
Incomplete Information in Relational Databases

TOMASZ IMIELII~ISKI AND W I T O L D LIPSKI~ JR.

Pohsh Academy of Sctences, Warsaw, Poland

Abstract. This paper concerns the semantics of Codd's relational model of data. Formulated are precise
conditions that should be satisfied m a semantically meaningful extension of the usual relational
operators, such as projection, selection, union, and join, from operators on relations to operators on
tables with "null values" of various kinds allowed. These conditions require that the system be safe in
the sense that no incorrect conclusion is derivable by usmg a specified subset [l of the relational
operators; and that it be complete in the sense that all valid conclusions expressible by relational
expressions using operators in fl are in fact derivable in this system. Two such systems of practical
interest are shown. The first, based on the usual Codd's null values, supports projection and selection.
The second, based on many different ("marked") null values or variables allowed to appear in a table,
~s shown to correctly support projection, posmve selection (with no negation occurring in the selection
condition), union, and renaming of attributes, which allows for processing arbitrary conjunctive queries.
A very desirable property enjoyed by this system is that all relational t~perators on tables are performed
in exactly the same way as in the case of the usual relations. A third system, mainly of theoretical
interest, supporting projection, selection, union, join, and renaming, is also discussed. Under a so-called
closed world assumption, it can also handle the operator of difference. It is based on a device called a
condiUonal table and is crucial to the proof of the correctness of the second system. All systems
considered allow for relational expressions contaming arbitrardy many different relation symbols, and
no form of the universal relation assumption is required.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languagesmquery languages; H.2.4
[Database Management]: Systems--query processmg

General Terms: Theory

Additional Key Words and Phrases: Relational database, incomplete information, null values, marked
nulls, relational algebra, query language semantics, query processing

1. Introduction

Attempts to represent incomplete information in the relational model of data have
been made since the very beginning of the relational database theory [3, 7, 8, 10,
12, 13, 18-21, 27, 28, 30, 31, 33, 34]. (See also the extensive bibliography in
[22].) The main device in this context has been the null value, a special symbol @

This work was supported m part by the Polish Academy of Sciences under Contract MR.I.3. The second
author was also atded through a visiting appointment by Istituto di Analisi dei Sistemi ed Informatica,
Consigho Nazionale delle Racherche, Roma, Italy.

Some of the results of this paper were presented at the Seventh International Conference on Very Large
Data Bases, Cannes, France, September 1981.

Authors' present addresses: T. Imielifiski, Rutgers University, Department of Computer Science, Hill
Center for the Mathematical Sciences, Busch Campus, New Brunswick, NJ, 08903; W. Lipski, Jr.,
Laboratolre de Recherche en Informatique, Universit~ de Pans-Sud, Centre d'Orsay, Brit. 490, 91405
Orsay Cedex, France.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publicauon and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific pe, rmission.

© 1984 ACM 0004-5411/84/1000-0761 $00.75

Journal of the Association for Computing Machinery, Vol 31, No 4, October 1984, pp 761-79 I.

762 T. IMIELII~SKI AND W. LIPSKI, JR

allowed as an entry in a table, with its intended meaning being value at present

unknown (but the attribute applicable).
Representing incomplete information in a database immediately raises the much

more difficult and important problem of processing this information so that the
user can obtain--perhaps partial, but correct--responses to his or her queries on
the basis of the incomplete information. In the context of the relational model, this
comes down to defining the relational operators on tables with null values in a
semantically correct way. The intuitive condition that should be satisfied is the
following. If a null value has a specified semantic interpretation, that is, if we
assume that a specified relation exists between a table with nulls and the real world,
then this relation should be similar for the tables that are arguments of a relational
operator and for the table obtained as the result.

Solutions to this problem proposed so far have been in many respects partial
and unsatisfactory. Codd's approach [7, 8] is based on a three-valued logic and a
so-called null substitution principle, which has been criticized on semantic grounds
by Grant [10] and Lipski [20]. Lipski [19-21] and Vassiliou [30] consider, essen-
tially, only the relational operator of selection, where the selection condition can
be an arbitrary Boolean combination of atomic conditions. Proposals involving a
richer subset of the relational operators--and it is the join that seems to be the
main source of difficulty--usually do not give a clear and precise explanation of
the sense in which the definitions of relational operators on tables with nulls are
semantically correct [7, 8, 18]. An exception is the work of Biskup [3]. However,
his definition of, say, a join T t~ U of two tables with nulls works correctly when
T and U are "independent" but does not necessarily provide a method for correctly
evaluating an expressionf(T) t~ g(T) wherefand g are some relational expressions.
This is because in the latter case there may be "additional information" implied
by the fact that both arguments of the join come from the same table T, and his
definition of join is not able to take this into account (this is discussed in more
detail at the end of Section 4.) In fact, queries in a relational database are arbitrary
relational expressions, so that we should be able to handle correctly relational
expressions rather than just single relational operators.

In this paper we formulate the precise conditions that we believe should be
satisfied in any semantically meaningful extension of the usual relational operators,
such as projection, selection, union, and join, from operators on relations to
operators on "incompletely specified relations"--typically, tables with "null values"
of different kinds allowed as entries. These conditions are embodied into the
definition of a representation system (see Section 3).

Roughly speaking, these conditions require that our system be safe in the sense
that no incorrect conclusion is derivable by using a specified subset fl of the
relational operators, and that it be complete in the sense that all valid conclusions
expressible by relational operators using operators in fl are in fact derivable. The
intuition behind the notion of a representation system can also be explained in the
following way. By performing relational operators over tables with nulls, we may
introduce some corruption of information. However, if the query language that
the user has at his or her disposal is weak enough, that is, if only a specified subset
~2 of the relational operators is available, then this corruption is not visible by the
u s e r .

Two representation systems of practical interest are shown. The first, described
in Section 4, is based on tables with the usual Codd null values @ (we call them
Codd tables). The following is an example of a Codd table.

Incomplete Information in Relational Databases 763

SUPPLIER LOCATION PRODUCT QUANTITY

Smith London Nails @

Brown @ Bolts @

Jones @ Nuts 40,000

This table represents the information that Smith, located in London, supplies (an
unknown quantity of) nails; Brown supplies bolts; and Jones supplies 40,000 nuts.
The system based on Codd tables supports projection and selection, and it is shown
that no representation system based on Codd tables can support projection and
join at a time.

Section 5 describes some algorithms for correctly evaluating a selection over a
Codd table, including the case in which attribute domains are linearly ordered, and
the selection condition is an arbitrary Boolean combination of elementary ine-
qualities between attributes or between attributes and values.

The second representation system, presented in Section 6, supports projection,
positive selection (with no negation occurring in the selection condition), union,
join, and renaming of attributes--this allows for processing arbitrary conjunctive
queries [4 I, as shown in Section 8. It is based on tables allowing many different
("marked") null values, or variables (such tables are called V-taMes). The following
is an example of a V-table:

COURSE TEACHER WEEKDAY

Databases x Monday

Programming y Tuesday

Databases x Thursday

FORTRAN Smith z

This table contains three different variables, x, y, z. Notice that it represents the
information that the teacher of the course on databases, though unknown, is the
same on Monday and Thursday, a fact not representable by means ofa Codd table.

A very desirable property enjoyed by our representation system based on V-
tables is that all relational operators on V-tables are performed in exactly the same
way as in the case of the usual relations, treating variables as if they were regular
values in appropriate attribute domains (this may be referred to as the naive
evaluation). It may also be noted that V-tables appear in a natural way in the
context of updating relational views. Assume, for instance, that a database is
given by

!
SL : I SUPPLIER LOCATION

I Smith London

SP: SUPPLIER PRODUCT

Smith Nails

and suppose that the relational view

"/I'LOCATION, PRODUcT(St IM SP)

is updated by adding two tuples, (New York, Bolts) and (Los Angeles, Nuts). It

764 T. IMIELII~ISKI AND W. LIPSKI, JR

is then natural to define the effect of this update to be

SL : SUPPLIER LOCATION

Smith London

x New York

y Los Angeles

SP : SUPPLIER PRODUCT

Smith Nails

x Bolts

y Nuts

A negative result shown in Section 6 is that, rather surprisingly, no representation
system based on V-tables can support projection and arbitrary selection (recall that
these operators can be supported by Codd tables).

A third representation system, described in Section 7, supports projection,
selection, union, join, and renaming and is mainly of a theoretical interest. It is
based on an idea of a so-called conditional table and is crucial in the proof of the
correctness of the second system. A conditional table is a V-table with an additional
column, con, containing a condition; for example, the conditional table

SUPPLIER LOCATION PRODUCT con

x London Nails x - - Smith

Brown New York Nails x # Smith

represents the information that nails are supplied either by Smith in London or by
Brown in New York, but not by both at a time.

All representation systems considered in this paper allow for relational expres-
sions containing arbitrarily many different relation symbols, and no form of the
universal relation assumption [24] is required.

Most of the results of the paper are developed under a so-called open world
assumption (see [26]) that, roughly speaking, means that we are not able to represent
negative information. In Section 9 we briefly show how the results can be extended
in a straightforward manner to a modified interpretation of tables where negative
information is representable. It turns out that under such a modified interpretation
the system baseo on conditional tables can also handle the operator of difference,
thus supporting the full strength of the relational algebra.

The last section contains conclusions and briefly describes related work, in
particular, the work concerning the problem of handling dependencies in the
context of V-tables, and the relation between V-tables and tableaux of Aho, Sagiv,
and Ullman [l].

2. Basic Definitions

In this section, we give some basic definitions and notation concerning the relational
data model ([5]; see also [29]).

Throughout the paper we consider a fixed, finite (unless otherwise stated) set
of attributes. Attributes are usually denoted by A, B, C, and sets of attributes by

X, Y, Z, with possible subscripts. A set of attributes, say {A, C}, is usually written
as AC. Associated with every A E @ is an attribute domain D(A). We always
assume that I D(A)I -> 2 and we denote D -- UAe,D(A). Elements of D are
sometimes called constants. Elements of D(A), D(B), D(C) are usually denoted by
a, b, c, respectively, with possible primes, etc. By a tuple on X we mean any
mapping t that associates a value t(A) E D(A) with every A E X. A tuple is usually
denoted as a string of values associated with the attributes; for example, ac is a

Incomple te In format ion in Rela t ional Databases 765

tune on AC. For a tune t on Xand for any yc_ X, we denote by t[Y] the restriction

of t to Y; for example, if t = abe then t[AC] = ac. By a relation on X we mean any
finite set of tuples on X. If t, r are a tune and a relation on X, we then write

aft) = a(r) = X,

and we call o~(t) and a(r) the type of t and r, respectively. A multirelation of type
(X~, . . . , X,) is any sequence (rl, . . . , r,) in which r, is a relation on X,, 1 -<
t -< n. Relations are usually denoted by r, s, with possible subscripts, and multire-
lations by r, s (conforming to the general convention that boldface indicates
multiobjects). The type of multirelation r is denoted by o~(r). By an empty
multirelation we mean any multirelation of the form 0 = (0 0) ; formally,
we shall assume that there is a different empty multirelation for each type.

For two multirelations r = (r~ r ,) , s = (sl , s ,) of the same type, we
write r _ s i f r, C_ s,, 1 <_ i <_ n. I f r = (r ~ , . . . , r,) and 1 _< i _< n, then we define

prt(r) = r,.

The set of all multirelations of type (X~, . . . , AT,) is denoted by ~ (X I , . . . , X,); in
particular, ~ (X) is the set of all relations of type X. The set of all multirelations is
denoted by _~.

The class of all nonempty homogeneous sets of multirelations is denoted by _~"
(a set 5L Y of multirelations is homogeneous ifa(r) = a(s) for all r, s E vX). Elements
o f . 7 are denoted by ~ , ~, ~ and the definition of a (X) , the type of ~ , is the
natural one.

We consider the usual relational operators:

Projection

~-r(r) = It[Y] : t ~ r} (y c a(r)).

Join

where

Difference

r t~ s = {t : a(t) = X u Y A t[X] ~ r A t[Y] E s],

X = a(r), Y = a(s).

r - s = r\s, that is, the usual set-theoretical difference.

Selection

aE(r) = It E r : E(t) =true}.

Here E is a selection condition; that is, any expression built up from atomic
conditions of the form (A = a), (A = B), A, B ~ ~ , D(A) = D(B) , a ~ D(A) (and
truth constants true, false) by means of the logical connectives V (or), A (and),
(not). E(t) denotes the truth value obtained by substituting the value t (A) for any
occurrence of A in E and evaluating the expression in the natural way. We always
assume that o~(r) contains all the attributes occurring in E. A selection condition E
and the selection operator aE is called posit ive if it does not contain the "1 symbol.

We sometimes consider a more general form of selection, where E is any mapping
from tunes to {true, false]. (Note: The operation eA-n is also called restriction.)

Union

r U s, that is, the usual set-theoretical union.

We always assume that both arguments of union are of the same type.

766 T. IMIELII(ISKI AND W. LIPSKI, JR

We always assume that both arguments of difference are of the same type.
In Section 8 we also consider the following additional operation.

Renaming (of an attribute)

s~(r) = {s~(t) : t E r}

where A ~ ~(r), B E @\a(r), D(A) = D(B), and s~(t) is the tuple of type (~(r)\{A })
O {B} with

ft(C) if C E a(r)k{A},
(s~(t))(C) = ~t(A) if C--- B.

Intuitively, s~(r) is the result of renaming column A or r to B.
We show in Section 8 how the results of this paper can be extended to another

version of relational algebra, based on Cartesian product (see, e.g., [29]) instead of
join.

By a relation name we mean a symbol R (the letter S is also used) with possible
subscripts, with an associated type a(R) C @.

An instance of R is any relation r such that a(r) = a(R). An instance is usually
denoted by a lowercase version of the letter denoting the relation name.

For any subset f~ of the relational operators of projection (P), selection (S),
positive selection (S+), join (J), difference (D), and renaming (R), a relational fl-
expression means any well-formed expression built up from relation names and
relational operators in fl; for example, aafa(Rl) I~ IraB(R2) is a relational PS+J-
expression. A multirelational ~-expression is any sequence f = (J~, . . . , j~) of
relational fl-expressions. Relational and multirelational fl-expressions are often
called simply f~-expressions; they are usually denoted by f, g, with possible sub-
scripts, and by f, g, respectively. They are assumed to be typed in the following
sense. We assume that associated with every f is a sequence (R , , . . . , R,) (either
clear from the context or given explicity by writing f (RI R,)) containing all
relation names occurring in f (and possibly some other relation names). The
argument type of f is then defined as

,~(0 = (, , (R 0 , . . . , ~(R,)) .

For any f = (jq, . . . , J~) and any multirelation r = (r~ , r,) of type a(r) ---
aft), we define f(r) --- (3q(r) j~(r)) wheref(r) denotes the relation obtained by
substituting r~ for all occurrences of Rj in f,, j -- 1, . . . , n. We also define 3(f) =
aft(r)) and call it the result type of f.

It may be mentioned in this context that the relational algebra can be embedded
in a natural way into a simple algebraic system called a cylindric set algebra, such
that all relations considered are of type @ and all relational operators are total
(i.e., there are no restrictions on the arguments). This approach has several
advantages (i.e., the "complicated" join operator becomes the usual set-theoretical
intersection) but leads to infinite relations and creates some problems concerning
the finite representability of these relations. This approach is treated in more detail
in another paper by the authors [14].

3. Representation Systems

In this section we formulate some general conditions that we require to be satisfied
in any semantically meaningful extension of the relational algebra to "tables with
nulls."

Incomplete Information in Relational Databases 767

To this end we introduce the notion of a representation system. By.a represen-
tation system we mean a triple (~ , Rep, f~) where 9- is the set ofmultitables, Rep
is a mapping, Rep: g --+ _~" (recall that J is the set of all nonempty homogeneous
sets of multirelations), f~ is a set of relational operators, and a certain natural
condition, to be defined at the end of this section, is satisfied. Roughly speaking,
this condition asserts that there is a way, consistent with respect to operators in f~,
to define f(T) for any ~2-expression f and any multitable T E J..

First, however, let us give some intuitive explanations concerning the compo-
nents of a representation system.

A multitable is usually a "generalized multirelation" with tuples allowed to
contain not only values in appropriate attribute domains, but also some special
symbols ("null values" of various kinds). Most of the notions and notation
concerning relations and multirelations, such as a tuple, a(r), or t[Y], carry over
to multitables. The set Rep(T) of multirelations defines the information contained
in multitable T; that is, it specifies the set of possibilities represented by T.

Suppose ~_~ E . 7 represents our information about a certain unknown r* ~ ~"
and let f be an f~-expression with aft) = a(~.~). Clearly, our information about
fir*) is then represented by

f (~ ') = { f (r) :r E ~ 1 .

In this way, any fi-expression f can be treated in a natural way as a mapping f:
J -+ J (more exactly, a partial mapping defined only for those ~ E J with

=

Suppose now that we want to give a natural definition of multitable f(T) where
T E 3- and f is an f~-expression (a(T) = aft), where a(T) can be defined to be
a(Rep(T))). If we think of T as representing in an incomplete way some unknown
r* ~ Rep(T), then ideally we could expect that there exist the same relation between
f(T) and f(r*), so that f(Re~T)) = Rep(f(T)); that is, the following diagram
commutes:

Rep

, i 1 I f (3.1)

3 ~.y
Rep

(for multitables of appropriate type). Unfortunately, this approach is usually not
feasible, since in most practical situations the structure of the set f(Rep(T)) is not
"regular" enough to be representable by any U E .~ (see, however, an exception
at the end of Section 9). In other words, there is no U E 3 such that Rep(U) =
f(Rep(T)).

Clearly, if we are to define f(T) in a semantically meaningful way, then we should
require that Rep(f(T)) approximate the information given by f(Rep(T)) in some
natural sense (and we should precisely state in which sense). Before we describe
what we consider to be a natural notion of "equivalence" between Rep(f(T)) and
f(Rep(T)), we give some examples illustrating different kinds of exluivalences
between sets of multirelations.

Example 3.1. Let ~ consists of all those relations that contain at least one of
Ihe following two relations:

a ' b' ' a ' b" "

768 T. IMIELIlqSKI AND W. LIPSKI, JR

(Note: Here, and in all other examples in this paper, different symbols denoting
values in attribute domains always stand for different values.)

Let 3 / b e the set of all relations containing tuple ab (clearly ~ ~ 3/,/). In a
way, g and 3 / a r e equivalent: if we assume r* ~ ~ , then the only tuple that can
be concluded to be in r* is ab, and the same is true for ~.

However, ~ provides the information that a ' ~ ~'A(r*), whereas 3 /does not.
Hence X and 3 / a r e not "equivalent with respect to projection." []

Example 3.2. Let Y consist of all those relations that contain at least one of
the following two relations:

l a b c l , a b ' c ']

a' b c' '

and let 3 / b e defined in the same way by relations

I a b c [, a b' c']

a' b c" "

Example 3.3.

It is easy to see that ~ and 3 / a r e equivalent with respect to projection, in the
sense of the previous example. However, r* ~ ~ implies

ab ~ ~rAB(~'ac(r*) ~ 7rsc(r*)),

whereas this conclusion cannot be made under the assumption that r* E ~. Hence,
and 3 / a r e not equivalent "with respect to P J-expressions." []

Let X = ABC and let

Define

= {r E ~ (X) : abc E r V ab'c E r}.

5U = {(r, r) :r ~ ~} ,

3/ = [(r , s) : r , s ~ 9} .

It is not difficult to prove that Y and 3 / a r e equivalent with respect to all PS-
expressions (because PS-expressions involve only unary operators). However, they
are not equivalent with respect to PJ-expressions. Indeed, (r*, s*) E ~ implies

ac E rac(r* ~ s*)

(notice that r* N s* -- r* n r* = r*), whereas this conclusion cannot be made
under the assumption that (r*, s*) E ~ []

The above examples suggest the following definition. For a relational multi-
expression f and Y ~ J (a(f) = a (~)) define the f-information in X, denoted
by ~ f , to be

= n

Off = 0 q , . . . ,Jk), then n f (su) is understood as (n j] (~) , . . . , n j~ (v~))) . In
other words, 5L Yr is the largest multirelation s such that s C_ fir*) for all r* ~ ~ .
Putting it still another way, if y r = (s~ sk), then t ~ s, means that from
r* E v.U we may conclude that t Ef(r*) .

Let ~ , 3 / E J , a (~) = a (3 /) . We say that ~ and 3 / a r e ~-equivalent (in
symbols ~ --~ 3/) if ~ r = 3/f for any ft-expression f with a(f) = a (~) . Note
that in Example 3.1, v~ ,.~ 3 / (we consider expressions of the formj~R~, . . . , R,)

Incomplete Information in Relational Databases 769

= R, to be the only relational Q-expressions), but ~ ~p ~ ; in Example 3.2,
- p ~, but ~ ~pj ~ ; in Example 3.3, Y ---Ps ~, but ~" ~pj ~.

A multitable T is said to ~-represent gg" if Rep(T) ---~ 5~.
We are now ready to complete the definition of a representation system. A triple

(3 , Rep, f~), where .Y,, Rep, f~ are as described before, is a representation system
if, for any ft-expression f and for any multitable T E 9- (a(f) = a(T)), there is a
multitable U E .~ that f~-represents f(Rep(T))Ein other words, if f(T) can be
defined for every ~-expression f and multitable T E 3 (a(f) = a(T)) in such a way
that

Rep(f(T)) -~ f(Rep(T)). (3.2)

Two multitables T, U are called ~-equivalent if Rep(T) - a Rep(U) and Rep-
equivalent if Rep(T) = Rep(U). Notice that for a given T and f there may exist
many ~-equivalent multitables U ~ J that ~-represent f(Rep(T)).

There are two more conditions satisfied by most representation systems consid-
ered in this paper (these conditions are not part of the formal definition of a
representation system). The first one is that any multirelation is- -or at least can
be identified wi thEa multitable, so that we may assume .~ ___ J.. This reflects the
fact that we are interested only in systems that extend the usual relational algebra.

The second assumption (not valid in Section 9) is that for any multitable T and
for any r, s E

r E Rep(T) A s _D r ~ s ~ Rep(T). (3.3)

This condit ion~which is essentially the open world assumption of Reiter [26]~
is equivalent to saying that we are not able to represent negative information; that
is, the knowledge that a relationship expressed by a certain tuple t is definitely not
true in the real world r* (or in f(r*), where f is some relational expression). An
intuitive consequence of this assumption is that for any r ~

Rep(r) = {s E ~ : s _D r}.

We conclude this section by the following simple lemma.

LEMMA 3.1. I f ~ contains only unary operators, then (~ Rep, f~) is a rep-
resentation system iff f(T) can be defined for every relational (rather than multire-
lational) ft-expression f and every T E .Y- with a(T) = a(f), in such a way that

Rep(f(T)) --,f(Rep(T)).

The easy proof is omitted.

4. Codd Tables

In this section we prove that the usual tables with null values @ (see [7]) provide a
basis for a representation system with f~ = PS. We also show that these tables can
support neither f~ = PSU nor ~ -- PJ.

By a @-tuple on X we mean any function t that associates a value t(A) E D(A)
U {@1 with every A ~ X. A Codd table on X is any finite set of @-tuples on X,
and a Codd multitable of type (X~ Xn) is any sequence T -- (T1 Tn)
where 7', is a Codd table on X,, 1 ___ i _< n. The set of all Codd multitables is denoted
by J~.

Let us define a partial order _ on D U [@1 in such a way that @ < a, a E D
are the only nontrivial relationships. For two @-tuples t, t ' on X, we write t < t'

770 T. IMIELII~SKI AND W. LIPSKI, JR

if t(A) <_ t '(A) for every A E X, that is, if t and t ' agree on every A E X such that
t(A) # @. For any Codd table T on X we define

Rep(T) = {r ~ ~ (X) : for every t ~ T there is t ' E r such that t _< t'},

and for every Codd multitable T = (T ~ , . . . , Tn),

Rep(T) = Rep(T~) x . . . x Rep(Tn).

Intuitively, r E Rep(T) iffr contains a multirelation obtained from T by replacing
all occurrences of @ by some values in appropriate attribute domains (different
occurrences may be replaced by different values, but equal values are allowed as
well).

Let us now have a closer look at the notion of fl-equivalence of homogeneous
sets of multirelations for some simple cases of f~.

We first note the following trivial fact:

(4.1)

Let us now consider the case of fl = P.

THEOREM 4.1. Any ~ E J can be P-represented by a Codd multitable.

PROOF. Let us begin with the simple case where a (~) = X. For any Y_C X, let
Q(Y) be obtained from ~ - v by extending with @'s every tuple t E ~ - v to a @-
tuple t- on X (notice that Q(13) = 13 if 13 E ~ and Q(13) consists of a tuple of @,
otherwise). Define T = U r ; x Q(Y). We shall prove that Rep(T) - v ~ . Indeed,
consider an arbitrary yc_ X. I f t E v~-v, then clearly Tcontains a @-tuple t ' that
agrees with t on Y, and consequently every r E Rep(T) contains a tuple u that
agrees with t on Y; that is, t E Rep(T) "Y. Conversely, assume that t ~ X ~v,
aft) = Y. Then no @-tuple in T agrees with t on Y, and consequently there exists
a relation r E Rep(T) not containing any tuple agreeing with t on Y (r may be
obtained by replacing every null value in Tby a value in the corresponding attribute
domain, in such a way that if A E Y then the value replacing an occurrence of @
in column A of Tis different from t(A)). Hence t ~ Rep(Tyv, which concludes the
proof that Rep(T) - p

In the general case, in which a (~) = (X , , . . . , X.), we construct tables T/such
that Rep(T,) " e p r , (~) , 1 _< i _< n. It is then easily seen that T = (T ~ , . . . , T.) P-
represents ~ . []

Let us note the following simple fact concerning the P-equivalence of Codd
multitables.

THEOREM 4.2. Any two P-equivalent (todd multitables are Rep-equivalent.

In other words, if P ~ fl, then T - a U iff T - U. The easy proof is omitted.

Clearly, two Codd multitables (T i , . . . , Tn) , (Ul , U~) ofthe same type are
Rep-equivalent iff T, - U,, 1 <_ i _< n. The following structural characterization of
Rep-equivalence of Codd tables was proved by Biskup [3]:

THEOREM 4.3. For any Codd tables T, U o f the same type T - U iff for every

t ~ T there is u E U such that t <_ u and for every u E U there is t E T such that

u<_t.

The S-equivalence is even simpler than the P-equivalence, since it turns out to
coincide with the 13-equivalence (see (4.1)). Before we prove this, notice that ~E(r)
may be expressed as r N ~E(a Y), where Y = a(r) and ~y -- ×aey D(A), and this is

Incomplete Information in Relational Databases 771

true for arbitrary conditions E: ~ r ~ {true, false}, not only for those generated by
atomic conditions of the form (A -- a), (A = B).

THEOREM 4.4. For any X , ~/ ~ _.¢ of the same type,

~Cr .-s ~/ , , ~ . ' m o ~.

PROOF. Let ~ ~ E ~ and l e t f lR~ , . . . , Rn) = as(R,) be an arbitrary relational
S-expression (a (~ ') = a (~) = or(f)). If ~ - o ~ then, by (4.1), n ~ = n 5~,
which implies n pr, (~) = n pr, (5?/). Hence

~ / ' f = n RE(r) = n (r n aE(~a(r))) = aE(~4r)) ["] n p r i (~)
r~ph (.~f) r~p r~ (~)

= O'E(~a(r)) n n pr , (~/) = wS,

which easily implies ~ ms ~. []

Notice that the S-equivalence coincides with the ~-equivalence even if we allow
arbitrary thnctions E: ~r --~ {true, false} as selection conditions. Clearly, by
Theorem 4.4, ~ me ~/implies ~ ms ~. However, the PS-equivalence does not
coincide with the P-equivalence on ~ ,as shown by the following example.

Examph? 4.1. Let

= Iffb- , 7b- h e / = 7b%'ql.

We have ~ ---p W since both ~ and ~/can be P-represented by T = [~ - ~ .
Consequently, also ~ ---s ~. But ~ ~PS ~, since for the PS-expression

f (R) = ~ra(~(~-b)V(C-~)(R))

we have

.~i= {al # ~ = ~'~.

In other words, ~" and ? / a r e not distinguishable by either P-expressions or S-
expressions, but are distinguishable by PS-expressions. D

Before we prove that (..~, Rep, PS) is indeed a representation system, let us
note the following two simple facts:

LEMMA 4.1. Every PSUJR-expression f is monotone', that is, r c s =,

f(r) C_ f(s).

The easy proof, by induction on the number of operators in f, is omitted.

Let X, !~ E _7, a (~) = a(~/) . We say that Y and 9" are coinitial (in symbols,
X = ~/) if for any r E Y there is s E ~/such that s C_ r, and for any s E ~/
there is r E- ~" such that r C_ s. Obviously, for any monotone f

~L Y = 5~/~ f (~) = f(~/). (4.2)

LEMMA ,4.2. I f ~ and ~ are coinitial, then Y EeSVJR ~.

PROOF. Let ~ = ~. Then for every r E ~.~ there is a ¢(r) E ~ /such that
¢(r) _ r. By using the previous lemma, for any PSUJR-expression f we have

n f(r)_~ n n f(s)=

and similarly ~ t__ ~ f []

We are now ready to prove the main result of this section.

772 T. IMIELIIqSKI AND W. LIPSKI, JR

TnEOR~U 4.5. It is possible to correctly evaluate PS-expressions over Codd

tables; more formally, (.~ , Rep, PS) is a representation system.

PROOF. By Lemma 3.1, it is sufficient to show that for any T E _~ and any
relational PS-expression f w i t h a (f) = a(T) it is possible to define f iT) in such a
way that Rep(f(T)) "r.sf(Rep(T)).

We define f(T) inductively, by using the following rules:

If T = (T l Tn), then pr,(T) = T,,

~rr(T) = {t[Y] : t =_ T],

ae(T) = {t ~ T : E.(t) = true},

where

[true if E(u) for every u E Compl(t),
E.(t) = [false otherwise,

and Compl(t) denotes the set of all tuples u (not containing null values) such that
t<_u.

By Lemma 4.2, it is now sufficient to prove that

Rep(f(T)) ~, f(Rep(T)) (4.3)

for a l l f and T. Let us first notice that

if T = (T~ it',), then Rep(pr,(T))= pr,(Rep(T)), (4.4)

and that for any Codd table T

Rep(Trr(T)) = 7rr(Rep(T)), (4.5)

Rep(ae(T)) ~ aE(Rep(T)). (4.6)

We show (4.6) ((4.4) and (4.5) are obvious).
Let r ~ Rep(ae(T)). Then r contains a relation s ~ ae(Rep(T)) obtained by

replacing nulls in the @-tuples t ~ T that belong to ae(T) in such a way that the
resulting tuples are in r, and by replacing nulls in every t ~ T \ a e (T) so as to
obtain a tuple t* with E(t*) = false (this is possible since for every t ~ Tkae(T),
E , (t) = false).

Conversely, let s ~ ae(Rep(T)). Then s contains a relation r ~ Rep(az(T))
obtained from T by replacing those @-tuples in T that belong to ae(T) so as to
obtain tuples in s, and by omitting the remaining @-tuples.

The desired formula (4.3) now easily follows by induction on the number of
operators inf. We show, as an example, the inductive step in the case in which f =
aeg, under the inductive assumption Rep(g(T)) ~ g(Rep(T)):

Rep(f(T)) -- Rep(~E(g(T))) ~ aE(Rep(g(T)))

ae(g(Rep(T))) = f(Rep(T))

(we made use of(4.6) and then of(4.2)). []

Note that in Theorem 4.5 selection can be arbitrary, on the basis of an arbitrary
function from tuples to {true, false}. This includes as a special case selection based
on arbitrary Boolean combinations generated by atomic conditions of the form
(A _< a), (A _< B) (A, B ~ % a E D(A); we assume that the attribute domains
are linearly ordered). These cases are treated in more detail in the next section.

The next two theorems say that, roughly speaking, our representation system
based on Codd tables cannot, in addition, handle either union or join.

Incomplete Information in Relational Databases 773

THEOREM 4.6. It is not possible to correctly evaluate PSU-expressions over

Codd tables; more formally (J~, Rep, PSU) is not a representation system.

PROOV. We now give an example of a PSU-expression f and a Codd table T
such that f(Rep(T)) is not PSU-representable by any Codd multitable. Let

fiR) = (Oa=a(R), 6A#a(R)) (or(f) = AB, a E D(A)),

and let T ---- [@-~. Suppose that U = (U~, U2) PSU-represents f(Rep(T)). Then
obviously U P-represents f(Rep(T)). But the multitable (0, 0) is easily seen to P-
represent f(Rep(T)) (see the construction in the proof of Theorem 4.1), so that by
Theorems 4.2 and 4.3, U = (0, 0) .

Consider the relational expression g(S~, $2) = ~rB(Sj LI $2). We have

f(Rep(T)y = tq gf(Rep(T)) = f'l ~rdRep(T)) = {bl ~ O = Rep(Uy,

that is, U does not PSU-represent f(Rep(T)), contrary to our assumption. []

It may be noted that if we restrict ourselves to the case in which all relational
PSU-expressions considered involve only one relation symbol, thenf(Rep(T)) can
always be PSU-represented by a Codd table U (see [13]). This is a simple conse-
quence of the fact that any PSU-expression finvolving only one relation symbol
can be transformed into an equivalent PS-expression of the form ~rr(ae(R)). The
easy proof of this fact, by induction on the number of operators in f, is omitted.

THEOREM 4.7. It is not possible to correctly evaluate PJ-expressions over Codd
tables; more formally, (~ , Rep, P J) is not a representation system.

PROOF. We give an example o f a Codd table Tand a PJ-expressionfsuch that
f(Rep(T)) is not P J-representable by any Codd table. Let

T = {a@c, a'@c'} (a ~ a', c ~ c')

j R) = Ac(R)

It is easy to see that f(Rep(T)) ='v Rep(T). By Theorem 4.2, if there is a Codd table
U PJ-representingf(Rep(T)), then T - U, and consequentlyf(Rep(T)) l m Rep(T).

This last equivalence is, however, not true. Indeed, let

g(R) = ~r,4COr AB(R) ~ Ir nc(R)).

We have

while

Rep<z -- l a c I
a ' c ' '

f(Rep(T)) g =

a C

a ' C'

a C'

a t C

[]

A representation system with ft _D pJ is considered in Section 6.
Now we compare our approach to that of Biskup [3]. Roughly speaking, Biskup

defines the union of two Codd tables to be the usual set-theoretical union, so that

Rep(T LI U) = {r t.I s : r E Rep(T) A s ~ Rep(U)},

774 T. IMIELI/~ISKI AND W. LIPSKI, JR

and he defines the join of two Codd tables in such a way that

Rep(T I,a U) "-r {r I,a s : r E Rep(T) A s E Rep(U)]. (4.7)

His definition of join is based on the following informal matching rule:

@#@, @ # a .

(In fact, it may be shown that the sets on both sides of (4.7) are coinitial so that
they are PSUJ-equivalent.)

These definitions of union and join are semantically correct only if we assume
that both arguments are independent; that is, every substitution of values in
appropriate attribute domains for the null values in T and U is meaningful. This
is clearly not the case when we want to correctly evaluate relational expressions
such as

f (R) = aa=a(R) O aa,,a(R),

g(R) = ran(R) t~ IrAc(R),

over a Codd table. Consequently, Biskup's approach does not generalize to arbi-
trary relational expressions, though in a sense, it does give correct results for
single relational operators. On the other hand, Biskup's approach is more general
in that it allows "universal" null values in addition to the usual "existential"
null values @.

5. Evaluating a Selection over a Codd Table

Recall that the selection of a Codd table is defined by

aE(T) = {t E T: E.(t) = true},

where E.(t) = true i ffE(t ') = true for every t ' ~ Compl(t). Of course, we should
have a more efficient method of computing E.(t) than that involving the compu-
tation of E(t') for every t ' ~ Compl(t). (Compl(t) may be infinite if attribute
domains are infinite.)

In this section we always assume that the selection condition E is of the form of
an arbitrary Boolean combination (using --1, V, A) of certain atomic conditions.
The case in which these conditions are of the form (A IN F), F C D(A) and in
which subset entries of the form G, G C D(A), meaning "an unknown value in G,"
are allowed in the table, instead of just @, "an unknown value in D(A)," was
extensively studied in [19], [20], and [21].

Here we sketch a method of computing E.(t) in the case in which the atomic
conditions are of the form (A = a), (A --- B), (A _< a), (A _< B) (A, B E ~, a E D(A);
in the third and fourth cases we assume a linear order on the corresponding
attribute domains). The conditions (A --- a), (A _ a) are called unary, whereas
(A -- B), (A ___ B) are called binary. For simplicity, throughout this section we
assume that every attribute domain is the same set D.

Note that we may "precompute" E.(t) by substituting in E the value t(A) for
every occurrence of A, for every A such that t(A) # @. This has the effect that some
of the binary conditions become unary, and some conditions are reduced to
(a = b) or (a --- b), which can be replaced by true or false and then eliminated by
using the absorption-type Boolean axioms. Let E ' be the resulting condition.
Clearly, the whole process can be carded out in time linear in the length of E. In
this way our problem is reduced to evaluating E'.(t') where t ' is a tuple of null
values. This is obviously equivalent to testing whether E ' is a tautology.

Incomplete Information in Relational Databases 775

Let us begin with the case involving only conditions of the form (.4 = a),
(A = B). We transform E ' into a conjunctive normal form I~i WjE~], where E o is
an atomic condition, and E~ J denotes E,j or -~E,j, depending on whether ~0 is 1 or
0, respectively; we may also assume that no disjunct of this normal form contains
both an equality and the negation to this equality. E ' is a tautology iff for every i,
WjE~, is a tautology. A disjunction of the form WjE3' is a tautology iff A~jE t-', is
not satisfiable. The satisfiability of this last conjunction can be tested in the
following way. We construct a (nondirected) graph with vertices corresponding to
attributes and constants occurring in ?A jEt-', (different occurrences of the same
constant or attribute correspond to the same vertex), two vertices x, y joined by an
edge iff the (nonnegated) condition (x -- y) appears in our conjunction.

It is clear that the conjunction is satisfiable iff every connected component of
our graph contains at most one vertex corresponding to a constant. Obviously,
finding the connected components can be done in time linear with respect to the
number of vertices and edges of our graph, that is, O(n), where n is the length of
our conjunction (see, e.g., [11]). (Identifying different occurrences of attributes and
constants may require f~(nlog n) time.) The most complex part of this algorithm is,
however, the transformation into a conjunctive normal form, since in the worst
case it may involve an exponential growth of the length of our expression. We
should not expect a substantially more efficient algorithm to evaluate E.(t), since
it obviously contains as a special case the problem of deciding whether a Boolean
expression is a tautology, a problem that is known to be NP-hard (see, e.g., [9]).

We now consider the case in which all four types of atomic conditions are
allowed. Since

(x --f- y) ¢ffi~ (x <_ y) A (y < x), (5.1)

our problem is reduced, in a similar way as before, to testing for the satisfiability
of a conjunction/~jEj, where each Ej is either of the form (x < y) or (x < y). (It
may be noted, however, that using (5.1) to eliminate equality may be not the most
efficient approach.) Let us construct a directed graph with vertices corresponding
to different attributes occurring in ~jEj , with an <-edge or <-edge (x, y) from x
to y iff (x < y) or (x ___ y), respectively, occurs in our conjunction. We associate
with every vertex x an interval I(x) with the beginning

b(x) = max{y E D : (y < x) or (y <__ x) appears in/~jEjI
and end

e(x) = min{y E D: (x < y) or (x ___ y) appears in h~Ej}

(b(x) is included into I(x) iff (b(x) < x) appears in the conjunction; similarly for
e(x)).

We find strongly connected components of the graph consisting of <-edges (see,
e.g., [25]; x and y are in the same strongly connected component iffthere is a path
from x to y and a path from y to x).

For every strongly connected component, we identify all vertices of the compo-
nent and replace them with a single vertex Xc with I(xc) -- f')yec l(y), where C is
the set of vertices of the component. (In the resulting graph, there is an edge from
Xc, to Xc,, C' ~ C", iffthere was an edge from some x' E C' to some x" E C" in
the original graph.) The graph obtained is always acyclic and we test for the
satisfiability of our conjunction in the following way. We try to assign a value
v(x) E l(x) to every vertex x in such a way that v(x) < v(y)(v(x) _< v(y)) if there is a
<-edge (----edge, respectively) (x, y). Let us assume, for simplicity, that our graph

776 T. IMIELIIqSKI AND W. LIPSKI, JR

contains only _<-edges, and that every I(x) contains both b(x) and e(x) (the general
case can be treated in a similar way). We set initially v(x) -- b(x) for any x, and we
perform a breadth-first search (see, e.g., [11]) starting from the set of sources (i.e.,
vertices with no incoming edges). For any edge (x, y) processed by the search we
set v(y) := max(v(y), v(x)). If at any stage of the process this results in v(y) > e(y),
then clearly our conjunction is not satisfiable. Otherwise, the process determines
an assignment of values to attributes that makes our conjunction true. We leave
the details to the reader.

Example 5.1. Let our conjunction be

(AI < 50) A (A4 > 100) A (A3 <- 200) A (Al < As)

A (As < -42) A (-45 -< -44) A (-44 -< A3) A (A3 -< As)

(the domain of each attribute is the set of integers).
Our graph has the form

A l ~ A2

A4 A3

I(-41) ---- (--00, 50],
I(-4~) = (-oo, oo),

I(-4~) = (- = , 200],
I(A4) = [100, oo),

1(-45) = (- = , ~).

The strongly connected components have vertex sets {AI}, {A2}, {`43, A4,-45}, and
our graph is transformed into

A345 I(Aa4s) = [100, 200].

The breadth-first search produces v(AO = -0% v(A345) = 100, v(A2) = 100, which
means that our conjunction is satisfiable. []

6. V-Tables

One of the reasons for the inability of Codd tables to correctly support the join
operation appears to be the fact that we are not able to represent the information
that two different occurrences of @ represent the same value. In this section we
consider tables where, for any A E if, we have an infinite set of possible "null
values." The interpretation of such a table is that the values represented by two
occurrences of the same null value, though unknown, are the same. Such tables
will turn out to be suitable for a representation system with ~ = PS÷UJ.

Formally, for every A ~ ~, let V(A) be a countably infinite set of symbols called
variables. We assume that V(A) N D = 0 , V(A) N V(B) = 0 if D(A) ~ D(B), and
V(A) = V(B) if D(A) = D(B). By a V-tuple on X, we mean any mapping t that
associates an element t(A) ~ D(A) O V(A) with every A ~ X. A V-table on X is any
finite set of V-tuples on X, and a V-multitable of type (X~ X ,) is any sequence
T = (T~ Tn) where T, is a V-table on X,, 1 <_ i <_ n (notice that the same
variable may occur in several T,'s). The set of all V-multitables is denoted by Jv.

Let V-- U A ~ V(A). By a valuation, we mean any mapping v: V---> D such that
x ~ V(A) implies v(x) E D(A). Any valuation can be extended to the set of constants
by putting v(c) = c for every c E D; to V-tuples, by defining, for any V-tuple t on

Incomplete Information in Relational Databases 777

X, v(t) to be the tuple on X satisfying

(v(t))(A) = v(t(A)) for every A E X; (6.1)

to V-tables,
v(T) -- Iv(t) : t E T}; (6.2)

and finally to V-multitables T = (T~, . . . , Tn),

v(T) = (v(T0, . . . , v(Tn)). (6.3)

The intuition given at the beginning of this section can now be formalized by
defining, for any V-multitable, T = (T, T,) of type (X t , . . . , Xn):

Rep(T) = {r E ~ (X~ Am) : there exists a valuation v

such that V(T) _ rl. (6.4)

Note that in view of this definition, any Codd multitable can informally be
identified with a V-multitable obtained by replacing any occurrence of @ by a
different variable.

Let us associate with a V-multitable T --- (T~, . . . , T~) a first-order formula 4,(T)
(of a many-sorted predicate calculus) defined as

3x, . . . 3Xm ~ 4~(t)
t

where t ranges over all V-tuples appearing in T and, for t E T/, ~(t) is Rift), where
R, is a predicate symbol of a suitable type and x, , x,, are all variables occurring
in T. It is easy to see that Rep(T) is simply the set of all finite models of ~(T) (over
a fixed universe given by D(A), A E if) .

In this section we always assume that all attribute domains are infinite.
The following is the main result of this paper.

THEOREM 6.1. It is possible to correctly evaluate PS+UJ-expressions over V-

tables; more formally (_~,, Rep, PS +UJ) is a representation system.

This theorem is proved in the next section, in which we develop a suitable formal
notion, that of a conditional table (see also another proof in [23]). Here we only
give the relevant definitions of the relational operators over V-tables.

For any V-multitable T = (/'1, . . . , T~) we put

pr,(T) = T,, 1 _< i _< n. (6.5)

The definition of projection is the "natural one,"

~rr(T) = IttY] : t E T}, (6.6)

and so is the definition of join of two V-tables T, W on X, Z, respectively:

T ~ W = It : aft) = X U Z A t[X] E T A t[Z] E IV}. (6.7)

The union operator acts on V-tables as the usual set-theoretical union.
Finally,

ae(T) = {t E T: E. (t) = true} (6.8)

where

~true
E , (t) = [false

if E(v(t)) -- true for every valuation v,
otherwise.

778 T. IMIELII~ISKI AND W. LIPSKI, JR

Note that, if E is positive, then E.(t) can be computed in a very simple way by
using the following rule: We evaluate every atomic condition (A -- B) in E to true

if t (A) --- t (B) and to false otherwise; we evaluate every atomic condition (.4 -- a)

to true if t (A) = a and to false otherwise; and then we use V, A in the natural way.
In other words,

~true if t (A) = t (B) ,

(.4 = B).(t) = [false otherwise,

true if t(A) = a,
(A = a),(t) = false otherwise,

(E V E')(t) = E,(t) V E',(t),

(E A E')(t) = E,(t) A E',(t).

The correctness of this rule follows easily from the fact that, if there is a valuation
v such that E(v(t)) = false, then E(v'(t)) = false for any valuation v' such that
v'(x) # v'(y) for x # y and v'(x) does not appear in E for any x E V. Note that
this rule does not evaluate E.(t) correctly if E contains negation, or if attribute
domains are finite.

The above rules, together with the obvious rule

f(T) = (J~(T), . . . , J~(T)) (6.9)

for any f = (J~, . . . , J~>, define inductively fiT) for any multirelafional PS+UJ-
expression f and any V-multitable T (a(T) = a(f)).

To sum up, we evaluate PS+UJ-expressions over V-tables in exactly the same
way as if the variables were values in the attribute domains. Let us emphasize that
the fact that this simple method of evaluating PS+UJ-expressions gives correct
results is not quite trivial (see the proof in the next section).

Example 6.1. Let us evaluate

f(T) : I rxc(~'aB(T) M c(..c)v(c=cX~.c(T))),

where T is the following V-table:

A B C

x y c

a b c

a ' b' c'

a y z

x d d

We get

~rAn(T) = {xy, ab, a'b', xy, xd},

~Bc(13 =lyc, bc, b'c', yz, ddl,
a(B-Ov(c-~)0rBc(T)) = Iyc, bc, dd},

~r,~B(T) M a(B-Ov(c-~)0rBc(T)) = {xyc, abc, xdd},

f (T) = {xc, ac, xdl. r-1

Rather suprisingly, it turns out that V-multitables, which are "more powerful"
than Codd multitables, cannot support a representation system with fl = PS.

THEOREM 6.2. It is not possible to correctly evaluate PS-expressions over V.
tables; more formally, (_.%, Rep, PS) is not a representation system.

Incomplete Information in Relational Databases

PROOF. Let T be the following V-table:

779

A B C

a y c
a t y c

and l e t f b e the following PS-expression--in fact, an S-expression:

f (R) = ff(A=a)A(B=b)V(Afa,)A(B#bXR) (a # a').

We claim that there is no V-table U PS-representingf(Rep(T)). Indeed, let

g(R) = *rc(a(a=a)v(A~a')(R)).

Notice that f(Rep(T)) is coinitial with

= I[h-~]} 13 { [~ : d E D(B)\Ib}},

so thatf(Rep(T))= = ~ = = {c}.
If there is a V-tuple pqv ~ U, where p ~ D(A), then p ~ Rep(U) TM # ~L Y'a = O.

If for every pqr E U, p is a variable (in particular, if U = O), then clearly Rep(U) g
= O, although we have already noted that f(Rep(T)) g = {el. Hence, in both cases,
Udoes not PS-representf(Rep(T)). []

The apparent contradiction in the inability of V-multitables to support PS-
expressions can be intuitively explained in the following way" (~ , Rep, f~) is a
representation system if the class J of multitables is a "fixpoint" with respect to
f~-expressions, in the sense that if we take any fl-expression f and any T E .~, then
to l-represent f(Rep(T)) we do not need any more "representation power" than
that available in J.. If we consider an arbitrary . ~ ' D -X, there is no reason for 3 "
to be also such a fixpoint.

7. Conditional Tables

By a conditional table we mean a V-table extended by one additional special
column, called con, which contains for any tuple a condition from a set _W..

More precisely, _Wis the set of all expressions built up from atomic conditions
of the form (x = a), (x = y), false and true, where for some A E ~, a E D(A),
x, y ~ V(A), by means o f ~ , V, and A. A condition is positive, if it does not con-
tain "-1.

By a C-tuple on X we mean any mapping t defined on X 13 {con} such that t[X]
is a V-tuple and t(con) E _~. A conditional table (or C-table) on X is any finite set
T of C-tuples on X. (Note: We assume that con is not part of a(t) or a(T).) A

conditional multitable (or C-multitable) of type (X1 , An) is any sequence T =
(Tl , T~) where T, is a C-table on X,, 1 <_ i <_ n. The set of all C-multitables is
denoted by ~c.

Any valuation can be extended in the natural way to conditions.
For any valuation v, any C-table T on X, and any C-multitable T = (Tl,

T.} of type (At X.), we define

v(T) = [v(t[X]) : v(t(con)) = true}, (7.1)
fiT) = (v(Tl) v(T,)), (7.2)

and finally

Rep(T) = {r E ~ (Xi , X,) : there exists a valuation v

such that v(T) C__ rl. (7.3)

780 T. IMIELI!~ISKI AND W. LIPSKI, JR

We say that conditions ,),, 6 E _Ware equivalent, and we write ~, ~ 6, if v(,),) =
v(6) for any valuation v. It can easily be shown that ~t ~ 6 iff-r can be transformed
into 6 by using the axioms of Boolean algebra and the axioms of equality. It should
be clear that if we (a) replace each of the conditions in a C-table Tby an equivalent
one, (b) delete all t E T with t(con) ~ false, and (c) replace some tt, . . . , tk ~ T
such that h[X] tk [X] (X -- a(T)) by a single C-tuple t such that t[X] =
tdX] and t(con) = wk.d,(con), then the resulting C-table U will be Rep-equivalent
to T 0 . e , Rep(T) = Rep(U), see Section 3). We freely make use of the equivalent
transformations of this kind; in particular, we use rule (c) to normalize a C-table
7" on X, that is, to replace T by a Rep-equivalent C-table T o on X not containing
different C-tuples agreeing on X. In what follows we assume all C-tables to be
normalized.

THEOREM 7.1. It is possible to correctly evaluate PSUJ-expressions over C-
tables; more formally, (3c, Rep, PSUJ) is a representation system.

PROOF. We give definitions of the relational operators over C-tables that
inductively define f(T) for any C-multitable T and PSUJ-expression f(a(T) = aft)),
in such a way that

f(Rep(T)) "=PsuJ Rep(f(T)). (7.4)

For any C-multitable T = (T 1 , . . . , Tn) we put

pr,(T) = T,, 1 <_ i <_ n, (7.5)

and for any C-tables T, W on X, Z, respectively, we define

• "r(T) = {t[r 13 {con}] : t ~ T} °, (7.6)

ae(T) = {aE(t) : t E T}, (7.7)

where ae(t) is the C-tuple on X with

~(t) [Xl = ttx],

.e(t)(con) - t(con) A Eft).

(Eft) is the result of substituting t(A) for A in E, for every A E X), and

TM W={tt4 w : t E T A w E W} °, (7.8)

where t ~ w is the C-tuple on X 13 Z with

It(A) if A E X ,
(t M w)(A) = [w(A) if A E Z \ X ,

(t t~ w)(con) = t(con) A w(con) A /iX if(A) = w(A)).
A~_Xt')Z

If X- - Z, then

T 13 W = (T 13 W) °, (7.9)

where 13 on the left-hand side denotes the relational union operator that we define
on C-tables, and 13 on the right-hand side is the usual set-theoretical union.

Finally, if f = ~ , . . . , j~), then

f iT) = ~ (T) A f t)) . (7.10)

We now prove that under the definition off (T) given by (7.5)-(7.10),

v(f(T)) -- f(v(T)) (7.11)

for any valuation v. (On the right-hand side, f(v(T)) is understood as the result of
performing f over the multirelation v(T) in the usual way.) Clearly, (7.11) implies
Rep(f(T)) ~, f(Rep(T)), which by Lemma 4.2, proves (7.4).

Incomplete Information in Relational Databases 781

We show (7.11) by verifying that

v(pr,(T)) -- pr,(v(T)),
=

v(T M W) -- v(T) ~ v(W),

v(T O W) -- v(T) O v(W) (a(T) = a(W)),

for any C.-multitable T and any C-tables T, IV.
Let a (T) = X, a (W) = Z. In the case of projection, t ~ v(~rr(T)) iff there is a C-

tuple t ' E ~-r(T) such that v(t '[Y]) = t, v(t ' (con)) = true; that is, i f f there exists a
C-tuple t" E T such that ~rr(v(t"[X])) = t, v(t"(con)) -- true, which is exactly the
condition for t to be in ~rr(v(T)).

In the case of selection, t ~ v(az(T)) iff there is a t ' E Tsuch that v(t ' (con)) =
true, v(E(t')) = true, and t = v(t'[X]), that is, l i f t ~ ae(v(T)).

In the case of join, a tuple t o f type X O Z is in v(T • W) i f f there are tuples
t' E T, w' E W s u c h that v((t' M w')(con)) = true, v((t' ~ w ' ([X U Z]) -- t, and
this is clearly equivalent to t E v(T) ~ v(W).

The case of union is obvious. []

Example 7.1. Let us evaluate

f (R) = ac-c(lrAcOrAs(R) i~ rsc(R)))

over the following C-table"

T =

A B C con

a b z z # c

a y c y ~ b

x b c x # a

We have

U = -AB(T) - B c (T) =

A B C con

a b z

a b c

a b c

a y z

a y c

a y c

x b z

x b c

x b c

(z # c) A (z # c) A (b = b)

(z ¢ c) A (y # b) A (b = y)

(z ¢ c) A (x # a) A (b = b)

(y # b) A (z ~ c) A (y = b)

(y ~ b)

(y ~ b)

(x # a)

(x # a)

(x¢a)

A (y # b) A (y = y)

A (x ~ a) A (y= b)

A (z # c) A (b= b)

A (y # b) A (b = y)

A (x ~ a) A (b= b)

A B C con

a b z (z ¢ c)

a b c (z ~ c) A (y C b)

a y c (y ~ b)

x b z (x ~ a) A (z # c)

x b c (x ~ a)

782 T. IMIELII~ISKI AND W. LIPSKI, JR

and finally

W = rrAc(U) =

A C con

a z (z # c)

a c (y # b)

x z (x # a) A (z # c)

x c (x # a)

, , c . , (W) =

A C con

a z (z # c) A (z = c)

a c (y # b) A (c = c)

x z (x # a) A (z # c) A (z = c)

x c (x # a) A (c = c)

A C con

a c (y # b)

. . x c (x # a)

[]

Let T be a C-table on X. As usual we assume that no two different tuples in T
agree on X. We define the unconditionalpart of T to be

7", = {t E T: t (con) ~ true}.

The unconditional part of a C-multitable T = (T~, . . . , Tn) is defined as T , =
(T~. Tn.).

A C-multitable T = (T~ , Tn) is called positive if for every 7", and every t
T,, t(con) is positive.

LEMMA 7.1. Let all attribute domains be infinite, and let T be a positive C-

multitable. Then

f'l Rep(T) = FI Rep(T,) .

PROOf. Obviously, we may restrict ourselves to the case where T is a single C-
table, T.

Clearly Rep(T) _.C Rep(T,), and consequently FI Rep(T,) _C ff~ Rep(T), so that
it is sufficient to prove the converse inclusion.

Suppose t ~ N Rep(7",). It means that there is a valuation v such that t ~ v(T,).
Let v' be a valuation such that v'(x) = v' (y) for x # y and for every variable x
appearing i n T, v ' (x) does not appear in T o r t (the existence of such a valuation
v' is an obvious consequence of the assumption that the attribute domains are
infinite). Clearly, v' makes all atomic conditions (which are positive, by our
assumption) false, and consequently it makes false all conditions t(con), t E T \ T , .

Since t ~ v(T,), it follows that T, does not contain any tuple agreeing with t on
aft). The valuation v' associates constants different from those appearing in t to
variables in T, so that it cannot produce t; that is, t ~ v'(T). Consequently, t
N Rep(T). []

We are now going to prove, as we promised in the previous section, that
(~v, Rep, PS+UJ) is a representation system.

A C-multitable T is called unconditional if T , -- T. Let T -- (T ~ , . . . , T~) be an
unconditional C-multitable and let U be the V-muRitable obtained from T by

Incomplete Information in Relational Databases 783

deleting the con column from every T,, 1 _< i -< n. Then

Rep(T) = Rep(U),

where Rep(T) is computed according to (7.1)-(7.3) and Rep(U) according to
(6.1)-(6.4). In what follows we always identify an unconditional C-multitable with
the corresponding V-multitable. To avoid confusion, we write fC(T) and fv(T) for
an expression f evaluated for an unconditional C-multitable T (identified with a
V-multitable) according to the rules given for C-tables (see (7.5)--(7.10)) and V-
tables (see (6.5)-(6.9)), respectively.

LEMMA 7.2. Let all attribute domains be infinite, let T be a positive C-multitable

and let f be a PS+ UJ-expression with aft) = a(T). Then

PROOF. It is sufficient to
(T, ,7~)

prY(T,) -- prC(T),,

and that for any positive C-tables T, W

• "[(T,) = ~C(T),,
v = #EC(T),

T, M v IV, -- (T t~ c W),,
T, U V W , = (T U c W) , ,

(X = a(T), Z = a(W)).

fV(T,) = fC(T),.

prove that for any positive C-multitable T =

1 _ i-< n (7.12)

(7.13)

for E positive, (7.14)

(7.15)
(7.16)

Before we verify these equalities, let us note the following simple fact concerning
positive conditions:

For any positive conditions %

7 V ~ ~ true ~ 7 ~ true or ~ ~, true. (7.17)

Indeed, it is easy to see that, if 7 ~ true and ~ ~ true, then v(,y V 6) -- false,

where v is any valuation such that v(x) ~ v(y) for x ~ y and v(x) does not appear
in ~ V ~ for any x E V.

Since (7.12) is obvious, we now consider the case of projection. A V-tuple t is in
~r~(T,) iff there is a t' E T, such that t'[Y] = t[Y], that is, if there is a t" E Tsuch
that t"[Y] = t[Y] and t"(con) ~ true. On the other hand, t E ~rC(T), iffthere are
tuples tl tk E T, k - 1 such that t,[Y] = t[Y], 1 -< i <-- k and W~.d,(con)
true. But by (7.17) the last condition implies that t,(con) ~ true for some i, and
we obtain exactly the same condition as before.

In the case of selection, ceV(T,) consists of all tuples t ~ T such that for every
valuation v, v(t(con)) = true and v(E(t)) = true, which is exactly the condition for
t to be in ~C(T),. Notice that (7.14) holds true for any, not necessarily positive,
condition E. The requirement that E be positive is needed only to guarantee that
#C(T), is positive, so that we could inductively prove the lemma using (7.12)-
(7.16).

We now consider the case of join. It is obvious that T, M v IV, _ (T I~ c W),,
so it is sufficient to prove the converse inclusion. Suppose t E (T M c W),. Then
there are C-tuples tl , tk ~ T, wt, Wk ~ W, k -> l, such that t,[X] = t[X],

784 T. IMIELII~ISKi AND W. LIPSKI, JR

w,[Z\X] = t[ZkX], 1 _< i -< k, and W~.~(t~ t4 w,)(con) ~, true. By (7.17), for
some i

t/(con) A w/(con) A /~A (t~(A) = w,(A)) ~. true.
A~-XQZ

This obviously means that ti E T,, wi E W,, and t,[X N ZI = w,[X f) Z]; that is,
t E T , • r W , .

Finally, in the case of union, T, U r W, __C_ (T U c W),, and t ~ (T U c W),
implies that either t E T, or t E W, or there are t ' E T, w' E W with t'[X] =
w'[X] = t[X], t ' (con) V w'(con) ~ true. The last case is reduced, however, by
(7.17), to either the first or the second one. []

We are now ready to give the promised proof of the fact that (-~r, Rep, PS+UJ)
is a representation system.

PROOF OF THEOREM 6.1. We have to show that for any V-multitable T and
any PS+UJ-cxpression f with aft) = a(T),

Rep(fV(T)) "ps+uJ f(Rep(T));

that is, for any PS+UJ-expression g with appropriate o~(g),

Rep(fV(T)) w = f(Rep(T))' . (7.18)

The left-hand side of (7.18) can be transformed as follows:

Rep(fV(T)) g = N g(r) = ~ g(Rep(fr(T))).
r~Rep(fr0r))

By Theorem 7.1,

g(Rep(fV(T))) -esuJ Rep(gC(fV(T))),

which implies the equality of the intersections

CI g(Rep(fr(T))) -- CI Rep(gC(fV(T))).

By applying Lemma 7.1 and then Lemma 7.2 to the right-hand side we get

n g(Rep(fV(T))) = 1"3 Rep(gC(fV(T)),)
= t3 Rep(gfV(T)).

Again using Lemmas 7.2 and 7.1 and Theorem 7. l we obtain

CI Rep(gfV(T)) = O Rep(gfC(T),)
= f) Rep(gfC(T))
-- N gf(Rep(T))

which is the same as the right-hand side of (7.18):

f(Rep(T)) g -- N g(r) = I') gf(Rep(T)). D
r~-f(Rep(T))

To conclude this section, we note that

f(v(T)) _D v(/(T)) (7.19)

for any PS+UJ-expression f, any V-multitable T (a(T) = a (f)), and any valuation
v. This is proved easily by induction on the complexity of f. An immediate corol-
lary is

Rep(f(T)) :3 f(Rep(T)). (7.20)

Incomplete Information in Relational Databases 785

An important fact about (7.20) is that it does not require any assumptions on
the cardinality of attribute domains. Notice that, in the terminology of the Intro-
duction, (7.20) says that the representation system based on V-multitables is always
safe: Rep(f(T)) includes all "possible" f(r*), r* E Rep(T). The assumption that the
attribute domains are infinite is only needed to prove its completeness.

8. Renaming o f Attributes, Conjunctive Queries

It may be noted that the relational algebra based on ~2 = PSUJD and a fixed finite
set f f of attributes is not relationally complete in the sense of Codd [6]. This is
because our version of relational algebra is equivalent in expressive power to a
many-sorted predicate calculus with only one variable available for each sort, and
certain formulas of the usual (many-sorted) predicate calculus inherently need
many "auxiliary variables" (cf. [14]). One way of making our algebra relationally
complete is to add the operation of renaming attributes, and to consider an infinite
set of attributes if, which contains an infinite number of attributes for each sort
(i.e., for every A ~ if, there exists different A~, A2 with D(Ai) -- D(A)) . It is
obvious that

s](Rep(T)) = Rep(s](T)), (8.1)

where sJ(7) (with T either a Codd table, V-table, or C-table) is defined in exactly
the same way as s~(r). By (8.1), most of our results can easily be extended by
adding renaming (R) to the set fl of relational operators. In particular, by Theorem
6.1, we have the following corollary.

COROLLARY 8.1. (J r , Rep, P S + U JR) is a representation system.

We now discuss another version of the relational algebra (see, e.g., [29]) where
the type of a relation is defined as a sequence, rather than set, of attributes
(repetitions are allowed). The relational operators are modified in the following
way. In the projection operator, instead of a target attribute set we have a target
sequence of positions (i.e., numbers of columns of the argument relation); in the
selection condition, we refer to positions rather than to attributes; and instead of
the natural join we consider the Cartesian product. The Cartesian product of two
relations, r, s, of types (A~, . . . , A,) and (B~ , Bm), respectively, is a relation
of type (A~ An, Bi Bin) defined as

r x s = {(a, a., b, bm) : Ca, a .) E r A (b, , bin) ~ s}.

(8.2)

Note that any relation, in the modified sense, of type (A~, . . . , A,) can be
uniquely represented by the usual relation of type {(A~, 1), . . . , (A,, n)], and that
(8.2) can be expressed by first renaming the attributes of s so that it is of type
{(B~, n + 1) , . . . , iBm, n + m) l and then performing the natural join. By Corollary
8.1, this easily implies the following theorem (where X stands for the Cartesian pro-
duct):

THEOREM 8.1. (9"v, Rep, P S + UX) is a representation system.

Conversely, the join can easily be expressed by the Cartesian product, restriction,
and projection, so that, by Theorem 4.7, the Codd tables cannot support f~ -- PXE
(E stands for restriction).

THEOREM 8.2. (-~o, Rep, PXE) is not a representation system.

786 T. IMIELII~ISKI AND W. LIPSKI, JR

(Clearly, in Theorems 8.1 and 8.2 the notions of a V-table and Codd table are
modified into a "column-ordered" form, in the same way as it was done for
relations.)

Another important fact implied by Coronary 8.1 is that the system based on V-
tables can handle arbitrary conjunctive queries [4]. Roughly speaking, a conjunctive
query is defined by a conjunction of atomic relational formulas of the form R,(Xl,
. . . . xp) (the R,'s are predicates corresponding to database relations), where each of
the x, is either a constant or variable, preceded by existential quantifiers binding
some of the variables appearing in the conjunction. The mapping defined by a
conjunctive query q can be defined, for any database state r, by

~ r) -- Iv(s) : v is a valuation such that v(Q) _c r} (8.3)

where

Q is a suitable V-multitable (V-tuples appearing in Q correspond in the natural
way to the atomic relational formulas in q, ,~(Q) = a(r) = a(q)),

s is a V-tuple such that all variables occurring in s occur in Q (a(s) = ~(q)).

LEMMA 8. I. For any conjunctive query q there is a PS~JR-expression f such

that q(r) = f (r) for every r (a(r) = a (f) = a(q)).

SKETCH OF PROOF. Call a variable repeated if it occurs in at least two V-tuples
in Q, s, and a target variable if it occurs in s (see (8.3)). For every repeated variable
x, let Ax be an attribute not appearing in Q. Let Q -- (QI, . . . , Qn). For any V-
tuple u in Q,, letf~ be an expression consisting of a relation symbol R, preceded by
(from right to left)

(i) selections aAla, for every A E a(u) with u(A) = a, a ~ D,

(ii) restrictions aA-B, for all A, B E a(u) with u(A) = u(B) = x, a variable,
(iii) projection ~rr, where Y contains exactly one attribute A for any repeated

variable x appearing in u (u(A) = x),

(iv) renaming s~ x, for every A E Y, where x = u(A).

Let h = ~rx(l~u f~), where u ranges over all V-tuples in Q and X -- {Ax : x is a
target variable}. The required expressionfis obtained from h by suitably renaming
the attributes in X. Some easy modifications are required i f s contains constants or
multiple occurrences of the same variable. (A similarity of this construction to
"shallow expressions" of [32] may be noted.) []

By Lemma 8.1, we obtain the following corollary.

COROLLARY 8.2. The representation system (Jr , Rep, PS+UJR) can support

arbitrary conjunctive queries; that is, for any conjunctive query q and any V-

multitable T with a(T) = c~(q) there is a V-table U such that Rep(U) "es+trj~

q(Rep(T)).

Here we denote q(Rep(T)) = {q(r) : r E Rep(T)}. The V-table U is obtained by
finding the PS+JR-expression fequivalent to q (see I .emma 8.1) and putting U =

f(T). The V-table U will also be denoted by q(T).
By using the fact that in computing f (T) we treat variables and constants in

exactly the same way, and that the equivalence between q and f d o e s not depend
on the nature of the attribute domains, one can easily prove the following fact
generalizing (8.3):

Incomplete Information in Relational Databases 787

THEOREM 8.3. For any conjunctive query q, given by a V-muititable Q and V-
tuple s, and for any V-multitable T with a(T) = a(Q)

q(T) = {p(s) : p is a generalized valuation such that p(Q) _ T},

where by a generalized valuation we mean any mapping p: V--~ V LID such that
x ~ V(A) implies p(x) E V(A) O D(A).

9. Closed World Interpretation of Tables

The interpretation of multitables considered so far has been based on the open-
world assumption [26, 27], which was embodied in the property

r E Rep(T) A s D r ~ s E Rep(T)

(see (3.3)). We now consider a different interpretation, which we call the closed
world interpretation.

Let T be a V-multitable. The dosed world interpretation of T is defined as
follows:

rep(T) = [r : there exists a valuation v such that v(T) = r}, (9.1)

where v(T) is defined as before (see (6.1)-(6.3)). Similarly, for any C-multitable T
we define rep(T) by formula (9.1), with v(T) defined by (7.1) and (7.2). In the case
of a Codd multitable T, we define

rep(T) --- rep(U),

where U is any V-multitable obtained by replacing every occurrence of @ in T by
a different variable. It seems that what Codd meant in [6] was in fact the closed
world interpretation of Codd tables.

Notice that if a tuple t cannot be obtained by replacing nulls by constants in any
@-tuple of a Codd table T, then T represents the "negative information" that the
relationship expressed by t definitely does not hold, a fact not representable under
the open world interpretation. The situation is similar in the case of V-tables and
C-tables.

Clearly, for all three kinds of multitables,

rep(T) C Rep(T);

moreover, rep(T) and Rep(T) are coinitial.
Let fl __. PSS+UJR, f be an ft-expression, T be a multitable of type aft), and U

be a multitable of type B(f). Since rep(U) = Rep(U), rep(T) ~, Rep(T), by Lemma
4.2 we obtain

and

Hence,

rep(U) =. Rep(U)

f(rep(T)) - a f(Rep(T)).

rep(U) =% f(rep(T)) iff Rep(U) ==a f(Rep(T)).

This equivalence immediately implies that all results concerning representation
systems developed under the open-world assumption carry over to the dosed-world
interpretation:

788 T. IMIELIlqSKI AND W. LIPSKI, JR

THEOREM 9.1. Let 12 C_ PSS+UJR and let .~be either ~ or .~r or Jc. Then

(~,, Rep, 12) is a representation system

iff (~ rep, fi) is a representation system.

Moreover, the correct operations on tables are the same under both interpretations.

It turns out that in the case of conditional tables we can handle all relational
operations, including the difference, thus supporting the full strength of
the relational algebra. Indeed, let T, U be two C-tables, a(T) --- a(U) = X. For any
t E T, let us define tu to be a C-tuple, a(tv) = X, such that

tv[X] -- t[X],

tv(con) = t(con) ^ ~ ~' (t(A) ~= u(A)).
uEU AEX"

If we define

then it is easily seen that

T - U = {tu: t ~ T],

v (T - U) = v(T) - v(U)

for any valuation v, which, combined with (7.1 I), implies that

r(f(T)) = f(r(T))

for any PSUJRD-expression f, any C-multitable T (a(T) ffi a (f)), and any valuation
v. Consequently,

rep(f(T)) -- f(rep(T)), (9.2)

that is, diagram (3.1) commutes. Let us state this as a theorem.

THEOREM 9.2. (Jc , rep, PSUJRD) is a representation system. Moreover, all

relational operators can be defined on C-tables in such a way that (9.2) holds.

10. Conclusions

We have proposed a general condition that should be satisfied if we want to
evaluate relational expressions over "tables with nulls" in a semantically correct
way.

Suppose that an instance of an incomplete information relational database is
given by a multitable T, and let f be a relational query. While computing the
response to f, we think of an unknown r* E Rep(T)--corresponding to the true
state of the real world--being transformed by f, and we require that I(T) contain
enough information to determine all tuples that surely (i.e., no matter which
element of Rep(T) the multirelation r* is) appear in f(r*).

In this way our approach is similar in spirit to the external interpretation and
lower value II • I I , in [20] (see also [22]).

Note that the tuples that surely appear in f(r*) are given by Rep(T) t, and it is
easy to see that Rep(T) f can be obtained by deleting from f(T) all tuples containing
nulls, both in the case of Codd tables and V-tables.

Another possibility is to treat f(T), rather than Rep(T) f, as the response to query
f. This has the advantage of providing more information; for instance, a tuple
a@c (or ayc) appearing in the response can easily be shown to indicate that a tuple
of the form abc, b ~ D(B) surely appears in f(r*). Moreover, this approach makes

Incomplete Information in Relational Databases 789

it possible to treat a response to query f as an intermediate step in computing the
correct response to a more complex query gf (note that in general it is not possible
to determine Rep(T) 8t on the basis of Rep(T) t and g).

It should be noted that Rep(T) t = rep(T) f, so that by Theorem 9. l the process of
computing the response to a query is exactly the same under both open and dosed
world assumptions.

The results of the paper show that the devices suitable for representing incomplete
information heavily depend on what processing of the information we are going to
correctly perform, or, in more concrete terms, what relational operators are allowed.
Our approach stresses the requirement for a correct evaluation of relational
expressions, rather than just single relational operators, as was usually the case in
previous attempts in the literature to correctly handle null values.

From the practical point of view an especially appealing system seems to be one
based on V-tables, supporting projection, positive selection, union, join, and
renaming, which allows for processing arbitrary conjunctive queries. The reason is
that all these relational operators and queries can be evaluated over V-tables in
exactly the same way as in the case of the usual relations.

There are several important problems that have not been treated here. One is
how to handle dependencies in our framework. It turns out that functional,
multivalued, and join dependencies--more exactly, arbitrary implicational de-
pendencies [2] ("generalized dependencies" in [29])--can be represented in any V-
table, in the sense that for any V-table T and any set Z of such dependencies, there
is a V-table U such that Rep(U) =Ps+oJ Rep(T) Iq Sat(~), where Sat(~) is the set of
all relations satisfying the dependencies in Z (see [12, 13, 16]). This is another
argument for the usefulness of the representation system based on V-tables.

Another interesting topic is the relation between V-tables and the tableaux
of Aho, Sagiv, and Ullman [1]. Roughly speaking, a tableau for a relational
PSJ-expression f (wi th only selection of the form *a-a allowed) can be treated as a
V-table representing the inverse image of the summary of the tableau with respect
to f (see [15]). It also turns out that for any PSJ-expression f (wi th only selection
of the form *A=a) and every V-multitable T (a(T) = aft)), there is a V-multitable
U such that Rep(U) = f-~(Rep(T)). This fact has several interesting applications
(see [17]).

ACKNOWLEDGMENTS. Several comments and suggestions by J. Lo~, W. M Turski,
and the referees are gratefully acknowledged.

REFERENCES

I. AHO, A.V., SAGIV, Y., AND ULLMAN, J.D. Equivalences among relational expressions. SIAM J
Comput 8, 2 (May 1979), 218-246.

2. BEERI, C., AND VARDi, M.Y. Formal systems for tuple and equality generating dependencies.
SIAMJ Comput 13, 1 (Feb. 1984), 76-98.

3. BISKUP, J. A formal approach to null values in database relations. In Advances in Database
Theory, H. Gallalre, J. Minker, and J.M. Nicolas, Eds. Plenum Press, New York, 1981, pp. 299-
341.

4. CHANDRA, A. K., AND MERLIN, P.M. Optimal implementanon of conjunctive queries in relational
data bases. In Proceedmgs of the 9th Annual ACM Symposmm on Theory of Computing (Boulder,
Col., May 2-4). ACM, New York, 1977, pp. 77-90.

5. COOD, E.F. A relational model for large shared data banks. Commun ACM 13, 6 (June 1970),
377-387.

6. CODD, E.F. Relational completeness of data base sublanguages. In Data Base Systems, R. Rustin,
Ed. Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 65-98.

790 T. IMIELIIqSKI AND W. LIPSKI, JR

7. CODD, E.F. Understanding relattons (Installment #7). FDT Bull. of ACM-SIGMOD 7, 3-4 (Dec.
1975), 23-28.

8. CODD E.F. Extending the database relational model to capture more meaning. ACM Trans
DatabaseSyst 4, 4 (Dec. 1979), 397-434.

9. GAREY, M.R., AND JOHNSON, D.S. Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, San Francisco, Calif., 1979.

10. GRANT, J. Null values in a relational data base. Inf Process. Left. 6, 5 (Oct. 1977), 156-157.
11. HOROWITZ, E., AND SAHNI, S. Fundamentals of Computer Algorithms Computer Science Press,

Potomac, Md., 1979.
12. Immu~SKI, T. Problems of representing information in relational databases (in Polish). Ph.D.

Thesis, Institute of Compnter Science, Polish Academy of Sciences, 1981.
13. IMIELII~ISK1, T., AND LIPSK1, W. On representing incomplete information in a relational data base.

In Proceedings of the 7th Internaoonal Conference on Very Large Data Bases (Cannes, France,
Sept. 9-11) ACM, New York, 1981, pp. 388-397.

14. IMIELi~SKI, T., AND LIPSKI, W. The relational model of data and cylindric algebras. J. Comput.
System Sci. 28, 1 (Feb. 1984), 80-102.

15. IM1ELllqSKI, T., AND LIPSKI, W. A technique for translating states between database schemata. In
Proceedings of the ACM SIGMOD International Conference on Management of Data (Orlando,
Fla., June 2-4). ACM, New York, 1982, pp. 61-68.

16. IMIELIIQSKI, T., AND LIPSKI, W. Incomplete information and dependencies in relational databases.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (San Jose,
Calif., May 23-26). ACM, New York, 1983, pp. 178-184.

17. IMIELI~SKI, T., AND LlPSKI, W. Inverting relational expressions--a uniform and natural technique
for various database problems. In Proceedings of the ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems (Atlanta, Ga., March 21-23). ACM, New York, 1983, pp. 305-
311.

18. LACROIX, M., ANn PmorrE, A. Generalized joins. ACM-SIGMOD Record 8, 3 (Sept. 1976),
14-15.

19. LIPSKL W. Informational systems with incomplete information. In Proceedings of the 3rd Inter-
national Colloquium on Automata, Languages and Programming (Edinburgh, Scotland, July 20-
23). Edinburgh Umversity Press, Edinburgh, Scotland, 1976, pp. 120-130.

20. LlPSKI, W. On semantic issues connected with incomplete information databases. ACM Trans
Database Syst 4, 3 (Sept. 1979), 262-296.

21. LIPSKI, W. On databases with incomplete information, d. ACM28, 1 (Jan. 1981), 41-70.
22. LIPSKI, W. Logical problems related to incomplete information in databases. Tech. Rep. 138,

Laboratoire de Recherche en Informatique, Universit6 de Paris-Sud, Centre d'Orsay, Sept. 1983.
23. LIPSKt, W. On relational algebra with marked nulls. In Proceedings of the 3rd ACM SIGACT-

SIGMOD Symposium on Princtples of Database Systems (Waterloo, Ont., Canada, April 2-4).
ACM, New York, 1984, pp. 201-203.

24. MAIER, n., ULLMAN, J. D., AND VARDI, i . Y . On the foundations of the universal relation model.
ACM Trans. Database Syst. 9, 2 (June 1984), 283-308.

25. REINGOLD, E. i . , N1EVERGELT, J., AND DEO, N. CombinationalAlgortthms: Theory and Practice.
Prentice Hall, Englewood Cliffs, N.J., 1977.

26. REITER, R. On closed world databases. In Logic and Data Bases, H. Gallaire and J. Minker, Eds.
Plenum Press, New York, 1978, pp. 55-76.

27. REITER, R. Towards a logical reconstruction of relational database theory. In Conceptual Modell-
ing, Perspectives from Art#cial Intelligence, Databases and Programming Languages, M. L. Brodie,
J. Mylopoulos, and J. Schmidt, Eds. Springer-Verlag, New York, 1984, pp. 191-233.

28. SIKLOSSY, L Efficient query evaluation in relational databases with missing values. Inf. Process.
Left 13, 4/5 (End 1981), 160-163.

29. ULLMAN, J.D. Pnnciples of Database Systems. 2nd ed. Computer Science Press, Potomac, Md.,
1982.

30. VASS|LIOU, Y. Null values in data base management: A denotational semantics approach. In
Proceedings of the ACM-SIGMOD lnternattonal Symposium on Management of Data (Boston,
Mass., May 30-June 1). ACM, New York, 1979, pp. 162-169.

31. VASSlLIOU, Y. Functional dependencies and incomplete information. In Proceedmgs of the 6th
International Conference on Very Large Data Bases (Montreal, Ont., Canada, Oct. 1-3). ACM,
New York, 1980, pp. 260-269.

32. YANNAKAK1S, i . , AND PAPAOIMITRIOU, C.H. Algebraic dependencies. J. Comput Syst. ScL 25,
1 (Aug. 1982), 2-41.

Incomplete Information in Relational Databases 791

33. ZANIOLO, C. Relational views in a data base system support for queries. In Pr~¢~'egs of the
IEEE Computer Software and Applications Conference (Chicago, IlL, Nov. 8-11). IEEE, New York,
1977, pp. 267-275.

34. ZANIOLO, C. Database relations with null values. In Proceedings of the ACM SIGACT-SIGMOD
Symposium on Principles of Database Systems (Los Angeles, Calif., March 29-31). ACM, New
York, 1982, pp. 27-33.

RECEIVED APRIL 1982; REVISED MARCH 1984; ACCEPTED MARCH 1984

Journal of the Assoaatton for Computing Machinery, "CoL 31, No. 4, October 1984.

