specification is quite natural in the context of our model. In particular, only the

aggregate shocks which are common to all firms are priced. Furthermore, the fact that the

dynamics of the SDF only depends on observable quantities implies that investors have the

same perception of what is the stochastic discount factor and therefore guarantees that they

agree on the prices of traded securities.
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Putting together the various pieces of the model, we can now formally define the market

value of firm i at time t as

Vit = Es

[

∫ Ti

t

ξt,τXiτdτ

∣

∣

∣

∣

Ft

]

(4)

where the subscript s denotes a expectation under the investors’ subjective probability

measure, Ti ≤ ∞ denotes the lifetime of firm i and ξt,τ = ξτ/ξt is the SDF that applies

at time t to cash flows paid at time τ ≥ t.

3 Idiosyncratic volatility and stock returns

This section derives the relation between idiosyncratic volatility and stock returns implied by

our model. We first discuss our theoretical findings in Section 3.1 and then present testable

implications in Section 3.2.

3.1 Theoretical findings

Using the definition of the firm value in equation (4) together with the dynamics of the state

price density and the martingale representation theorem it can be shown (see Appendix A

for details) that the value of firm i evolves according to

dRit ≡
dVit +Xitdt

Vit
= (rt + a⊤itκt)dt+ a⊤itdBat + ιitdBit (5)

for some observed processes ait ∈ R
n and ιit that represent the firm’s systematic and idio-

syncratic volatility.

Conditional on the information set F = (Ft)t≥0 available to investors and with respect to

their subjective probability Ps, expected returns depend only on exposure to aggregate risk

as measured by ait. It follows that the intertemporal CAPM holds from the point of view of
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investors’ in the sense that

Es [dR
e
it| Ft] = Es [dRit − rtdt| Ft] = a⊤itκtdt.

On the other hand, using the relation between the true firm specific shock Wit and the

Brownian motion Bit perceived by investors (see equation (2)) we can rewrite the dynamics

of the firm value process as

dRit =
(

rt + a⊤itκt + ιitηit
)

dt+ a⊤itdBat + ιitdWit, (6)

where

ηit = σ−1
ii (θit −mit).

Relative to equation (5), the drift now contains an additional component that depends on

the idiosyncratic volatility of the firm ιit and the normalized estimation error ηit. Comparing

the two dynamics shows that this additional term does not modify expected returns from

the perspective of investors. Indeed, we have

Es [dWit + ιitηitdt| Ft] = Es [dBit| Ft] = 0

by definition of the investors’ subjective probability measure. However, if investors are

biased at the aggregate level in the sense that mit is different from the Bayesian estimate

θ̂it = Eo[θit|Ft] then this additional term will influence expected returns under the objective

probability as demonstrated by the following:
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Proposition 1: Under the objective probability Po the instantaneous expected excess return

of firm i conditional on the observed filtration is

Eo [dRit − rtdt| Ft] =
(

a⊤itκt + ιitη̂it
)

dt, (7)

where η̂it = σ−1
ii (θ̂it −mit) is a normalized measure of the aggregate estimation bias.

It is important to observe that equation (7) is not a multi-factor specification of the

intertemporal CAPM. The first term on the right hand side is a reward for bearing aggregate

risk. The second term, however, arises from the fact that investors are biased in their

perception of the growth rate of dividends and does not constitute a reward for bearing risk.

In particular, this term depends on the idiosyncratic volatility and the investors’ perception

of the growth rate which are both firm-specific quantities.

Unconditional tests performed on data generated from the model, do not capture the

distributional properties of the stock returns as perceived by investors. Instead, such tests

measure a combination of perceived returns that are solely due to exposure to aggregate

risk, and estimation biases that are due to incomplete information. In other words, basic

regressions provide coefficient estimates that are drawn from the true underlying distribution

of returns and therefore depend on the unconditional expected value Eo[ιitη̂it|F0] of the

second term under the objective probability measure.

If investors are biased at the aggregate level then this expected value is non zero and

will mechanically influence the regression results. But whether or not this can explain the

cross-sectional evidence on the relation between idiosyncratic volatility and stock returns

depends on the covariance between the idiosyncratic volatility of stock returns ιit and the
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estimation bias θ̂it −mit. Indeed, we have

Eo[ιitη̂it|F0] = Eo[ιit|F0]Eo[η̂it|F0] + Covo[ιit; η̂it|F0]

= Eo[ιit|F0]Eo[η̂it|F0] + σ−1
ii Covo[ιit; θ̂it −mit|F0].

If the covariance on the right-hand side is zero then the investors’ estimation biases will

impact the regression results since Eo[ιit|F0]Eo[η̂it|F0] 6= 0. But this cannot be invoked as an

explanation for the empirical relation between returns and idiosyncratic volatility because

in this case sorting stocks according to their idiosyncratic volatilities does not carry any

information regarding the size of the corresponding estimation biases.

To illustrate this point, let the risk free rate and risk premium be constant and assume

that mit = mi for some mi. In this case, the results of Appendix A imply that the idiosyn-

cratic volatility of the firm’s stock returns is ιit = σii and it follows that the second term in

equation (7) is given by

ιitη̂it = σiiη̂it = θ̂it −mi

which is completely unrelated to idiosyncratic volatility.

To obtain a relation between idiosyncratic volatility and stock returns it is necessary that

the idiosyncratic volatility ιit covaries with the estimation bias θ̂it −mit. In the preceding

example this covariance was zero due to the fact that the investors’ perception of the growth

rate, and hence also the idiosyncratic volatility of returns, was constant. But there is no

reason to believe that it should be so otherwise. For example, if the investors’ perception

evolves according to a diffusion process of the form

dmit = µi(t,mit)dt+ ψi(t,mit)dBit
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then it follows from the results of Appendix A that the idiosyncratic volatility of the stock

is given by

ιit = σii + ψi(t,mit)
∂ log qi(t,mit)

∂m
(8)

for some nonnegative function qi that represents the firm’s price to dividend ratio. Using

this expression together with the definition of the estimation bias then shows that the model

generates an idiosyncratic volatility effect provided that

Covo

[

ψi(t,mit)
∂ log qi(t,mit)

∂m
; θ̂it −mit

∣

∣

∣

∣

F0

]

6= 0. (9)

While we cannot assert that this condition holds as soon as the volatility of the investors’

perception is non zero it is quite easy to construct examples of reasonable models in which

this covariance is non zero. To obtain such an example consider an infinite horizon economy

in which the risk free rate and risk premium are constant and assume that the true underlying

distribution and the investors’ perception are such that

mit = bθ̂it

for some nonnegative constant b ≤ 1 so that investors are in aggregated terms more pes-

simistic than a Bayesian investor in periods where θ̂it ≥ 0 and more optimistic otherwise.

To derive a closed-form solution for the stock assume further that the investor’s perception

evolves according to

dmit = λi(mi −mit)dt+ σ−1
ii (mit −mil)(mih −mit)dBit (10)
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with initial condition

mi0 = mi = mil +
µi

λi
(mih −mil)

for some constants λi > µi > 0 andmih > mil where the process Bit is the investors perceived

idiosyncratic shock as defined in equation (2).1 In this case the results of Appendix A show

that under appropriate parametric restrictions the price dividend ratio of the firm is explicitly

given by

qi(m) = qi1 + qi2mit

for some strictly positive constants qi1 > qi2. Using this expression in conjunction with

equation (8) then shows that the idiosyncratic volatility of stock returns is

ιit = σii +
qi1(mit −mil)(mih −mit)

σii(qi0 + qi1mit)
= σii +

qi1
σii
gi(mit).

and it now follows from equation (9) that the model under consideration produces an idio-

syncratic volatility effect if

Covo

[

ιit; θ̂it −mit

∣

∣

∣
F0

]

=
qi1
σii

(

1

b
− 1

)

Covo [mit; gi(mit)| F0] 6= 0,

or equivalenty

Corro [mit; gi(mit)| F0] 6= 0.

1As is well-known (see e.g. Pastor and Veronesi (2003)) this process gives the perception of an agent who
believes that the unobserved underlying growth rate process evolves according to a continuous time Markov
chain with states (mil,mih) and transition intensities (µi, λi − µi).

16



This correlation cannot be computed in closed form and, since the function gi is non-

monotonic, it cannot be proved a priori that the covariance is non zero. To circumvent

this difficulty we fix the values of all the parameters but mil as in Table 1 and use Monte

Carlo simulations to estimate the above correlation coefficient at a one year horizon for

different values of the parameter mil.

As shown by Figure 1 the resulting correlation estimates are clearly different from zero.

For example in the symmetric where mil = −mih = −0.15 the estimate of the correlation at

a one year horizon is

Corro [mi1; gi(mi1)| F0] = −0.15076 (±0.00795)

where the numbers in parenthesis give a 99% confidence interval. This shows that the model

indeed produces an idiosyncratic volatility effect but it remains to be seen whether this firm-

level effect can explain the cross-sectional relation between idiosyncratic volatility and stock

returns. To do so in the context of the current example we proceed as follows. First, we

simulate the cash flows and perceived growth rates of a panel of 1,000 ex-ante identical firms

over 60 years at a daily frequency and drop the first 10 years of data so as to eliminate the

impact of the homogenous initial conditions. Following the approach of Ang et al. (2006)

we then approximate the idiosyncratic volatility of each firm in each month by the standard

deviation of the errors from the market model

Re
it+∆ −Re

it = αi + βi(R
e
Mt+∆ −Re

Mt) + εit+∆

run at a daily frequency (∆ = 1/365) over non overlapping periods of one month. Using these

estimates we form ten value weighted portfolios of firms sorted on idiosyncratic volatility and
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estimate the α of each of these portfolios by running the market model

Re
pt+∆ −Re

pt = αP + βp(R
e
Mt+∆ −Re

Mt) + εpt+∆

at a daily frequency over the whole sample period. As shown by the first two columns of

Table 2 the data generated from the model exhibit a strong negative idiosyncratic volatility

effect. Indeed, the alphas of the portfolio decrease almost monotonically from 10.20 for the

low idiosyncratic volatility portfolio to 2.28 for the high volatility portfolio and most are

significative at 5% level.

To verify whether these alphas are accounted for by the idiosyncratic volatility effect

predicted by our model we use the simulated data to compute the quantity

ιitη̂it =
1

σii

(

1

b
− 1

)

mitqi(mit)

for each firm at a daily frequency, then take a weighted average to obtain the corresponding

quantity for each of the deciles portfolios at a daily frequency and finally take the time

series average to obtain an estimate of the expected idiosyncratic volatility effect for each

decile portfolio. The results of this procedure are reported in the third column of Table

2 and clearly show that the model implied idiosyncratic volatility effects are decreasing in

idiosyncratic volatility and closely match the alpha for most of the ten portfolio.

This example clearly shows that the existence of a covariance between idiosyncratic

volatility of returns and estimation biases at the firm-level allows to explain the cross-

sectional relation between idiosyncratic volatility and returns within the context of a sim-

ulated model. In order to verify whether this effect can explain the empirical evidence we

construct in Section 4 a proxy for the contribution of idiosyncratic volatility

It is important to note that the deviation from the CAPM generated by our incomplete

information model does not represent an arbitrage opportunity in practice. To see this
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assume that, as we did in the above example, an investor identifies a bias by running

regressions on volatility sorted portfolios and then constructs a long-short portfolio to take

advantage of the significant alphas. The performance of such a strategy depends on the

future levels of the covariance between idiosyncratic volatility of returns and, since the latter

is time varying, the investor cannot be sure ex-ante that over the holding period the sign

of the realized covariance will the same as that estimated from the data. As a result, the

long-short strategy still includes a significant risk component, and thus does not constitute

an arbitrage.2

3.2 Testable implications

If estimation biases indeed covary with the idiosyncratic volatility of stock returns then our

theoretical results can be used to derive two novel implications that are related to earning

forecasts, idiosyncratic volatility and stock returns. We discuss them in this section and

perform formal tests in the next section.

The stock return dynamics in equation (6) shows that the loading of a firm’s stock returns

on the investors’ aggregated estimation bias, θit −mit, is proportional to the idiosyncratic

volatility of returns, ιit. This suggests that stocks with larger idiosyncratic volatility should

be more responsive to estimation errors. In particular, when the realized growth rate of

a firm’s cash flows is higher than anticipated, a situation we refer to as good news, firms

with larger idiosyncratic volatility should experience higher risk-adjusted returns than firms

with lower idiosyncratic volatility. On the contrary, these same firms should exhibit lower

risk-adjusted returns following bad news (i.e. when θit < mit). This directly leads to the

following:

2A perfectly informed investor who observes the true growth rates of all firms would be able to identify
the aggregated estimation biases exactly, as opposed to on average, and would thus be able to arbitrage the
market. However, the presence of such investors is ruled out by assumption.
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Implication 1: Following good news, firms with larger idiosyncratic volatility produce rel-

atively larger risk-adjusted returns, and following bad news they produce relatively lower

risk-adjusted returns.

Since there is neither debt nor investment in our model, the cash flow Xit paid by the firm to

its shareholders can be interpreted as the firm’s earnings. As a result, the above implication

is related to the vast literature documenting the predictability of stock returns following

earning announcements, see Ball and Brown (1968), Watts (1978), Foster et al. (1984) and

Bernard and Thomas (1990) among others. The fact that good (bad) news are followed

by positive (negative) returns is referred to as the post-earning announcement drift.3 Most

of the theories proposed to explain this anomaly are behavioral. In particular, Bernard

and Thomas (1990) suggest that investors under-react to news while Barberis, Shleifer, and

Vishny (1998) rely on the representative heuristic and conservatism bias.

In contrast, we propose a rational explanation based on incomplete information and

which, in addition, predicts that the effect of good/bad news should be stronger among high

idiosyncratic volatility firms. Importantly, this implication of our model holds irrespective of

whether the investors’ perception are biased or not in aggregated terms. Indeed, conditional

on good (bad) news the contribution of the forecast errors to the expected stock returns

is always positive (negative) even if the forecast mit is an unbiased estimator of the true

underlying growth rate.

According to Proposition 1 the expected excess return of a stock is the sum of two

components. The first one is generated by exposure to aggregate risk and can be measured

by the sensitivity of a firm’s stock returns to standard aggregate risk factors. The second

ιitη̂it, which we will refer to as the idiosyncratic volatility effect (IDEF), is an idiosyncratic

component that is the product of the firm’s idiosyncratic volatility and a normalized measure

3Since information is revealed continuously through time there is no formal earnings announcement in
our model. However, Implication 1 deals with instantaneous returns and thus describes the contemporaneous
relation between news and stock returns.
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of the investors’ estimation bias. This suggests that if one could control for IDEF then

idiosyncratic volatility should not play any role in explaining the cross-section of stock returns

and naturally leads to the following:

Implication 2: Risk-adjusted returns on idiosyncratic volatility sorted portfolios do not

significantly differ after controlling for IDEF.

In a series of papers Ang et al. (2006; 2008), Jiang et al. (2007) and Brockman and Yan (2008)

show that risk-adjusted returns on idiosyncratic volatility sorted portfolios decrease with the

level of idiosyncratic volatility. On the contrary, Malkiel and Xu (2001), Spiegel and Wang

(2005) and Fu (2005) find positive relations using different samples and alternative testing

procedures. Our model provides a potential explanation for these findings by showing that,

under incomplete information, returns and idiosyncratic volatility are linked through the

investors’ estimation biases. Note that, while our model predicts the existence of a relation

between stock returns and idiosyncratic volatility, it is silent about the sign of this relation

and thus could be consistent with both a positive and a negative relation.

4 Tests and results

In order to test the implications of our model the first step consists in constructing a proxy

for the idiosyncratic volatility effect. We start by detailing the methodology and data used

in this process before we present the results of empirical tests.

4.1 Data and proxy construction

Assume for simplicity that there is a single source of aggregate risk so that the standard

CAPM holds from the point of view of investors. Under this assumption our model predicts

that the excess return on the stock of firm i over a time period of length ∆ = 1 month
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started at t is given by

Re
it+∆ −Re

it =

∫ t+∆

t

aiτ (dBaτ + κτdτ) +

∫ t+∆

t

ιiτ (dWiτ + ηiτdτ)

=

∫ t+∆

t

βiτdR
e
Mτ +

∫ t+∆

t

ιiτ (dWiτ + ηiτdτ) (11)

where Re
M denotes the excess rate of return on the market portfolio. To test this relation

we need to approximate both integrals by observable quantities. Following the standard

approach we assume that the beta of the firms are constant so that

∫ t+∆

t

βiτdR
e
Mτ = βi(R

e
Mt+∆ −Re

Mt).

To approximate the second integral we proceed in two steps. First, we assume that id-

iosyncratic volatility is constant within each month and, following Ang et al. (2006), we

approximate the constant value in the month starting at t by the standard deviation σε
it+∆

of the residuals from the 3 factor model:

Re
it+kδ −Re

it+(k−1)δ = αit + β1it(R
e
it+kδ −Re

it+(k−1)δ) (12)

+ β2itHMLt+kδ + β3itSMBt+kδ + εit+kδ

run at a daily frequency (δ = 1 day) between t and t + ∆ where HMLt+kδ and SMBt+kδ

are the book-to-market and size factors as defined by Fama and French (1993). Given this

estimate we approximate the second integral in equation (11) as

∫ t+∆

t

ιiτ (dWiτ + ηiτdτ) ≈ σε
it+∆

∫ t+∆

t

(dWiτ + ηiτdτ)
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and it now remains to approximate the integral on the right hand side. To this end, assume

that the investors’ perception of the growth rate of firm i’s cash flows evolves according to

dmit = µitdt+ ψitdBit = µitdt+ ψit(dWit + ηitdt)

for some µit, ψit where the second equality follows from the definition of the perceived

innovation process in equation (2). This implies

dWit + ηitdt = ψ−1
it (dmit − µitdt)

and assuming that the second term in negligible4 we conclude that the second integral on

the right hand side of equation (11) can be approximated as

∫ t+∆

t

ιiτ (dWiτ + ηiτdτ) ≈ σε
it+∆

(

mit+∆ −mit

ψit

)

. (13)

To construct a proxy for the term inside the brackets we rely on earnings forecast revisions

obtained from the I/B/E/S detail files.5 In our model cash flows are equivalent to earnings

and are perceived to grow at rate mit. Therefore, we can use variations in the expected

growth rate of earnings normalized by their standard deviation in order to approximate this

term. Analysts provide forecasts for end-of-year earnings that we aggregate each month for

every firm to obtain an average forecast which we denote by FYit. The average forecast

revision for firm i in the month starting at t is computed as

∆FYit+∆ ≡ FYit+∆ − FYit.

4To justify this assumption we may for example assume that investors filter the growth rate of the firm’s
cash flows under the assumption that it is a constant in which case µit ≡ 0. Alternatively we may assume
that investors filter the growth rate of the firm’s cash flows under the assumption that it is a strongly mean
reverting process in which case µit ≈ 0.

5The data used in our empirical analysis was downloaded after April 2009 and, therefore, uses the new
time-stamped version of the I/B/E/S database.
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Dividing throughout by the previous year’s realized earnings EPSi then allows us to approx-

imate the change in the perceived growth rate of cash flows as:6

mit+∆ −mit ≈ FEit+∆ ≡
∆FYit+∆

EPSi

.

dividing this measure by its standard deviation SFE,i and inserting the result into the ap-

proximation of equation (13) gives us a proxy for the idiosyncratic volatility effect applicable

to firm i in the month starting at t:

∫ t+∆

t

ιiτ (dWiτ + ηiτdτ) ≈ σε
it+∆ ×

FEit+∆

SFE,i

≡ IDEFit+∆ (14)

and putting everything back together finally shows that the approximate relation implied by

the model is given by

Re
it+∆ −Re

it = βi(R
e
Mt+∆ −Re

Mt) + IDEFit+∆. (15)

In the empirical investigation to follow we measure the standard deviation SFE,i by using the

whole sample period to obtain a precise estimate. This makes the variable IDEF forward

looking but has a negligible impact as we use this information to measure the realized

idiosyncratic volatility effect but not to construct portfolios. We verify in Section 4.4 that

our results remain qualitatively unchanged when using only backward looking information

in the construction of the proxy. We also perform a number of robustness checks that show

that our results still hold under proxy constructions.

The daily stock return data used in our tests is from CRSP and the sample period for all

our tests is January 1982 to December 2007. Summary statistics are presented in Table 3.

6Since some firms occasionally report negative earning per share one might be concerned that dividing
by EPSi instead of |EPSi| introduces some kind of bias. This is not the case. In particular, we have verified
that our empirical results remain qualitatively unchanged when we use the absolute value of the realized
earnings rather than the raw earnings. Details are available upon request.
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On average, the sample contains 2848 firms per month. Each firm has on average 4 analyst

forecast revisions per month. Large firms tend to be followed by more analysts and display

lower idiosyncratic volatility on average. These characteristics are in line with previous

studies (see Diether et al. (2002) and references therein).

4.2 The effect of good and bad news

The relation between idiosyncratic volatility and stock returns predicted by our model is

contemporaneous. Indeed, equation (15) and the definition of the variable IDEF show that

expected returns over the month starting at t are affected by the idiosyncratic volatility for

that month. In order to test the validity of this relation we start by performing a series of

tests in which firms are sorted in month t according to their idiosyncratic volatility in that

same month.

According to Implication 1 firms with high idiosyncratic volatility should earn higher

returns during good news episodes even on a risk-adjusted basis and the model predicts

an opposite relation during bad news events. To test this implication we first define good

and bad news as positive, respectively negative, average forecast revision. Each month we

allocate firms to either the good or the bad news group depending on the direction of the

average forecast revision, and then sort firms in deciles based on the level of idiosyncratic

volatility computed for that month from the 3 factor model of equation (12). As a result

of this procedure, there are each month on average 80 firms per decile for the good news

group, and 73 firms per decile for the bad news group. We compute the value weighted

return for each decile portfolio and estimate the alpha by running the 3 factor model at a

monthly frequency. We compare the alpha to the time series average of the value weighted

idiosyncratic volatility effect computed according to our proxy.

Figure 2 and Table 4 summarize the results of this procedure and show that the pre-

dictions of our model are remarkably well verified in the data. Indeed, for the good news
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group, the alpha increases with idiosyncratic volatility and ranges from 0.51 to 3.86 in

monthly percentage points while the idiosyncratic volatility effect, IDEF, is also increasing

and ranges from 0.27 to 3.29. For the bad news group, the alpha decreases with idiosyncratic

volatility and ranges from −0.18 to −5.58 while IDEF decreases from −0.21 to −5.15. For

the ten decile portfolios our incomplete information based explanation produces an effect

which closely matches the fraction of returns that is not explained by the 3 factor model. In

particular, the difference between alpha and the average IDEF is not statistically significant

for eighteen out of the twenty deciles portfolios.

According to implication 2, there should not be a statistically significant difference

between the returns on high and low idiosyncratic volatility portfolios after controlling for the

idiosyncratic volatility effect predicted by our model. To test the validity of this implication,

we first verify whether it holds when firms are sorted into good and bad news groups by

estimating the regressions

Re
pt+∆ −Re

pt = αp + β1p(R
e
Mt+∆ −Re

Mt) (16)

+ β2pHMLt+∆ + β3pSMBt+∆ + β4p(Θ · IDEFpt+∆) + νpt+∆

at a monthly frequency for each decile portfolio where Θ is a dummy variables that takes

the value one when a control for IDEF is included. Table 5 summarizes the results of this

estimation by comparing the alphas obtained with and without controlling IDEF. As shown

by the table, the idiosyncratic volatility effect has little effect on the initial estimation results

and we therefore cannot conclude from this test that Implication 2 holds in the split sample.

As this negative result may be due to the presence of outliers in the sample7 we repeat

the procedure after applying a monthly filter that eliminates from both groups the 1% of

7In particular, firms with very low earnings can significantly affect the results of the testing procedure,
given that IDEF is standardized using the previous year EPS.
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most extreme IDEF observations as well as those firms that are not followed by at least five

analysts.

The results of this estimation are presented in Table 6. We first note that values of the

alpha are almost identical to those of the full sample. This is reassuring as it implies that the

filters we applied have little effect on the initial estimation results. In the bad news group,

the alpha are all highly significant in the absence of control for IDEF except for the low

volatility portfolio which has a t−statistic of −0.99.8 When controlling for IDEF the alphas

of six out of the ten decile portfolios are still significant but all t−statistics are much lower.

In particular, the alpha of the high idiosyncratic volatility portfolio is no longer significant

and has a much smaller magnitude than that of the ninth decile portfolio, −1.27 against

−2.16. In the good news group, the control has a much weaker impact. The alpha remain

significant for all portfolios but the t-statistics are reduced.

To gain further insight into the above estimation results we consider a portfolio that is

long in the high volatility stocks and short in the low volatility stocks. Here also, the data is

filtered by removing 1% of most extreme IDEF observations and taking into consideration

a firm’s return only if it is followed by at least 5 analysts during that month. As shown

in Table 7, the alpha of the long-short portfolio is significant and positive in the good

news group, even after controlling for IDEF. In the bad news group, controlling for the

idiosyncratic volatility effect eliminates the impact of idiosyncratic volatility on the return

of the long/short portfolio. Indeed, controlling for IDEF drives the alpha down from −4.73

to −1.23 percent per month while its t−statistics decreases from −4.76 to −1.22. The

coefficient on IDEF for the bad news group is highly significant (t−statistics of 4.77) and

equal to 1.59. As predicted by the model, the value of the coefficient is not statistically

different from one. Indeed the t-statistic for the difference is 1.78.

8All the reported t−statistics are robust Newey-West t−statistics.
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Summarizing the results of this section, we find that Implication 1 is strongly supported

by the data and that Implication 2 holds in the bad news group. In the good news group, our

results indicate that IDEF is not sufficient to fully explain the cross-section of risk-adjusted

returns as there might be other forces at play. In particular, the positive relation between

idiosyncratic volatility and stock returns in the good news group seems to be in line with the

under-diversification explanation proposed by Merton (1987) and documented empirically

by Malkiel and Xu (2001), Spiegel and Wang (2005) and Fu (2005) among others.

4.3 Idiosyncratic volatility and stock returns

Our model predicts opposite effects during good and bad news episodes but it is silent as

to direction of the effect when all firms are taken into consideration. If earning forecasts

are unbiased, and unaffected by the level of idiosyncratic volatility, our model is unlikely to

produce a significant effect for the cross section of all firms as explained in Section 2. On the

other hand, if earning forecasts are biased, and there is ample evidence of such biases in the

literature (see, for example, O’Brien (1988), Mendenhall (1991)), we can verify empirically

if these biases and the idiosyncratic volatility effect can explain the cross sectional relation

between idiosyncratic volatility and stock returns.

The relation between idiosyncratic volatility and stock returns predicted by our model is

contemporaneous. However, to facilitate comparison with previous results in the literature

we follow Ang et al. (2006) in sorting firms according to the previous month’s idiosyncratic

volatility. Using this procedure we form 10 value weighted portfolios that each contain 285

firms on average and measure their returns and alphas relative to the 3 factor model. Table

8 compares the results of this estimation to the value weighted IDEF measured according to

equation (14). The first and fifth column show that, even though we use a different sample

period, we obtain results similar to those of Ang et al. (2006; 2008). In particular, the

portfolio that is long in high idiosyncratic volatility stocks and short in low idiosyncratic
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volatility stock has a negative and significant alpha of −0.78 and produces an average return

of −0.70 percent per month. Furthermore, firms in the high idiosyncratic volatility decile

perform significantly worse than firms in the low volatility decile. Indeed, the corresponding

alphas range from 0.25 for low volatility firms to −0.53 for high volatility firms. For the 3

deciles with the highest idiosyncratic volatility, the alpha ranges from −0.27 to −0.53 while

the IDEF ranges from −0.12 to −0.39.

As shown by Table 8, high idiosyncratic volatility stocks produce negative IDEFs whose

magnitude closely matches that of the corresponding alphas. Consistent with the findings of

Lim (2001), this suggests that earning forecasts are positively biased for high idiosyncratic

volatility stocks, i.e. that analysts are overly optimistic about risky stocks. Furthermore,

and as can be seen by comparing the third and fifth column of the table, this bias can explain

a large part of the negative performance of high idiosyncratic volatility stocks documented

in the literature. We verify in Table 9 that this finding remains valid when the observations

are filtered as in the previous section. This procedure significantly reduces the sample

size — each decile portfolio now contains on average 120 firms as opposed to 285 in the

original sample — but produces qualitatively similar results. In particular, the idiosyncratic

volatility effect predicted by the model still explains a sizeable fraction of the negative risk-

adjusted return on the long/short portfolio.

To gain further insight into the above results we estimate the regressions of equation

(16) using the returns on the long/short portfolio as the dependent variable and report the

results in Table 10. Considering the entire sample and not controlling for IDEF, the alpha

of the long/short portfolio is negative (−0.78) and statistically significant with a t-statistics

of −2.11. In accordance with the predictions of the model, controlling for IDEF makes the

alpha of the long/short portfolio insignificant (t−statistic of −1.62), however the coefficient

on IDEF is not significant. As this may be due to the influence of outliers, we present in Panel

B of Table 10 the results of the same regression analysis for the filtered sample. As before,
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the alpha is negative and significant (−0.66 with a t−statistic of −1.94) in the absence of

control and is no longer significant (−0.35 with a t−statistic of −0.98) when a control for

IDEF is included in the set of regressors. In line with model, the regression coefficient on

IDEF is now significant (t−statistic of −2.09) and equal to 1.01 which is exactly the value

predicted by Proposition 1.

Since the relation between idiosyncratic volatility and stock returns predicted by the

model is contemporaneous, we expect the results of Tables 8 and 9 to be amplified when

stocks are sorted on contemporaneous rather than lagged idiosyncratic volatility. Table 11

summarizes the results of this procedure and confirms this intuition. Here also, firms in the

highest volatility decile underperform firms in the lowest volatility deciles. The alpha ranges

from 0.22, for the lowest volatility firms, to −0.44 for the highest volatility firms but, as

predicted by the model, the idiosyncratic volatility effect is now of much larger magnitude

ranging from 0.02 to −1.00. This clearly suggests that if we were able to construct the IDEF

at a higher frequency the model should be able explain the whole cross-sectional relation

between idiosyncratic volatility and stock returns.

4.4 Robustness checks

In this section, we discuss the robustness of our results to alternative constructions of the

proxy for the idiosyncratic volatility effect as well as alternative measures of forecast errors.

We also verify whether our results still hold when controlling for alternative explanations

based on return reversals and the dispersion of analysts’ forecoasts.
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4.4.1 Alternative proxy construction

As a first robustness check, we repeat the cross-sectional tests of Table 8 with the following

alternative definition of the forecast error

mit+∆ −mit ≈ FE2it+∆ ≡
∆FYit+∆

FYit
.

To obtain comparable results across firms we standardize this measure by dividing it by

its standard deviation which we denote by SFE2,i. Multiplying the resulting standardized

measure of forecast errors by the firm’s idiosyncratic volatility then gives us the following

alternative proxy for the idiosyncratic volatility effect applicable to firm i in the month

starting at t:

IDEF2it+∆ ≡ σε
it+∆ ×

FE2it+∆

SFE2,i

≈

∫ t+∆

t

ιiτ (dWiτ + ηiτdτ) (17)

Compared to equation (14) we replace the previous year realized earning per share, EPSi,

with the previous month average forecast FYit. As shown by Table 12 the cross sectional

test results remain qualitatively unchanged when using this alternative proxy. In particular,

the new proxy ranges from 0.02 for the low volatility portfolio to −0.18 for the high volatility

portfolio and explains about a fourth of the negative risk-adjusted performance of the

long/short portfolio.

As a second robustness check, we repeat the cross-sectional tests of Table 8 with the

following definition of the forecast error

FE3it+∆ ≡ ∆FYit+∆.

Standardizing this variable by its standard deviation and multiplying the result by the firm’s

idiosyncratic volatility then give us the following proxy for the idiosyncratic volatility effect
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applicable to firm i in the month starting at t:

IDEF3it+∆ ≡ σε
it+∆ ×

FE3it+∆

SFE3,i

(18)

The cross sectional test results for this specification of the model are displayed in Table 13.

In this case the idiosyncratic volatility effect ranges from 0.01 for the low volatility portfolio

to −0.43 for the high volatility portfolio and explains about half of the negative risk-adjusted

performance of the long/short portfolio. These results are close to those displayed in Table

8 with the benchmark proxy.

To check whether our empirical results are affected by the fact that we rely on the

entire sample to compute the standard deviation of changes in forecast errors, SFE,i, we now

repeat the cross-sectional tests of Table 8 with the following unstandardized proxy for the

idiosyncratic volatility effect

IDEF4it+∆ ≡ σε
it+∆ ×∆FYit+∆. (19)

As shown by the results of Table 14, this new proxy for the idiosyncratic volatility effect also

decreases as idiosyncratic volatility increases but is shifted upward compared to Table 8. It

ranges from 0.63 for the low volatility portfolio to −0.10 for the high volatility portfolio and

matches the magnitude of the alpha on the long/short portfolio.

In summary, these alternative proxy constructions show that we obtain qualitatively

similar results even when not relying on forward looking data to standardize the variations

in the forecasted earning growth rates.
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4.4.2 Alternative measure of estimation errors

We now check the robustness of our results to the sampling frequency and to the assumption

that the forecast errors which are relevant to the idiosyncratic volatility effect are those that

pertain to the growth rate of a firm cash-flows.

To do so we repeat the cross-sectional tests of Table 8 using a quarterly frequency and

the following alternative proxy for the investors’ estimation errors

FE5it+Q =
EPSQi,t+Q − FQit

EPSQi,t

where Q = 1 quarter, EPSQit is the realized earning for firm i in the quarter ending at t

and FQit is the average of all the end-of-quarter earnings forecasts available for firm i in

that same quarter. The idiosyncratic effect applicable to firm i in the quarter starting at t

is obtained by multiplying the above measure by the firm’s idiosyncratic volatility:

IDEF5it+Q = σε
it+Q × FE5it+Q

where σε
it+Q is the idiosyncratic volatility of firm i estimated by running equation (12) at a

daily frequency over the quarter starting at t. Since many firms in our sample do not report

quarterly earnings the amount of data available to run our cross-sectional tests based on

the above specification proxy is much smaller than in our previous tests. To facilitate the

comparison with our previous results, we therefore need to limit the number of volatility

sorted portfolios so as to keep roughly the same number of firms in each of them. With this

in mind, we construct quintile rather than decile portfolios. The resulting quintile portfolios

each include on average 264 firms which is comparable to the figure we obtained in the

previous section.
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The results for this specification of the model are presented in Table 15. In particular,

the idiosyncratic volatility effect measured in quarterly percentage points ranges from −0.06

for the low idiosyncratic volatility portfolio to −0.58 for the high idiosyncratic volatility

portfolio. The corresponding alphas range from −0.08 to −1.68 but only of the alpha of the

high volatility portfolio is significant at the 10% level.

4.4.3 Return reversal and the idiosyncratic volatility effect

In a recent paper Huang et al. (2010) have shown that the relatively low returns of high

idiosyncratic volatility portfolios can potentially be explained by return reversal. In order to

show that the idiosyncratic volatility effect predicted by our model is distinct from this return

reversal explanation we construct a panel of portfolios double sorted on past idiosyncratic

volatility and returns and check whether the idiosyncratic volatility effect predicted by our

model is still present in this panel.

Table 16 reports the number of firm in each double sorted portfolio and shows that even

though we use a different sample the high idiosyncratic volatility portfolio contains a large

number of past winners and past losers and few intermediate stocks as in Huang et al. (2010).

However, and as can be seen from Table 17, the idiosyncratic volatility effect measured as

in equation (14) decreases with the level of idiosyncratic volatility independently of past

returns and is even stronger for past losers. This does not contradicts the results in Huang

et al. (2010) but clearly indicates that the idiosyncratic volatility effect implied by our model

is different from the return reversal.

4.4.4 Dispersion of analysts’ forecasts and the idiosyncratic volatility effect

Diether et al. (2002) find that when sorting firms on the basis of analysts forecasts dispersion,

the portfolio of low dispersion firms performs significantly better than the portfolio of high

dispersion firms. In order to show that the idiosyncratic volatility effect predicted by our
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model is distinct from this dispersion effect we construct a panel of portfolios double sorted on

idiosyncratic volatility and analysts forecasts’ dispersion and check whether the idiosyncratic

volatility effect is still present.

Following Diether et al. (2002), we define dispersion of analysts forecasts as the standard

deviation of earnings forecasts scaled by the absolute value of the mean earnings forecast.

Each month, firms are sorted using forecast dispersion and then within each group using

lagged idiosyncratic volatility. We use fewer groups than in the main empirical section

(quintiles instead of deciles) to maintain a sufficiently large number of firms within each

group. The results displayed in Table 18 show that the idiosyncratic volatility effect that we

identify is present within each forecast dispersion group. It is however interesting to notice

that the effect is much stronger within the group with large dispersion of analyst forecasts.

The two effects appear to be correlated although imperfectly.

The idiosyncratic volatility effect is present wether the double sort is performed using

lagged values as reported in Table 18 or contemporaneous values as reported in Table 19.

Finally, Table 20 displays the average number of firms present in each group. If there were

no differences between the sorting procedure based on dispersion and the sorting procedure

based on idiosyncratic volatility then most firms would be on the diagonal, i.e. low dispersion

would imply low volatility and high dispersion would imply high volatility. We can see from

Table 20 that it is not the case as no clear pattern emerges from the distribution of firms

across groups.

5 Conclusion

Explaining the relation between idiosyncratic volatility and stock return does not necessarily

require the use of behavioral models or the introduction of anomalies. In particular, we

show in this paper that incomplete information allows to capture a significant part of this
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relation. The key to our explanation is that when there is incomplete information about

idiosyncratic shocks any firm specific forecast error appears in the return equation scaled by

the idiosyncratic volatility. The model we develop to illustrate this mechanism is standard

in all aspects as agents behave rationally conditional on their beliefs.

Taking the model to the data requires the construction of a proxy for the idiosyncratic

volatility effect implied by the model. We do so by relying on earning forecasts and measure

idiosyncratic volatility from the residuals of a standard asset pricing model. We document

a strong link between the unexplained part of the risk-adjusted return (the alpha) and the

proxy of the idiosyncratic volatility effect. The effect is particularly strong when the sample

is split between good and bad news events.

After performing a number of robustness tests, we conclude that incomplete information

explains a significant part of the relation between idiosyncratic volatility and stock returns

and we propose a new variable, IDEF, that should be included as a control to attenuate this

relation.

Appendix A: Dynamics of the firm value process

In this appendix we show how to obtain the dynamics of the firm value process and provide

a couple of examples that illustrate the procedure.

According to equation (4) of the main text we have that the market value of firm i at

time t satisfies the asset pricing relation

ξtVit +

∫ t

0

ξτXiτdτ =Mit ≡ Es

[

∫ Ti

0

ξτXiτdτ

∣

∣

∣

∣

∣

Ft

]

where the process ξt is the state price density, or pricing kernel, of the economy as defined

in equation (3). Since the right hand side is a martingale with respect to the investors’
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information set under their subjective measure it follows from the martingale representation

theorem (see Duffie (2001, Appendix D)) that

Mit = Es

[

∫ Ti

0

ξτXiτdτ

]

+

∫ t

0

ϕ⊤
iτdBaτ +

∫ t

0

φiτdBiτ

for some F−adapted processes ϕi and φi such that the above stochastic integrals are well-

defined. Using this expression together with the dynamics of the state price density and

Itô’s lemma we get that the dynamics of the firm value are given by

dVit = (rtVit −Xit)dt+ (κtVit + ϕit/ξt)
⊤ (dBat + κtdt) + (φit/ξt)dBit

and setting

ait ≡ κtVit + (ϕit/ξt),

ιit ≡ (φit/ξt)

delivers the stock return dynamics of equation (5). The processes ϕi and φi can be identified

once we specify a model for the perceived growth rates, the risk free rate and the market

risk premium.

Consider for example a world where the interest rate and the risk premium are constant

and assume that the perceived growth rates evolve according to

dmit = µi(t,mit, Xit)dt+ ψi(t,mit, Xit)dBit
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for some deterministic functions µi, ψi. In this case, standard results on stochastic differential

equations guarantee that

Vit = Vi(t,mit, Xit)

for deterministic function and an application of Itô’s lemma shows that the corresponding

volatility coefficients are given by

ait =
∂Vi(t,mit, Xit)

∂x
Xitσia,

and

ιit =
∂ log Vi(t,mit, Xit)

∂x
Xitσii +

∂ log Vi(t,mit, Xit)

∂m
ψi(t,mit, Xit).

In particular, if the perceived growth rates are autonomous in the sense that the functions

µi, ψi do not depend on the firm’s cash flow then the firm value is given by

Vit = qi(t,mit)Xit (20)

where the function qi represents the firm’s price dividend ratio, and the expressions for the

volatility coefficients simplify to ait = σia and

ιit = σii +
∂ log qi(t,mit)

∂m
ψi(t,mit). (21)
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In the special case of the example developed in the second part of Section 3.1 we have that

the drift and volatility of the perceived growth rate are given by

µi(m) = λi(mil −m) + µi(mih −mil),

and

ψi(m) = σ−1
ii (m−mil)(mih −m)

and, as shown by the following lemma, it is possible to obtain closed form expression for the

value of the firm and the two volatility coefficients.

Lemma 1: Consider an infinite horizon economy with constant coefficients and assume that

the perceived growth rates evolve according to equation (10) for some constants parameters

such that

qi1 =
r + σ⊤

iaκ+ λi −mil −mih

(r + σ⊤
iaκ)(r + σ⊤

iaκ+ λi −mil +mih)− λimi +milmih

> 0,

and

qi2 =
qi1

r + σ⊤
iaκ+ λi −mil −mih

> 0.

Then the value of the firm and its volatility coefficients are explicitly given by equation (20),

ait = σia and equation (21) with qi(m) = qi1 + qi2m.
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Proof. Let the constants qi1 > 0 and qi2 > 0 be as in the statement and consider the

nonnegative F−adapted process defined by

Mit = ξtXit(qi1 + qi2mit) +

∫ t

0

ξτXiτdτ .

Using the dynamics of the pair (mi, Xi) in conjunction with the definition of the constants

qij and applying Itô’s lemma we deduce that Mi is a local martingale under Ps. On the

other hand, using the boundedness of mi together with the assumptions of the statement

and well–know results on geometric Brownian motion it can be shown that

Es

(

sup
t∈[0,T ]

|Mt|
2

∣

∣

∣

∣

∣

F0

)

<∞

for any finite T . This implies that the local martingale M is a true martingale up to any

finite time and it follows that

ξtXit(qi1 + qi2mit) = Es

[

ξTXiT (qi1 + qi2miT ) +

∫ T

t

ξτXiτdτ

∣

∣

∣

∣

∣

Ft

]

.

Taking the limit as T → ∞ on both sides of the previous expression and using the dominated

convergence theorem gives

ξtXit(qi1 + qi2mit) = ξtVit + lim
T→∞

Es [ξTXiT (qi1 + qi2miT )| Ft]

and the proof will be complete once we show that the second term on the right is equal to

zero. This follows from the boundedness of the perceived growth rate and the assumptions

of the statement, we omit the details.
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Appendix B: Proof of Proposition 1

By standard results (see e.g. Liptser and Shiryaev (2001)) we have that the process

Ŵit = Wit +

∫ t

0

σ−1
ii (θiτ − θ̂iτ )dτ

is an observed Brownian motion under the objective probability measure. Combining this

definition with equation (6) then gives

dRe
it = a⊤it(dBat + κtdt) + ιit(dWit + ηitdt)

= a⊤it(dBat + κtdt) + ιit(dŴit − σ−1
ii (θit − θ̂it)dt+ σ−1

ii (θit −mit)dt)

= a⊤it(dBat + κtdt) + ιit(dŴit + σ−1
ii (θ̂it −mit)dt)

= a⊤it(dBat + κtdt) + ιit(dŴit + η̂itdt)

and the desired result now follows by taking expectation conditional of Ft under the objective

probability measure on both sides.
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Figure 1: Correlation Corro[ιi1, η̂i1|F0] estimated from 100,000 simulated paths of the perceived
growth rate mit for various values of the parameter mil. The values of the other parameters of the
model are given by Table 1.
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Figure 2: Squares represent the average idiosyncratic volatility effect measured as in (14) while
circles represent the alpha from a 3 factor model. Both statistics are computed for ten value
weighted portfolios sorted monthly on idiosyncratic volatility over the sample period January 1982
to December 2007.
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Symbol b r σia σii κ λi µi mih

Value 0.5 0.045 0.13 0.152 0.3 1 0.5 0.15

Table 1: Parameter values for the model of equation (10)

alpha t−stat IDEF

Low Vol. 10.20 7.97 10.61
2 9.59 7.55 9.48
3 5.83 4.41 8.65
4 9.69 6.91 7.71
5 6.06 4.32 6.34
6 4.92 3.45 5.49
7 2.21 1.44 4.32
8 3.50 2.24 3.26
9 2.88 1.83 2.35

High Vol. 2.28 1.32 0.89

Table 2: Average idiosyncratic volatility effect (IDEF) and CAPM alpha for 10 value weighted
portfolios sorted on idiosyncratic volatility. The data used in the regressions and the computation of
the average idiosyncratic volatility effect were obtained by simulating the cash flows and perceived
growth rates of equations (1) and (10) for a panel of 1,000 firms at a daily frequency for 60 years
and dropping the first 10 years of data. The parameters used in this procedure are given by
mil = −mih = −0.15 and the values of Table 1.
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Panel A: Descriptive statistics

Mean Median Std.

Number of firms per month 2848 2972 828
Analysts per firm per month 4.03 2.00 5.7
Idiosyncratic volatility (Percent/Month) 2.89 2.18 3.25
Log market cap ($Mio.) 5.21 5.08 1.95

Panel B: Correlations

IVOL NUM log Mcap

Idiosyncratic volatility: IVOL 1
Analysts per firm per month: NUM −0.14 1
Logarithm of mkt. capitalization: log Mcap −0.34 0.60 1

Table 3: Summary statistics for the sample period January 1982 to December 2007. Panel A
reports the monthly mean, median and standard deviation of the number of firms, the number of
analyst providing a forecast during that month (NUM), the level of idiosyncratic volatility (IVOL)
measured by the standard deviation of the errors from the 3 factor model of equation (12) run at
a daily frequency, and the log market capitalization in million dollars (log Mcap). Panel B reports
the correlations between IVOL, NUM and log Mcap.
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Good news Bad news

IDEF alpha IDEF alpha

Low Vol. 0.27 0.51 -0.21 -0.18
2 0.40 0.73 -0.26 -0.31
3 0.48 0.74 -0.42 -0.17
4 0.78 0.96 -0.55 -0.67
5 0.97 1.06 -0.68 -0.85
6 1.13 1.84 -0.97 -0.71
7 1.38 1.50 -1.28 -1.02
8 1.62 1.70 -1.65 -2.31
9 2.16 2.37 -2.44 -2.84

High Vol. 3.29 3.86 -5.15 -5.58

Table 4: Idiosyncratic volatility effect (IDEF) measured as in equation (14) and 3-factor model
alpha for 10 value weighted portfolios sorted on the contemporaneous month’s idiosyncratic
volatility for the sample period January 1982 to December 2007. The sample is split in good
and bad news months obtained using average analyst forecast revisions. All values are monthly
percentage points.

Good news Bad news

Not controlling Controlling Not controlling Controlling
for IDEF for IDEF for IDEF for IDEF

alpha t−stat. alpha t−stat. alpha t−stat. alpha t−stat.

Low Vol. 0.51 3.50 0.46 3.02 -0.18 -1.26 -0.24 -1.59
2 0.73 5.77 0.68 5.05 -0.31 -2.62 -0.24 -1.56
3 0.74 5.13 0.81 5.18 -0.17 -1.07 -0.12 -0.61
4 0.96 6.83 0.73 4.82 -0.67 -4.01 -0.59 -2.85
5 1.06 6.93 0.94 5.31 -0.85 -4.29 -1.11 -4.92
6 1.84 6.92 1.62 6.77 -0.71 -2.94 -0.90 -2.34
7 1.50 6.57 1.76 6.86 -1.02 -3.44 -0.87 -2.76
8 1.70 6.59 1.70 5.44 -2.31 -5.27 -1.71 -2.39
9 2.37 6.91 2.86 6.89 -2.84 -5.14 -2.85 -3.80

High Vol. 3.86 6.06 4.55 5.31 -5.58 -5.45 -4.23 -3.54

Table 5: 3-factor alpha and 3-factor alpha controlling for the idiosyncratic effect for 10 value
weighted portfolios sorted on the contemporaneous month’s idiosyncratic volatility over the sample
period January 1982 to December 2007. The sample is split in good and bad news months obtained
using average analyst forecast revisions. All values are monthly percentage points and the reported
test statistics are robust Newey-West t−statistics.
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Good news Bad news

Not controlling Controlling Not controlling Controlling
for IDEF for IDEF for IDEF for IDEF

alpha t−stat. alpha t−stat. alpha t−stat. alpha t−stat.

Low Vol. 0.50 3.64 0.59 3.45 -0.13 -0.85 -0.18 -0.91
2 0.60 4.74 0.63 3.48 -0.31 -2.41 -0.01 -0.07
3 0.91 5.57 1.12 5.17 -0.34 -2.33 -0.43 -2.09
4 0.87 6.34 0.90 6.02 -0.33 -1.91 0.02 0.08
5 0.88 5.45 1.09 5.25 -0.86 -4.95 -1.26 -5.10
6 1.30 7.05 1.24 4.88 -0.82 -3.50 -0.78 -2.22
7 1.89 9.22 1.88 5.28 -0.79 -2.74 -0.96 -1.97
8 1.75 7.11 1.63 4.56 -1.43 -4.03 -1.26 -2.01
9 1.85 6.33 2.21 5.32 -2.60 -4.38 -2.16 -3.34

High Vol. 2.96 5.31 3.45 5.06 -4.82 -5.18 -1.27 -1.30

Table 6: 3-factor alpha and 3-factor alpha controlling for the idiosyncratic effect for 10 value
weighted portfolios sorted on the contemporaneous month’s idiosyncratic volatility over the sample
period January 1982 to December 2007. The sample is split in good and bad news months obtained
using average analyst forecast revisions. Outliers are removed using a 99 % confidence interval and
we only consider firms month return where 5 or more analysts provide a forecast. All values are
monthly percentage points and the reported test statistics are robust Newey-West t−statistics..
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Panel A: Good news

Constant MKT SMB HML IDEF

No control Coefficient 2.41 0.87 1.44 -1.03 –
t−stat. 3.81 5.14 7.13 -3.29 –

Control Coefficient 2.77 0.88 1.41 -1.03 -0.38
t−stat. 3.66 5.21 7.27 -3.17 -1.00

Panel B: Bad news

Constant MKT SMB HML IDEF

No control Coefficient -4.73 0.80 1.24 -0.82 –
t−stat. -4.76 3.52 3.73 -2.17 –

Control Coefficient -1.23 0.73 1.22 -0.85 1.59
t−stat. -1.22 3.43 3.68 -2.43 4.77

Table 7: Regression analysis for the long short portfolios. The dependent variable for all estimation
is the value weighted monthly return of a strategy that is long in the high volatility portfolio and
short in the low volatility portfolio. The constant is expressed in monthly percentage points and
IDEF is the idiosyncratic volatility effect measured according to equation (14). The sample is split
in good and bad news events. Outliers are removed using a 99 % confidence interval and we only
consider firms month return where 5 or more analysts provide a forecast. The sample period is
January 1982 to December 2007, all values are monthly percentage points and the reported test
statistics are robust Newey-West t−statistics.

Avg. R Std. IDEF Mkt. Cap. alpha t−stat. beta

Low Vol. 1.30 3.73 0.01 26.23 0.25 2.68 0.83
2 1.41 4.10 0.01 22.31 0.31 2.75 0.94
3 1.17 4.63 -0.02 16.07 -0.02 -0.26 1.07
4 1.24 4.89 -0.02 11.21 0.11 1.11 1.07
5 1.17 5.53 -0.05 7.74 -0.03 -0.26 1.16
6 1.32 6.42 -0.09 5.71 0.14 1.04 1.22
7 1.18 7.04 -0.03 4.22 0.09 0.63 1.21
8 0.84 7.94 -0.12 3.07 -0.27 -1.37 1.28
9 0.82 8.74 -0.23 2.19 -0.31 -1.47 1.33

High Vol. 0.60 9.70 -0.39 1.26 -0.53 -1.69 1.33

10–1 -0.70 -0.40 -0.78 -2.18 0.50

Table 8: Portfolios sorted on the previous month’s idiosyncratic volatility. Avg. R is the monthly
average return, Std. is the standard deviation of the portfolio return, IDEF is the idiosyncratic
volatility effect measured according to equation (14), Mkt. Cap. is the market capitalization of the
portfolio in percent, alpha is the 3 factor alpha, t−stat. is the robust Newey-West t−statistics for
alpha and beta is the market beta from the 3 factor model. The line labelled 10 − 1 provides the
same statistics for the long/short portfolio. The sample period is January 1982 to December 2007
and all values are monthly percentage points.
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Avg. R Std. IDEF Mkt. Cap. alpha t−stat. beta

Low Vol. 1.19 3.74 0.01 22.52 0.21 2.35 0.81
2 1.41 4.16 0.01 19.58 0.31 2.34 0.93
3 1.26 4.49 -0.01 15.49 0.13 1.40 1.01
4 1.03 4.96 -0.01 11.75 -0.13 -1.13 1.08
5 1.23 5.08 -0.05 9.31 0.12 1.04 1.07
6 1.34 5.68 -0.06 6.81 0.23 1.65 1.12
7 1.23 6.70 -0.08 5.32 0.07 0.47 1.22
8 1.10 7.28 -0.07 4.10 0.04 0.24 1.23
9 1.05 8.49 -0.19 3.10 0.02 0.11 1.28

High Vol. 0.77 9.62 -0.37 2.02 -0.45 -1.49 1.44

10–1 -0.51 -0.38 -0.66 -1.94 0.62

Table 9: Portfolios sorted on the previous month’s idiosyncratic volatility. Avg. R is the monthly
average return, Std. is the standard deviation, IDEF is the idiosyncratic volatility effect measured
according to equation (14), Mkt. Cap. is the market capitalization of the portfolio in percent,
alpha is the 3 factor alpha, t−stat. is the robust Newey-West t−statistics for alpha and beta is the
market beta from the 3 factor model. Outliers are removed using a 99 % confidence interval and
we only consider firms month return where 5 or more analysts provide a forecast. The line labelled
10− 1 provides the same statistics for the long/short portfolio. The sample period is January 1982
to December 2007 and all values are monthly percentage points.

Panel A: Entire sample

Constant MKT SMB HML IDEF

No control Coefficient -0.78 0.5 1.28 -0.8 –
t−stat. -2.11 3.52 9.19 -3.33

Control Coefficient -0.66 0.49 1.28 -0.81 0.29
t−stat. -1.62 3.50 9.13 -3.40 0.77

Panel B: 99 % trim and at least 5 analysts

Constant MKT SMB HML IDEF

No control Coefficient -0.66 0.62 1.08 -0.74 –
t−stat. -1.94 3.80 8.44 -3.65

Control Coefficient -0.35 0.61 1.09 -0.75 1.01
t−stat. -0.98 3.90 8.75 -3.89 2.09

Table 10: Regression analysis for the long/short portfolio. The dependent variable for all
regressions is the value weighted monthly return on a strategy that is long in the high volatility
portfolio and short in the low volatility portfolio. The constant is expressed in monthly percentage
points, IDEF is the idiosyncratic volatility effect measured according to equation (14) and the
reported test statistics are robust Newey-West t−statistics.
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Avg. R Std. IDEF Mkt. Cap. alpha t−stat. beta

Low Vol. 1.24 3.67 0.02 26.04 0.22 1.85 0.80
2 1.25 3.98 0.02 22.39 0.17 1.64 0.91
3 1.42 4.55 -0.00 16.03 0.25 2.68 1.05
4 1.37 4.95 0.01 11.21 0.20 2.02 1.09
5 1.49 5.55 -0.01 7.82 0.23 1.95 1.19
6 1.40 6.30 -0.08 5.71 0.28 2.38 1.17
7 1.43 7.61 -0.06 4.24 0.22 1.26 1.31
8 0.96 8.76 -0.17 3.10 -0.23 -0.86 1.41
9 0.81 10.53 -0.28 2.23 -0.32 -0.87 1.41

High Vol. 1.03 15.04 -1.00 1.26 -0.44 -0.51 1.80

Table 11: Portfolios sorted on the contemporaneous month’s idiosyncratic volatility. Avg. R
is the monthly average return, Std. is the standard deviation of the portfolio return, IDEF is
the idiosyncratic volatility effect measured according to equation (14), Mkt. Cap. is the market
capitalization of the portfolio in percent, alpha the 3 factor alpha, t−stat. is the t−statistic of the
alpha, beta is the market beta from the 3 factor model. The sample period is January 1982 to
December 2007 and all values are monthly percentage points.

Avg. R Std. IDEF2 Mkt. Cap. alpha t−stat. beta

Low Vol. 1.31 3.75 0.02 26.00 0.26 2.77 0.83
2 1.38 4.08 0.02 22.29 0.28 2.53 0.94
3 1.20 4.62 0.02 16.17 0.02 0.21 1.06
4 1.25 4.91 0.03 11.23 0.12 1.17 1.07
5 1.19 5.51 0.01 7.81 -0.02 -0.20 1.16
6 1.31 6.42 -0.01 5.71 0.14 1.06 1.22
7 1.23 7.02 0.01 4.25 0.14 0.98 1.21
8 0.81 7.94 0.01 3.08 -0.32 -1.58 1.28
9 0.81 8.75 -0.03 2.21 -0.31 -1.51 1.33

High Vol. 0.62 9.69 -0.18 1.25 -0.51 -1.66 1.32

10–1 -0.70 -0.20 -0.78 -2.18 0.49

Table 12: Portfolios sorted on the previous month’s idiosyncratic volatility. Avg. R is the monthly
average return, Std. is the standard deviation of the portfolio return, IDEF2 is the idiosyncratic
volatility effect measured according to equation (17), Mkt. Cap. is the market capitalization of the
portfolio in percent, alpha is the 3 factor alpha, t−stat. is the robust Newey-West t−statistics for
alpha and beta is the market beta from the 3 factor model. The line labelled 10 − 1 provides the
same statistics for the long/short portfolio. The sample period is January 1982 to December 2007
and all values are monthly percentage points.
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Avg. R Std. IDEF3 Mkt. Cap. alpha t−stat. beta

Low Vol. 1.31 3.74 0.01 26.02 0.27 2.78 0.83
2 1.38 4.09 0.01 22.33 0.28 2.65 0.94
3 1.20 4.62 -0.03 16.17 0.01 0.10 1.06
4 1.23 4.90 -0.05 11.21 0.09 0.92 1.07
5 1.21 5.50 -0.09 7.80 0.01 0.09 1.16
6 1.31 6.36 -0.07 5.70 0.13 1.00 1.22
7 1.21 7.01 -0.07 4.24 0.11 0.78 1.21
8 0.87 7.93 -0.12 3.07 -0.25 -1.29 1.28
9 0.79 8.71 -0.20 2.21 -0.34 -1.62 1.32

High Vol. 0.65 9.69 -0.43 1.26 -0.48 -1.53 1.32

10–1 -0.66 -0.44 -0.74 -2.08 0.49

Table 13: Portfolios sorted on the previous month’s idiosyncratic volatility. Avg. R is the monthly
average return, Std. is the standard deviation of the portfolio return, IDEF3 is the idiosyncratic
volatility effect measured according to equation (18), Mkt. Cap. is the market capitalization of the
portfolio in percent, alpha is the 3 factor alpha, t−stat. is the robust Newey-West t−statistics for
alpha and beta is the market beta from the 3 factor model. The line labelled 10 − 1 provides the
same statistics for the long/short portfolio. The sample period is January 1982 to December 2007
and all values are monthly percentage points.

Avg. R Std. IDEF4 Mkt. Cap. alpha t−stat. beta

Low Vol. 1.31 3.75 0.63 26.00 0.26 2.77 0.83
2 1.38 4.08 0.13 22.29 0.28 2.53 0.94
3 1.20 4.62 -0.18 16.17 0.02 0.21 1.06
4 1.25 4.91 0.43 11.23 0.12 1.17 1.07
5 1.19 5.51 0.12 7.81 -0.02 -0.20 1.16
6 1.31 6.42 -0.03 5.71 0.14 1.06 1.22
7 1.23 7.02 -0.03 4.25 0.14 0.98 1.21
8 0.81 7.94 -0.04 3.08 -0.32 -1.58 1.28
9 0.81 8.75 -0.04 2.21 -0.31 -1.51 1.33

High Vol. 0.62 9.69 -0.10 1.25 -0.51 -1.66 1.32

10–1 -0.70 -0.73 -0.78 -2.18 0.49

Table 14: Portfolios sorted on the previous month’s idiosyncratic volatility. Avg. R is the monthly
average return, Std. is the standard deviation of the portfolio return, IDEF4 is the idiosyncratic
volatility effect measured according to equation (19), Mkt. Cap. is the market capitalization of the
portfolio in percent, alpha is the 3 factor alpha, t−stat. is the robust Newey-West t−statistics for
alpha and beta is the market beta from the 3 factor model. The line labelled 10 − 1 provides the
same statistics for the long/short portfolio. The sample period is January 1982 to December 2007
and all values are monthly percentage points.
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Avg. R Std. IDEF5 Mkt. Cap. alpha t−stat. beta

Low Vol. 2.79 6.40 -0.06 55.66 -0.08 -0.28 0.84
2 3.13 7.38 0.01 24.05 -0.00 -0.01 0.93
3 3.62 10.34 -0.14 11.83 0.64 1.09 1.04
4 2.56 13.89 -0.35 5.84 -0.25 -0.25 1.18

High Vol. 1.08 17.29 -0.58 2.61 -1.68 -1.76 1.27

5–1 -1.82 -0.52 -1.55 -1.55 0.42

Table 15: Portfolios sorted on the previous month’s idiosyncratic volatility. Avg. R is the monthly
average return, Std. is the standard deviation of the portfolio return, IDEF5 is the idiosyncratic
volatility effect measured according to equation (17), Mkt. Cap. is the market capitalization of the
portfolio in percent, alpha is the 3 factor alpha, t−stat. is the robust Newey-West t−statistics for
alpha and beta is the market beta from the 3 factor model. The line labelled 5 − 1 provides the
same statistics for the long/short portfolio. The sample period is January 1982 to December 2007
with quarterly sampling frequency and all values are quarterly percentage points.

Losers 2 3 4 5 6 7 Winners

Low Vol. 4 25 50 65 62 48 24 6
2 9 32 46 52 53 48 34 10
3 13 36 44 45 47 45 38 15
4 20 38 41 40 41 43 41 20
5 26 40 38 35 36 39 42 28
6 34 40 35 32 31 34 42 35
7 43 41 31 27 28 31 40 43
8 53 39 28 24 24 27 37 53
9 65 36 24 20 20 23 33 63

High Vol. 88 27 18 15 14 16 25 86

Table 16: Average number of firms in portfolios double sorted on the previous month’s
idiosyncratic volatility and the previous month return. The sample period is January 1982 to
December 2007. All values are rounded to the nearest integer.
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Losers 2 3 4 5 6 7 Winners

Low Vol. -0.29 0.51 -0.19 0.26 -0.11 0.28 0.27 0.13
2 -0.02 -0.32 -0.35 0.37 -0.26 1.11 0.70 0.24
3 -0.41 -1.29 0.34 -0.43 0.01 -0.14 -0.19 -0.24
4 -0.91 -0.93 -0.99 -0.20 0.42 0.32 0.38 0.17
5 -2.04 -1.95 -0.47 -0.89 -2.06 -0.00 -0.48 2.48
6 -2.99 -1.92 -2.59 -1.33 -0.66 0.83 -0.31 -0.52
7 -4.01 -2.57 -0.09 -1.51 0.02 0.81 0.66 3.57
8 -5.98 -3.97 -0.97 -1.12 -0.77 -0.52 1.09 0.26
9 -16.64 -3.05 -1.83 0.13 -1.03 -0.46 -0.69 1.05

High Vol. -25.67 -4.63 -0.69 -1.38 -0.61 -0.94 0.09 -5.46

Table 17: Average idiosyncratic volatility effect measured according to equation (14) in portfolios
double sorted on the previous month’s idiosyncratic volatility and the previous month’s return.
The sample period is January 1982 to December 2007 and all values are monthly basis points.

Low DISP 2 3 4 High DISP

Low Vol. -0.19 0.08 1.52 0.65 -0.97
2 -0.80 0.65 0.81 -1.10 -1.64
3 -0.47 0.71 -0.48 -2.30 -5.14
4 -0.07 1.72 -0.90 -2.64 -4.79

High Vol. -0.81 -0.58 -6.81 -9.82 -11.96

alpha (High - Low) 0.13 -8.50 -24.25 -25.07 -4.41
t-stat 0.04 -1.04 -2.35 -2.49 -0.37

IDEF (High - Low) -0.62 -0.67 -8.33 -10.47 -10.99

Table 18: Average idiosyncratic volatility effect in portfolios double sorted on the lagged month’s
idiosyncratic volatility and the previous month’s dispersion of analysts’ forecasts. Alpha (High -
Low) is the alpha obtained by regressing the return of a portfolio long in high volatility and short
in low volatility within each dispersion group on the 3 Fama- French factors. The sample period is
January 1982 to December 2007 and all values are monthly basis points.
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Low DISP 2 3 4 High DISP

Low Vol. -0.13 0.60 1.61 0.51 -0.87
2 -0.26 0.19 1.49 -0.16 -1.14
3 -0.51 0.97 -0.22 -1.63 -2.81
4 -0.18 0.89 0.46 -4.80 -7.64

High Vol. -1.54 -3.91 -16.63 -15.32 -18.79

alpha (High - Low) 18.69 -18.98 -45.70 -35.08 27.47
t-stat 4.05 -1.13 -2.00 -1.89 1.81

IDEF (High - Low) -1.41 -4.50 -18.24 -15.83 -17.92

Table 19: Average idiosyncratic volatility effect in portfolios double sorted on the contempora-
neous month’s idiosyncratic volatility and the previous month’s dispersion of analysts’ forecasts.
Alpha (High - Low) is the alpha obtained by regressing the return of a portfolio long in high
volatility and short in low volatility within each dispersion group on the 3 Fama- French factors.
The sample period is January 1982 to December 2007 and all values are monthly basis points.
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Low DISP 2 3 4 High DISP

Low Vol. 92 151 156 107 63
2 90 123 140 125 92
3 101 107 116 125 119
4 121 97 91 118 142

High Vol. 166 91 66 94 154

Table 20: Average number of firms in portfolios double sorted on the lagged month’s idiosyncratic
volatility and the previous month’s dispersion of analysts’ forecasts. The sample period is January
1982 to December 2007 and all values are monthly basis points.
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