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Abstract. This paper concerns the semantics of Codd's relational model of data. Formulated are precise 
conditions that should be satisfied m a semantically meaningful extension of the usual relational 
operators, such as projection, selection, union, and join, from operators on relations to operators on 
tables with "null values" of various kinds allowed. These conditions require that the system be safe in 
the sense that no incorrect conclusion is derivable by usmg a specified subset [l of the relational 
operators; and that it be complete in the sense that all valid conclusions expressible by relational 
expressions using operators in fl are in fact derivable in this system. Two such systems of practical 
interest are shown. The first, based on the usual Codd's null values, supports projection and selection. 
The second, based on many different ("marked") null values or variables allowed to appear in a table, 
~s shown to correctly support projection, posmve selection (with no negation occurring in the selection 
condition), union, and renaming of attributes, which allows for processing arbitrary conjunctive queries. 
A very desirable property enjoyed by this system is that all relational t~perators on tables are performed 
in exactly the same way as in the case of the usual relations. A third system, mainly of theoretical 
interest, supporting projection, selection, union, join, and renaming, is also discussed. Under a so-called 
closed world assumption, it can also handle the operator of difference. It is based on a device called a 
condiUonal table and is crucial to the proof of the correctness of the second system. All systems 
considered allow for relational expressions contaming arbitrardy many different relation symbols, and 
no form of the universal relation assumption is required. 

Categories and Subject Descriptors: H.2.3 [Database Management]: Languagesmquery languages; H.2.4 
[Database Management]: Systems--query processmg 

General Terms: Theory 

Additional Key Words and Phrases: Relational database, incomplete information, null values, marked 
nulls, relational algebra, query language semantics, query processing 

1. Introduction 

Attempts to represent incomplete information in the relational model of data have 
been made since the very beginning of the relational database theory [3, 7, 8, 10, 
12, 13, 18-21, 27, 28, 30, 31, 33, 34]. (See also the extensive bibliography in 
[22].) The main device in this context has been the null value, a special symbol @ 
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allowed as an entry in a table, with its intended meaning being value at present 

unknown (but the attribute applicable). 
Representing incomplete information in a database immediately raises the much 

more difficult and important problem of processing this information so that the 
user can obtain--perhaps partial, but correct--responses to his or her queries on 
the basis of the incomplete information. In the context of the relational model, this 
comes down to defining the relational operators on tables with null values in a 
semantically correct way. The intuitive condition that should be satisfied is the 
following. If a null value has a specified semantic interpretation, that is, if we 
assume that a specified relation exists between a table with nulls and the real world, 
then this relation should be similar for the tables that are arguments of a relational 
operator and for the table obtained as the result. 

Solutions to this problem proposed so far have been in many respects partial 
and unsatisfactory. Codd's approach [7, 8] is based on a three-valued logic and a 
so-called null substitution principle, which has been criticized on semantic grounds 
by Grant [10] and Lipski [20]. Lipski [19-21] and Vassiliou [30] consider, essen- 
tially, only the relational operator of selection, where the selection condition can 
be an arbitrary Boolean combination of atomic conditions. Proposals involving a 
richer subset of the relational operators--and it is the join that seems to be the 
main source of difficulty--usually do not give a clear and precise explanation of 
the sense in which the definitions of relational operators on tables with nulls are 
semantically correct [7, 8, 18]. An exception is the work of Biskup [3]. However, 
his definition of, say, a join T t~ U of two tables with nulls works correctly when 
T and U are "independent" but does not necessarily provide a method for correctly 
evaluating an expressionf(T) t~ g(T) wherefand g are some relational expressions. 
This is because in the latter case there may be "additional information" implied 
by the fact that both arguments of the join come from the same table T, and his 
definition of join is not able to take this into account (this is discussed in more 
detail at the end of Section 4.) In fact, queries in a relational database are arbitrary 
relational expressions, so that we should be able to handle correctly relational 
expressions rather than just single relational operators. 

In this paper we formulate the precise conditions that we believe should be 
satisfied in any semantically meaningful extension of the usual relational operators, 
such as projection, selection, union, and join, from operators on relations to 
operators on "incompletely specified relations"--typically, tables with "null values" 
of different kinds allowed as entries. These conditions are embodied into the 
definition of a representation system (see Section 3). 

Roughly speaking, these conditions require that our system be safe in the sense 
that no incorrect conclusion is derivable by using a specified subset fl of the 
relational operators, and that it be complete in the sense that all valid conclusions 
expressible by relational operators using operators in fl are in fact derivable. The 
intuition behind the notion of a representation system can also be explained in the 
following way. By performing relational operators over tables with nulls, we may 
introduce some corruption of information. However, if the query language that 
the user has at his or her disposal is weak enough, that is, if only a specified subset 
~2 of the relational operators is available, then this corruption is not visible by the 
u s e r .  

Two representation systems of practical interest are shown. The first, described 
in Section 4, is based on tables with the usual Codd null values @ (we call them 
Codd tables). The following is an example of a Codd table. 
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SUPPLIER LOCATION PRODUCT QUANTITY 

Smith London Nails @ 

Brown @ Bolts @ 

Jones @ Nuts 40,000 

This table represents the information that Smith, located in London, supplies (an 
unknown quantity of) nails; Brown supplies bolts; and Jones supplies 40,000 nuts. 
The system based on Codd tables supports projection and selection, and it is shown 
that no representation system based on Codd tables can support projection and 
join at a time. 

Section 5 describes some algorithms for correctly evaluating a selection over a 
Codd table, including the case in which attribute domains are linearly ordered, and 
the selection condition is an arbitrary Boolean combination of elementary ine- 
qualities between attributes or between attributes and values. 

The second representation system, presented in Section 6, supports projection, 
positive selection (with no negation occurring in the selection condition), union, 
join, and renaming of attributes--this allows for processing arbitrary conjunctive 
queries [4 I, as shown in Section 8. It is based on tables allowing many different 
("marked") null values, or variables (such tables are called V-taMes). The following 
is an example of a V-table: 

COURSE TEACHER WEEKDAY 

Databases x Monday 

Programming y Tuesday 

Databases x Thursday 

FORTRAN Smith z 

This table contains three different variables, x, y, z. Notice that it represents the 
information that the teacher of the course on databases, though unknown, is the 
same on Monday and Thursday, a fact not representable by means ofa Codd table. 

A very desirable property enjoyed by our representation system based on V- 
tables is that all relational operators on V-tables are performed in exactly the same 
way as in the case of the usual relations, treating variables as if they were regular 
values in appropriate attribute domains (this may be referred to as the naive 
evaluation). It may also be noted that V-tables appear in a natural way in the 
context of updating relational views. Assume, for instance, that a database is 
given by 

! 
SL : I SUPPLIER LOCATION 

I Smith London 

SP: SUPPLIER PRODUCT 

Smith Nails 

and suppose that the relational view 

"/I'LOCATION, PRODUcT(St IM SP) 

is updated by adding two tuples, (New York, Bolts) and (Los Angeles, Nuts). It 
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is then natural to define the effect of this update to be 

SL : SUPPLIER LOCATION 

Smith London 

x New York 

y Los Angeles 

SP : SUPPLIER PRODUCT 

Smith Nails 

x Bolts 

y Nuts 

A negative result shown in Section 6 is that, rather surprisingly, no representation 
system based on V-tables can support projection and arbitrary selection (recall that 
these operators can be supported by Codd tables). 

A third representation system, described in Section 7, supports projection, 
selection, union, join, and renaming and is mainly of a theoretical interest. It is 
based on an idea of a so-called conditional table and is crucial in the proof of the 
correctness of the second system. A conditional table is a V-table with an additional 
column, con, containing a condition; for example, the conditional table 

SUPPLIER LOCATION PRODUCT con 

x London Nails x - -  Smith 

Brown New York Nails x # Smith 

represents the information that nails are supplied either by Smith in London or by 
Brown in New York, but not by both at a time. 

All representation systems considered in this paper allow for relational expres- 
sions containing arbitrarily many different relation symbols, and no form of the 
universal relation assumption [24] is required. 

Most of the results of  the paper are developed under a so-called open world 
assumption (see [26]) that, roughly speaking, means that we are not able to represent 
negative information. In Section 9 we briefly show how the results can be extended 
in a straightforward manner to a modified interpretation of tables where negative 
information is representable. It turns out that under such a modified interpretation 
the system baseo on conditional tables can also handle the operator of  difference, 
thus supporting the full strength of the relational algebra. 

The last section contains conclusions and briefly describes related work, in 
particular, the work concerning the problem of handling dependencies in the 
context of V-tables, and the relation between V-tables and tableaux of Aho, Sagiv, 
and Ullman [ l ]. 

2. Basic Definitions 

In this section, we give some basic definitions and notation concerning the relational 
data model ([5]; see also [29]). 

Throughout the paper we consider a fixed, finite (unless otherwise stated) set 
of attributes. Attributes are usually denoted by A, B, C, and sets of attributes by 

X, Y, Z, with possible subscripts. A set of  attributes, say {A, C}, is usually written 
as AC. Associated with every A E @ is an attribute domain D(A). We always 
assume that I D(A)I -> 2 and we denote D -- UAe,D(A). Elements of D are 
sometimes called constants. Elements of D(A), D(B), D(C) are usually denoted by 
a, b, c, respectively, with possible primes, etc. By a tuple on X we mean any 
mapping t that associates a value t(A) E D(A) with every A E X. A tuple is usually 
denoted as a string of values associated with the attributes; for example, ac is a 
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tune  on AC. For a tune  t on Xand  for any yc_ X, we denote by t[Y] the restriction 

of t to Y; for example, if t = abe then t[AC] = ac. By a relation on X we mean any 
finite set of tuples on X. If t, r are a tune  and a relation on X, we then write 

aft) = a(r) = X, 

and we call o~(t) and a(r) the type of t and r, respectively. A multirelation of type 
(X~, . . . ,  X,) is any sequence (rl, . . . ,  r,) in which r, is a relation on X,, 1 -< 
t -< n. Relations are usually denoted by r, s, with possible subscripts, and multire- 
lations by r, s (conforming to the general convention that boldface indicates 
multiobjects). The type of multirelation r is denoted by o~(r). By an empty 
multirelation we mean any multirelation of the form 0 = ( 0  . . . . .  0 ) ;  formally, 
we shall assume that there is a different empty multirelation for each type. 

For two multirelations r = (r~ . . . . .  r ,) ,  s = (sl . . . .  , s , )  of the same type, we 
write r _ s i f  r, C_ s,, 1 <_ i <_ n. I f r  = ( r ~ , . . . ,  r,) and 1 _< i _< n, then we define 

prt(r) = r,. 

The set of all multirelations of type (X~, . . . ,  AT,) is denoted by ~ ( X I , . . . ,  X,); in 
particular, ~ ( X )  is the set of all relations of type X. The set of all multirelations is 
denoted by _~. 

The class of all nonempty homogeneous sets of  multirelations is denoted by _~" 
(a set 5L Y of multirelations is homogeneous  ifa(r) = a(s) for all r, s E vX). Elements 
o f . 7  are denoted by ~ ,  ~, ~ and the definition of a ( X ) ,  the type of  ~ ,  is the 
natural one. 

We consider the usual relational operators: 

Projection 

~-r(r) = It[Y] : t ~ r} ( y c a(r)). 

Join 

where 

Difference 

r t~ s = {t : a(t)  = X u Y A t[X] ~ r A t[ Y] E s], 

X = a(r), Y = a(s). 

r - s = r\s,  that is, the usual set-theoretical difference. 

Selection 

aE(r) = It E r :  E( t )  =true}. 

Here E is a selection condition; that is, any expression built up from atomic 
conditions of the form (A = a), (A = B), A,  B ~ ~ ,  D(A)  = D(B) ,  a ~ D(A)  (and 
truth constants true, false) by means of the logical connectives V (or), A (and), 
(not). E(t )  denotes the truth value obtained by substituting the value t (A)  for any 
occurrence of A in E and evaluating the expression in the natural way. We always 
assume that o~(r) contains all the attributes occurring in E. A selection condition E 
and the selection operator aE is called posit ive if it does not contain the "1 symbol. 

We sometimes consider a more general form of selection, where E is any  mapping 
from tunes  to {true, false]. (Note: The operation eA-n is also called restriction.) 

Union 

r U s, that is, the usual set-theoretical union. 

We always assume that both arguments of union are of the same type. 
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We always assume that both arguments of difference are of the same type. 
In Section 8 we also consider the following additional operation. 

Renaming (of an attribute) 

s~(r) = {s~(t) : t E r} 

where A ~ ~(r), B E @\a(r), D(A) = D(B), and s~(t) is the tuple of type (~(r)\{A }) 
O {B} with 

ft(C) if C E a(r)k{A}, 
(s~(t))(C) = ~t(A) if C--- B. 

Intuitively, s~(r) is the result of renaming column A or r to B. 
We show in Section 8 how the results of  this paper can be extended to another 

version of relational algebra, based on Cartesian product (see, e.g., [29]) instead of 
join. 

By a relation name we mean a symbol R (the letter S is also used) with possible 
subscripts, with an associated type a(R) C @. 

An instance of R is any relation r such that a(r) = a(R). An instance is usually 
denoted by a lowercase version of the letter denoting the relation name. 

For any subset f~ of the relational operators of projection (P), selection (S), 
positive selection (S+), join (J), difference (D), and renaming (R), a relational fl- 
expression means any well-formed expression built up from relation names and 
relational operators in fl; for example, aafa(Rl) I~ IraB(R2) is a relational PS+J- 
expression. A multirelational ~-expression is any sequence f = (J~, . . . ,  j~) of 
relational fl-expressions. Relational and multirelational fl-expressions are often 
called simply f~-expressions; they are usually denoted by f, g, with possible sub- 
scripts, and by f, g, respectively. They are assumed to be typed in the following 
sense. We assume that associated with every f is a sequence ( R , , . . . ,  R,) (either 
clear from the context or given explicity by writing f (RI . . . . .  R,)) containing all 
relation names occurring in f (and possibly some other relation names). The 
argument type of f is then defined as 

,~(0 = ( , , ( R 0 , . . . ,  ~(R,)) .  

For any f = (jq, . . . ,  J~) and any multirelation r = (r~ . . . .  , r,) of  type a(r) --- 
aft), we define f(r) --- (3q(r) . . . . .  j~(r)) wheref(r)  denotes the relation obtained by 
substituting r~ for all occurrences of Rj in f,, j -- 1, . . . ,  n. We also define 3(f) = 
aft(r)) and call it the result type of f. 

It may be mentioned in this context that the relational algebra can be embedded 
in a natural way into a simple algebraic system called a cylindric set algebra, such 
that all relations considered are of type @ and all relational operators are total 
(i.e., there are no restrictions on the arguments). This approach has several 
advantages (i.e., the "complicated" join operator becomes the usual set-theoretical 
intersection) but leads to infinite relations and creates some problems concerning 
the finite representability of these relations. This approach is treated in more detail 
in another paper by the authors [ 14]. 

3. Representation Systems 

In this section we formulate some general conditions that we require to be satisfied 
in any semantically meaningful extension of the relational algebra to "tables with 
nulls." 
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To this end we introduce the notion of a representation system. By.a represen- 
tation system we mean a triple ( ~ ,  Rep, f~) where 9- is the set ofmultitables, Rep 
is a mapping, Rep: g --+ _~" (recall that J is the set of  all nonempty homogeneous 
sets of multirelations), f~ is a set of relational operators, and a certain natural 
condition, to be defined at the end of this section, is satisfied. Roughly speaking, 
this condition asserts that there is a way, consistent with respect to operators in f~, 
to define f(T) for any ~2-expression f and any multitable T E J.. 

First, however, let us give some intuitive explanations concerning the compo- 
nents of a representation system. 

A multitable is usually a "generalized multirelation" with tuples allowed to 
contain not only values in appropriate attribute domains, but also some special 
symbols ("null values" of various kinds). Most of the notions and notation 
concerning relations and multirelations, such as a tuple, a(r), or t[ Y], carry over 
to multitables. The set Rep(T) of multirelations defines the information contained 
in multitable T; that is, it specifies the set of  possibilities represented by T. 

Suppose ~_~ E . 7  represents our information about a certain unknown r* ~ ~" 
and let f be an f~-expression with aft) = a(~.~). Clearly, our information about 
fir*) is then represented by 

f ( ~ ' )  = { f (r) :r  E ~ 1 .  

In this way, any fi-expression f can be treated in a natural way as a mapping f: 
J -+ J (more exactly, a partial mapping defined only for those ~ E J with 

= 

Suppose now that we want to give a natural definition of  multitable f(T) where 
T E 3- and f is an f~-expression (a(T) = aft), where a(T) can be defined to be 
a(Rep(T))). If we think of T as representing in an incomplete way some unknown 
r* ~ Rep(T), then ideally we could expect that there exist the same relation between 
f(T) and f(r*), so that f(Re~T)) = Rep(f(T)); that is, the following diagram 
commutes: 

Rep 

, i  1 I f (3.1)  

3 ~.y 
Rep 

(for multitables of appropriate type). Unfortunately, this approach is usually not 
feasible, since in most practical situations the structure of the set f(Rep(T)) is not 
"regular" enough to be representable by any U E .~  (see, however, an exception 
at the end of Section 9). In other words, there is no U E 3 such that Rep(U) = 
f(Rep(T)). 

Clearly, if we are to define f(T) in a semantically meaningful way, then we should 
require that Rep(f(T)) approximate the information given by f(Rep(T)) in some 
natural sense (and we should precisely state in which sense). Before we describe 
what we consider to be a natural notion of "equivalence" between Rep(f(T)) and 
f(Rep(T)), we give some examples illustrating different kinds of  exluivalences 
between sets of  multirelations. 

Example 3.1. Let ~ consists of  all those relations that contain at least one of 
Ihe following two relations: 

a '  b' ' a '  b" " 
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(Note: Here, and in all other examples in this paper, different symbols denoting 
values in attribute domains always stand for different values.) 

Let 3 / b e  the set of  all relations containing tuple ab (clearly ~ ~ 3/,/). In a 
way, g and 3 / a r e  equivalent: if we assume r* ~ ~ ,  then the only tuple that can 
be concluded to be in r* is ab, and the same is true for ~. 

However, ~ provides the information that a '  ~ ~'A(r*), whereas 3 /does  not. 
Hence X and 3 / a r e  not "equivalent with respect to projection." [] 

Example 3.2. Let Y consist of all those relations that contain at least one of 
the following two relations: 

l a b c l ,  a b ' c ' ]  

a' b c' ' 

and let 3 / b e  defined in the same way by relations 

I a b c [, a b' c' ] 

a' b c" " 

Example 3.3. 

It is easy to see that ~ and 3 / a r e  equivalent with respect to projection, in the 
sense of the previous example. However, r* ~ ~ implies 

ab ~ ~rAB(~'ac(r*) ~ 7rsc(r*)), 

whereas this conclusion cannot be made under the assumption that r* E ~. Hence, 
and 3 / a r e  not equivalent "with respect to P J-expressions." [] 

Let X = ABC and let 

Define 

= {r E ~ ( X )  : abc E r V ab'c E r}. 

5U = {(r, r) :r ~ ~} ,  

3/  = [ ( r , s ) : r , s ~  9} .  

It is not difficult to prove that Y and 3 / a r e  equivalent with respect to all PS- 
expressions (because PS-expressions involve only unary operators). However, they 
are not equivalent with respect to PJ-expressions. Indeed, (r*, s*) E ~ implies 

ac E rac(r* ~ s*) 

(notice that r* N s* -- r* n r* = r*), whereas this conclusion cannot be made 
under the assumption that (r*, s*) E ~ [] 

The above examples suggest the following definition. For a relational multi- 
expression f and Y ~ J (a(f) = a ( ~ ) )  define the f-information in X, denoted 
by ~ f ,  to be 

= n 

Off  = 0 q , . . .  ,Jk), then n f ( su )  is understood as ( n j ] ( ~ ) , . . . ,  n j~ (v~) ) ) .  In 
other words, 5L Yr is the largest multirelation s such that s C_ fir*) for all r* ~ ~ .  
Putting it still another way, if y r  = (s~ . . . . .  sk), then t ~ s, means that from 
r* E v.U we may conclude that t Ef( r*) .  

Let ~ ,  3 / E  J ,  a ( ~ )  = a ( 3 / ) .  We say that ~ and 3 / a r e  ~-equivalent (in 
symbols ~ --~ 3/)  if ~ r  = 3/f for any ft-expression f with a(f) = a ( ~ ) .  Note 
that in Example 3.1, v~ ,.~ 3 / (we  consider expressions of the formj~R~, . . . ,  R,) 
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= R, to be the only relational Q-expressions), but ~ ~p ~ ;  in Example 3.2, 
- p  ~, but ~ ~pj ~ ;  in Example 3.3, Y ---Ps ~, but ~" ~pj ~. 

A multitable T is said to ~-represent gg" if Rep(T) ---~ 5~. 
We are now ready to complete the definition of  a representation system. A triple 

( 3 ,  Rep, f~), where .Y,, Rep, f~ are as described before, is a representation system 
if, for any ft-expression f and for any multitable T E 9-  (a(f) = a(T)), there is a 
multitable U E .~  that f~-represents f(Rep(T))Ein other words, if f(T) can be 
defined for every ~-expression f and multitable T E 3 (a(f) = a(T)) in such a way 
that 

Rep(f(T)) -~  f(Rep(T)). (3.2) 

Two multitables T, U are called ~-equivalent if Rep(T) - a  Rep(U) and Rep- 
equivalent if Rep(T) = Rep(U). Notice that for a given T and f there may exist 
many ~-equivalent multitables U ~ J that ~-represent f(Rep(T)). 

There are two more conditions satisfied by most representation systems consid- 
ered in this paper (these conditions are not part of the formal definition of  a 
representation system). The first one is that any multirelation is- -or  at least can 
be identified wi thEa  multitable, so that we may assume .~ ___ J.. This reflects the 
fact that we are interested only in systems that extend the usual relational algebra. 

The second assumption (not valid in Section 9) is that for any multitable T and 
for any r, s E 

r E Rep(T) A s _D r ~ s ~ Rep(T). (3.3) 

This condit ion~which is essentially the open world assumption of Reiter [26 ]~  
is equivalent to saying that we are not able to represent negative information; that 
is, the knowledge that a relationship expressed by a certain tuple t is definitely not 
true in the real world r* (or in f(r*), where f is some relational expression). An 
intuitive consequence of this assumption is that for any r ~ 

Rep(r) = {s E ~ :  s _D r}. 

We conclude this section by the following simple lemma. 

LEMMA 3.1. I f  ~ contains only unary operators, then ( ~  Rep, f~) is a rep- 
resentation system iff f(T) can be defined for every relational (rather than multire- 
lational) ft-expression f and every T E .Y- with a(T) = a(f), in such a way that 

Rep(f( T)) --,f(Rep( T)). 

The easy proof is omitted. 

4. Codd Tables 

In this section we prove that the usual tables with null values @ (see [7]) provide a 
basis for a representation system with f~ = PS. We also show that these tables can 
support neither f~ = PSU nor ~ -- PJ. 

By a @-tuple on X we mean any function t that associates a value t(A) E D(A) 
U {@1 with every A ~ X. A Codd table on X is any finite set of  @-tuples on X, 
and a Codd multitable of type (X~ . . . . .  Xn) is any sequence T -- (T1 . . . . .  Tn) 
where 7', is a Codd table on X,, 1 ___ i _< n. The set of all Codd multitables is denoted 
by J~. 

Let us define a partial order _ on D U [@1 in such a way that @ < a, a E D 
are the only nontrivial relationships. For two @-tuples t, t '  on X, we write t < t' 
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if t(A) <_ t '(A) for every A E X, that is, if t and t '  agree on every A E X such that 
t(A) # @. For any Codd table T on X we define 

Rep(T) = {r ~ ~ ( X )  : for every t ~ T there is t '  E r such that t _< t'}, 

and for every Codd multitable T = ( T ~ , . . . ,  Tn), 

Rep(T) = Rep(T~) x . . .  x Rep(Tn). 

Intuitively, r E Rep(T) iffr contains a multirelation obtained from T by replacing 
all occurrences of @ by some values in appropriate attribute domains (different 
occurrences may be replaced by different values, but equal values are allowed as 
well). 

Let us now have a closer look at the notion of  fl-equivalence of  homogeneous 
sets of  multirelations for some simple cases of  f~. 

We first note the following trivial fact: 

(4.1) 

Let us now consider the case of  fl = P. 

THEOREM 4.1. Any ~ E J can be P-represented by a Codd multitable. 

PROOF. Let us begin with the simple case where a ( ~ )  = X. For any Y_C X, let 
Q(Y) be obtained from ~ - v  by extending with @'s every tuple t E ~ - v  to a @- 
tuple t- on X (notice that Q(13) = 13 if 13 E ~ and Q(13) consists of  a tuple of  @, 
otherwise). Define T = U r ; x  Q(Y). We shall prove that Rep(T) - v  ~ .  Indeed, 
consider an arbitrary yc_ X. I f t  E v~-v, then clearly Tcontains a @-tuple t '  that 
agrees with t on Y, and consequently every r E Rep(T) contains a tuple u that 
agrees with t on Y; that is, t E Rep(T) "Y. Conversely, assume that t ~ X ~v, 
aft) = Y. Then no @-tuple in T agrees with t on Y, and consequently there exists 
a relation r E Rep(T) not containing any tuple agreeing with t on Y (r may be 
obtained by replacing every null value in Tby  a value in the corresponding attribute 
domain, in such a way that if A E Y then the value replacing an occurrence of  @ 
in column A of Tis  different from t(A)). Hence t ~ Rep(Tyv, which concludes the 
proof that Rep(T) - p  

In the general case, in which a ( ~ )  = ( X , , . . . ,  X.),  we construct tables T/such 
that Rep(T,) " e  p r , ( ~ ) ,  1 _< i _< n. It is then easily seen that T = ( T ~ , . . . ,  T.) P- 
represents ~ .  [] 

Let us note the following simple fact concerning the P-equivalence of  Codd 
multitables. 

THEOREM 4.2. Any two P-equivalent (todd multitables are Rep-equivalent. 

In other words, if P ~ fl, then T - a  U iff T - U. The easy proof is omitted. 

Clearly, two Codd multitables ( T i , . . . ,  Tn) ,  ( Ul . . . .  , U~) ofthe  same type are 
Rep-equivalent iff T, - U,, 1 <_ i _< n. The following structural characterization of 
Rep-equivalence of Codd tables was proved by Biskup [3]: 

THEOREM 4.3. For any Codd tables T, U o f  the same type T - U iff  for every 

t ~ T there is u E U such that t <_ u and for every u E U there is t E T such that 

u<_t. 

The S-equivalence is even simpler than the P-equivalence, since it turns out to 
coincide with the 13-equivalence (see (4.1)). Before we prove this, notice that ~E(r) 
may be expressed as r N ~E(a Y), where Y =  a(r) and ~y -- ×aey D(A), and this is 
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true for arbitrary conditions E: ~ r ~ {true, false}, not only for those generated by 
atomic conditions of the form (A -- a), (A = B). 

THEOREM 4.4. For any X ,  ~/ ~ _.¢ of  the same type, 

~Cr .-s ~/ , ,  ~ . ' m  o ~. 

PROOF. Let ~ ~ E ~ and l e t f lR~ , . . . ,  Rn) = as(R,) be an arbitrary relational 
S-expression ( a ( ~ ' )  = a ( ~ )  = or(f)). If ~ - o  ~ then, by (4.1), n ~ = n 5~, 
which implies n pr, ( ~ )  = n pr, ( 5?/). Hence 

~ / ' f  = n RE(r) = n (r n aE( ~a(r))) = aE( ~4r)) ["] n p r i ( ~ )  
r~ph (.~f) r~p r~ (~ )  

= O'E(~a(r) ) n n pr , (~/)  = wS, 

which easily implies ~ ms ~. [] 

Notice that the S-equivalence coincides with the ~-equivalence even if we allow 
arbitrary thnctions E: ~r --~ {true, false} as selection conditions. Clearly, by 
Theorem 4.4, ~ me ~/implies ~ ms ~. However, the PS-equivalence does not 
coincide with the P-equivalence on ~ ,as  shown by the following example. 

Examph? 4.1. Let 

= Iffb- , 7b- h e / =  7b%'ql. 

We have ~ ---p W since both ~ and ~/can  be P-represented by T = [ ~ - ~ .  
Consequently, also ~ ---s ~. But ~ ~PS ~, since for the PS-expression 

f (R)  = ~ra(~(~-b)V(C-~)(R)) 

we have 

.~i= {al # ~ = ~'~. 

In other words, ~" and ? / a r e  not distinguishable by either P-expressions or S- 
expressions, but are distinguishable by PS-expressions. D 

Before we prove that ( ..~, Rep, PS) is indeed a representation system, let us 
note the following two simple facts: 

LEMMA 4.1. Every PSUJR-expression f is monotone', that is, r c s =, 

f(r) C_ f(s). 

The easy proof, by induction on the number of operators in f, is omitted. 

Let X, !~ E _7, a ( ~ )  = a(~/ ) .  We say that Y and 9" are coinitial (in symbols, 
X = ~/) if for any r E Y there is s E ~/such that s C_ r, and for any s E ~/ 
there is r E- ~" such that r C_ s. Obviously, for any monotone f 

~L Y = 5~/~ f ( ~ )  = f(~/).  (4.2) 

LEMMA ,4.2. I f  ~ and ~ are coinitial, then Y EeSVJR ~. 

PROOF. Let ~ = ~. Then for every r E ~.~ there is a ¢(r) E ~ /such  that 
¢(r) _ r. By using the previous lemma, for any PSUJR-expression f we have 

n f(r)_~ n n f(s)= 

and similarly ~ t__  ~ f  [] 

We are now ready to prove the main result of this section. 
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TnEOR~U 4.5. It is possible to correctly evaluate PS-expressions over Codd 

tables; more formally, ( .~ ,  Rep, PS) is a representation system. 

PROOF. By Lemma 3.1, it is sufficient to show that for any T E _~ and any 
relational PS-expression f w i t h  a ( f )  = a(T) it is possible to define f iT) in such a 
way that Rep(f(T)) "r.sf(Rep(T)). 

We define f(T) inductively, by using the following rules: 

If T = ( T l  . . . . .  Tn), then pr,(T) = T,, 

~rr(T) = {t[Y] : t =_ T], 

ae(T) = {t ~ T :  E.( t)  = true}, 

where 

[true if E(u) for every u E Compl(t), 
E.(t)  = [false otherwise, 

and Compl(t) denotes the set of  all tuples u (not containing null values) such that 
t<_u. 

By Lemma 4.2, it is now sufficient to prove that 

Rep(f(T)) ~, f(Rep(T)) (4.3) 

for a l l f and  T. Let us first notice that 

if T = (T~ . . . . .  it',), then Rep(pr,(T))= pr,(Rep(T)), (4.4) 

and that for any Codd table T 

Rep(Trr(T)) = 7rr(Rep(T)), (4.5) 

Rep(ae(T)) ~ aE(Rep(T)). (4.6) 

We show (4.6) ((4.4) and (4.5) are obvious). 
Let r ~ Rep(ae(T)). Then r contains a relation s ~ ae(Rep(T)) obtained by 

replacing nulls in the @-tuples t ~ T that belong to ae(T) in such a way that the 
resulting tuples are in r, and by replacing nulls in every t ~ T \ a e ( T )  so as to 
obtain a tuple t* with E(t*) = false (this is possible since for every t ~ Tkae(T),  
E , ( t )  = false). 

Conversely, let s ~ ae(Rep(T)). Then s contains a relation r ~ Rep(az(T)) 
obtained from T by replacing those @-tuples in T that belong to ae(T) so as to 
obtain tuples in s, and by omitting the remaining @-tuples. 

The desired formula (4.3) now easily follows by induction on the number of 
operators inf. We show, as an example, the inductive step in the case in which f =  
aeg, under the inductive assumption Rep(g(T)) ~ g(Rep(T)): 

Rep(f(T)) -- Rep(~E(g(T))) ~ aE(Rep(g(T))) 

ae(g(Rep(T))) = f(Rep(T)) 

(we made use of(4.6) and then of(4.2)). [] 

Note that in Theorem 4.5 selection can be arbitrary, on the basis of  an arbitrary 
function from tuples to {true, false}. This includes as a special case selection based 
on arbitrary Boolean combinations generated by atomic conditions of the form 
(A _< a), (A _< B) (A, B ~ % a E D(A); we assume that the attribute domains 
are linearly ordered). These cases are treated in more detail in the next section. 

The next two theorems say that, roughly speaking, our representation system 
based on Codd tables cannot, in addition, handle either union or join. 
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THEOREM 4.6. It is not possible to correctly evaluate PSU-expressions over 

Codd tables; more formally ( J~, Rep, PSU) is not a representation system. 

PROOV. We now give an example of a PSU-expression f and a Codd table T 
such that f(Rep(T)) is not PSU-representable by any Codd multitable. Let 

fiR) = (Oa=a(R), 6A#a(R)) (or(f) = AB, a E D(A)), 

and let T ---- [@-~. Suppose that U = (U~, U2) PSU-represents f(Rep(T)). Then 
obviously U P-represents f(Rep(T)). But the multitable (0, 0 )  is easily seen to P- 
represent f(Rep(T)) (see the construction in the proof of Theorem 4.1), so that by 
Theorems 4.2 and 4.3, U = (0, 0 ) .  

Consider the relational expression g(S~, $2) = ~rB(Sj LI $2). We have 

f(Rep(T)y = tq gf(Rep(T)) = f'l ~rdRep(T)) = {bl ~ O = Rep(Uy, 

that is, U does not PSU-represent f(Rep(T)), contrary to our assumption. [] 

It may be noted that if we restrict ourselves to the case in which all relational 
PSU-expressions considered involve only one relation symbol, thenf(Rep(T)) can 
always be PSU-represented by a Codd table U (see [13]). This is a simple conse- 
quence of the fact that any PSU-expression finvolving only one relation symbol 
can be transformed into an equivalent PS-expression of the form ~rr(ae(R)). The 
easy proof of this fact, by induction on the number of operators in f, is omitted. 

THEOREM 4.7. It is not possible to correctly evaluate PJ-expressions over Codd 
tables; more formally, ( ~ ,  Rep, P J) is not a representation system. 

PROOF. We give an example o f a  Codd table Tand  a PJ-expressionfsuch that 
f(Rep(T)) is not P J-representable by any Codd table. Let 

T = {a@c, a'@c'} (a ~ a', c ~ c') 

j R) =  Ac(R) 

It is easy to see that f(Rep(T)) ='v Rep(T). By Theorem 4.2, if there is a Codd table 
U PJ-representingf(Rep(T)), then T -  U, and consequentlyf(Rep(T)) l m  Rep(T). 

This last equivalence is, however, not true. Indeed, let 

g( R ) = ~r,4COr AB( R ) ~ Ir nc( R ) ). 

We have 

while 

Rep<z -- l a c I 
a '  c '  ' 

f(Rep(T)) g = 

a C 

a '  C' 

a C' 

a t C 

[] 

A representation system with ft _D pJ is considered in Section 6. 
Now we compare our approach to that of Biskup [3]. Roughly speaking, Biskup 

defines the union of two Codd tables to be the usual set-theoretical union, so that 

Rep(T LI U) = {r t.I s : r E Rep(T) A s ~ Rep(U)}, 
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and he defines the join of two Codd tables in such a way that 

Rep(T I,a U) "-r {r I,a s : r E Rep(T) A s E Rep(U)]. (4.7) 

His definition of join is based on the following informal matching rule: 

@#@,  @ # a .  

(In fact, it may be shown that the sets on both sides of (4.7) are coinitial so that 
they are PSUJ-equivalent.) 

These definitions of union and join are semantically correct only if we assume 
that both arguments are independent; that is, every substitution of values in 
appropriate attribute domains for the null values in T and U is meaningful. This 
is clearly not the case when we want to correctly evaluate relational expressions 
such as 

f (R)  = aa=a(R) O aa,,a(R), 

g(R) = ran(R) t~ IrAc(R), 

over a Codd table. Consequently, Biskup's approach does not generalize to arbi- 
trary relational expressions, though in a sense, it does give correct results for 
single relational operators. On the other hand, Biskup's approach is more general 
in that it allows "universal" null values in addition to the usual "existential" 
null values @. 

5. Evaluating a Selection over a Codd Table 

Recall that the selection of a Codd table is defined by 

aE(T) = {t E T: E.(t)  = true}, 

where E.(t)  = true i ffE(t ' )  = true for every t '  ~ Compl(t). Of course, we should 
have a more efficient method of computing E.(t)  than that involving the compu- 
tation of E(t') for every t '  ~ Compl(t). (Compl(t) may be infinite if attribute 
domains are infinite.) 

In this section we always assume that the selection condition E is of the form of 
an arbitrary Boolean combination (using --1, V, A) of certain atomic conditions. 
The case in which these conditions are of the form (A IN F), F C D(A) and in 
which subset entries of the form G, G C D(A), meaning "an unknown value in G," 
are allowed in the table, instead of just @, "an unknown value in D(A)," was 
extensively studied in [ 19], [20], and [21 ]. 

Here we sketch a method of computing E.(t)  in the case in which the atomic 
conditions are of the form (A = a), (A --- B), (A _< a), (A _< B) (A, B E ~, a E D(A); 
in the third and fourth cases we assume a linear order on the corresponding 
attribute domains). The conditions (A --- a), (A _ a) are called unary, whereas 
(A -- B), (A ___ B) are called binary. For simplicity, throughout this section we 
assume that every attribute domain is the same set D. 

Note that we may "precompute" E.(t)  by substituting in E the value t(A) for 
every occurrence of A, for every A such that t(A) # @. This has the effect that some 
of the binary conditions become unary, and some conditions are reduced to 
(a = b) or (a --- b), which can be replaced by true or false and then eliminated by 
using the absorption-type Boolean axioms. Let E '  be the resulting condition. 
Clearly, the whole process can be carded out in time linear in the length of E. In 
this way our problem is reduced to evaluating E'.(t') where t '  is a tuple of null 
values. This is obviously equivalent to testing whether E '  is a tautology. 
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Let us begin with the case involving only conditions of the form (.4 = a), 
(A = B). We transform E '  into a conjunctive normal form I~i WjE~], where E o is 
an atomic condition, and E~ J denotes E,j or -~E,j, depending on whether ~0 is 1 or 
0, respectively; we may also assume that no disjunct of this normal form contains 
both an equality and the negation to this equality. E '  is a tautology iff for every i, 
WjE~, is a tautology. A disjunction of the form WjE3' is a tautology iff A~jE t-', is 
not satisfiable. The satisfiability of this last conjunction can be tested in the 
following way. We construct a (nondirected) graph with vertices corresponding to 
attributes and constants occurring in ?A jEt-', (different occurrences of  the same 
constant or attribute correspond to the same vertex), two vertices x, y joined by an 
edge iff the (nonnegated) condition (x -- y) appears in our conjunction. 

It is clear that the conjunction is satisfiable iff every connected component of 
our graph contains at most one vertex corresponding to a constant. Obviously, 
finding the connected components can be done in time linear with respect to the 
number of vertices and edges of our graph, that is, O(n), where n is the length of 
our conjunction (see, e.g., [11]). (Identifying different occurrences of attributes and 
constants may require f~(nlog n) time.) The most complex part of  this algorithm is, 
however, the transformation into a conjunctive normal form, since in the worst 
case it may involve an exponential growth of the length of our expression. We 
should not expect a substantially more efficient algorithm to evaluate E.(t), since 
it obviously contains as a special case the problem of deciding whether a Boolean 
expression is a tautology, a problem that is known to be NP-hard (see, e.g., [9]). 

We now consider the case in which all four types of atomic conditions are 
allowed. Since 

(x --f- y) ¢ffi~ (x <_ y) A (y < x), (5.1) 

our problem is reduced, in a similar way as before, to testing for the satisfiability 
of a conjunction/~jEj, where each Ej is either of the form (x < y) or (x < y). (It 
may be noted, however, that using (5.1) to eliminate equality may be not the most 
efficient approach.) Let us construct a directed graph with vertices corresponding 
to different attributes occurring in ~jEj ,  with an <-edge or <-edge (x, y) from x 
to y iff (x < y) or (x ___ y), respectively, occurs in our conjunction. We associate 
with every vertex x an interval I(x) with the beginning 

b(x) = max{y E D : (y < x) or (y <__ x) appears in/~jEjI 
and end 

e(x) = min{y E D:  (x < y) or (x ___ y) appears in h~Ej} 

(b(x) is included into I(x) iff (b(x) < x) appears in the conjunction; similarly for 
e(x)). 

We find strongly connected components of the graph consisting of <-edges (see, 
e.g., [25]; x and y are in the same strongly connected component iffthere is a path 
from x to y and a path from y to x). 

For every strongly connected component, we identify all vertices of the compo- 
nent and replace them with a single vertex Xc with I(xc) -- f')yec l(y), where C is 
the set of  vertices of the component. (In the resulting graph, there is an edge from 
Xc, to Xc,, C' ~ C", iffthere was an edge from some x'  E C'  to some x" E C" in 
the original graph.) The graph obtained is always acyclic and we test for the 
satisfiability of our conjunction in the following way. We try to assign a value 
v(x) E l(x) to every vertex x in such a way that v(x) < v(y)(v(x) _< v(y)) if there is a 
<-edge (----edge, respectively) (x, y). Let us assume, for simplicity, that our graph 
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contains only _<-edges, and that every I(x) contains both b(x) and e(x) (the general 
case can be treated in a similar way). We set initially v(x) -- b(x) for any x, and we 
perform a breadth-first search (see, e.g., [11]) starting from the set of  sources (i.e., 
vertices with no incoming edges). For any edge (x, y) processed by the search we 
set v(y) := max(v(y), v(x)). If at any stage of  the process this results in v(y) > e(y), 
then clearly our conjunction is not satisfiable. Otherwise, the process determines 
an assignment of values to attributes that makes our conjunction true. We leave 
the details to the reader. 

Example 5.1. Let our conjunction be 

(AI < 50) A (A4 > 100) A (A3 <- 200) A (Al < As) 

A (As < -42) A (-45 -< -44) A (-44 -< A3) A (A3 -< As) 

(the domain of each attribute is the set of  integers). 
Our graph has the form 

A l ~  A2 

A4 A3 

I(-41) ---- (--00, 50], 
I(-4~) = (-oo,  oo), 

I(-4~) = ( - = ,  200], 
I(A4) = [100,  oo), 

1(-45) = ( - = ,  ~). 

The strongly connected components have vertex sets {AI}, {A2}, {`43, A4,-45}, and 
our graph is transformed into 

A345 I(Aa4s) = [100, 200]. 

The breadth-first search produces v(AO = -0% v(A345) = 100, v(A2) = 100, which 
means that our conjunction is satisfiable. [] 

6. V-Tables 

One of the reasons for the inability of Codd tables to correctly support the join 
operation appears to be the fact that we are not able to represent the information 
that two different occurrences of  @ represent the same value. In this section we 
consider tables where, for any A E if, we have an infinite set of possible "null 
values." The interpretation of  such a table is that the values represented by two 
occurrences of the same null value, though unknown, are the same. Such tables 
will turn out to be suitable for a representation system with ~ = PS÷UJ. 

Formally, for every A ~ ~, let V(A) be a countably infinite set of  symbols called 
variables. We assume that V(A) N D = 0 ,  V(A) N V(B) = 0 if D(A) ~ D(B), and 
V(A) = V(B) if D(A) = D(B). By a V-tuple on X, we mean any mapping t that 
associates an element t(A) ~ D(A) O V(A) with every A ~ X. A V-table on X is any 
finite set of  V-tuples on X, and a V-multitable of type (X~ . . . . .  X , )  is any sequence 
T = (T~ . . . . .  Tn) where T, is a V-table on X,, 1 <_ i <_ n (notice that the same 
variable may occur in several T,'s). The set of all V-multitables is denoted by Jv. 

Let V-- U A ~  V(A). By a valuation, we mean any mapping v: V---> D such that 
x ~ V(A) implies v(x) E D(A). Any valuation can be extended to the set of  constants 
by putting v(c) = c for every c E D; to V-tuples, by defining, for any V-tuple t on 
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X, v(t) to be the tuple on X satisfying 

(v(t))(A) = v(t(A)) for every A E X; (6.1) 

to V-tables, 
v(T) -- Iv(t) : t E T}; (6.2) 

and finally to V-multitables T = (T~, . . . ,  Tn), 

v(T) = (v(T0, . . . ,  v(Tn)). (6.3) 

The intuition given at the beginning of this section can now be formalized by 
defining, for any V-multitable, T = (T, . . . . .  T,) of  type ( X t , . . . ,  Xn): 

Rep(T) = {r E ~ (X~ . . . . .  Am) : there exists a valuation v 

such that V(T) _ rl. (6.4) 

Note that in view of this definition, any Codd multitable can informally be 
identified with a V-multitable obtained by replacing any occurrence of  @ by a 
different variable. 

Let us associate with a V-multitable T --- ( T~, . . . ,  T~) a first-order formula 4,(T) 
(of a many-sorted predicate calculus) defined as 

3x,  . . .  3Xm ~ 4~(t) 
t 

where t ranges over all V-tuples appearing in T and, for t E T/, ~(t) is Rift), where 
R, is a predicate symbol of a suitable type and x, . . . .  , x,, are all variables occurring 
in T. It is easy to see that Rep(T) is simply the set of  all finite models of  ~(T) (over 
a fixed universe given by D(A), A E if) .  

In this section we always assume that all attribute domains are infinite. 
The following is the main result of this paper. 

THEOREM 6.1. It is possible to correctly evaluate PS+UJ-expressions over V- 

tables; more formally ( _~,, Rep, PS  +UJ) is a representation system. 

This theorem is proved in the next section, in which we develop a suitable formal 
notion, that of a conditional table (see also another proof in [23]). Here we only 
give the relevant definitions of the relational operators over V-tables. 

For any V-multitable T = (/'1, . . . ,  T~) we put 

pr,(T) = T,, 1 _< i _< n. (6.5) 

The definition of projection is the "natural one," 

~rr(T) = IttY] : t  E T}, (6.6) 

and so is the definition of join of two V-tables T, W on X, Z, respectively: 

T ~ W = It : aft) = X U Z A t[X] E T A t[Z] E IV}. (6.7) 

The union operator acts on V-tables as the usual set-theoretical union. 
Finally, 

ae(T) = {t E T:  E. ( t )  = true} (6.8) 

where 

~true 
E , ( t )  = [false 

if E(v(t)) -- true for every valuation v, 
otherwise. 
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Note that, if E is positive, then E.(t)  can be computed in a very simple way by 
using the following rule: We evaluate every atomic condition (A -- B) in E to true 

if t (A) --- t (B)  and to false otherwise; we evaluate every atomic condition (.4 -- a) 

to true if t (A) = a and to false otherwise; and then we use V, A in the natural way. 
In other words, 

~true if  t (A) = t (B) ,  

(.4 = B).(t) = [false otherwise, 

true if t(A) = a, 
(A = a),(t) = false otherwise, 

(E V E')(t) = E,(t)  V E',(t), 

(E A E')(t) = E,(t)  A E',(t). 

The correctness of this rule follows easily from the fact that, if there is a valuation 
v such that E(v(t)) = false, then E(v'(t)) = false for any valuation v' such that 
v'(x) # v'(y) for x # y and v'(x) does not appear in E for any x E V. Note that 
this rule does not evaluate E.(t)  correctly if E contains negation, or if attribute 
domains are finite. 

The above rules, together with the obvious rule 

f(T) = (J~(T), . . . , J~(T))  (6.9) 

for any f = (J~, . . . ,  J~>, define inductively fiT) for any multirelafional PS+UJ- 
expression f and any V-multitable T (a(T) = a(f)). 

To sum up, we evaluate PS+UJ-expressions over V-tables in exactly the same 
way as if the variables were values in the attribute domains. Let us emphasize that 
the fact that this simple method of evaluating PS+UJ-expressions gives correct 
results is not quite trivial (see the proof in the next section). 

Example 6.1. Let us evaluate 

f(T) : I rxc(~'aB(T) M c(..c)v(c=cX~.c(T))), 

where T is the following V-table: 

A B C 

x y c 

a b c 

a '  b' c' 

a y z 

x d d 

We get 

~rAn(T) = {xy, ab, a'b', xy, xd}, 

~Bc(13 =lyc, bc, b'c', yz, ddl, 
a(B-Ov(c-~)0rBc(T)) = Iyc, bc, dd}, 

~r,~B(T) M a(B-Ov(c-~)0rBc(T)) = {xyc, abc, xdd}, 

f (  T) = {xc, ac, xdl. r-1 

Rather suprisingly, it turns out that V-multitables, which are "more powerful" 
than Codd multitables, cannot support a representation system with fl = PS. 

THEOREM 6.2. It is not possible to correctly evaluate PS-expressions over V. 
tables; more formally, (_.%, Rep, PS) is not a representation system. 
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PROOF. Let T be the following V-table: 

779 

A B C 

a y c 
a t y c 

and l e t f b e  the following PS-expression--in fact, an S-expression: 

f ( R )  = ff(A=a)A(B=b)V(Afa,)A(B#bXR) (a # a'). 

We claim that there is no V-table U PS-representingf(Rep(T)). Indeed, let 

g(R) = *rc(a(a=a)v(A~a')(R)). 

Notice that f(Rep(T)) is coinitial with 

= I[h-~]} 13 { [ ~ : d  E D(B)\Ib}}, 

so thatf(Rep(T))= = ~ =  = {c}. 
If there is a V-tuple pqv ~ U, where p ~ D(A), then p ~ Rep(U) TM # ~L Y'a = O. 

If for every pqr E U, p is a variable (in particular, if U = O), then clearly Rep(U) g 
= O, although we have already noted that f(Rep(T)) g = {el. Hence, in both cases, 
Udoes  not PS-representf(Rep(T)). [] 

The apparent contradiction in the inability of V-multitables to support PS- 
expressions can be intuitively explained in the following way" (~ ,  Rep, f~) is a 
representation system if the class J of  multitables is a "fixpoint" with respect to 
f~-expressions, in the sense that if we take any fl-expression f and any T E .~, then 
to l-represent f(Rep(T)) we do not need any more "representation power" than 
that available in J.. If we consider an arbitrary . ~ '  D -X, there is no reason for 3 "  
to be also such a fixpoint. 

7. Conditional Tables 

By a conditional table we mean a V-table extended by one additional special 
column, called con, which contains for any tuple a condition from a set _W.. 

More precisely, _Wis the set of all expressions built up from atomic conditions 
of the form (x = a), (x = y), false and true, where for some A E ~, a E D(A), 
x, y ~ V(A), by means o f ~ ,  V, and A. A condition is positive, if it does not con- 
tain "-1. 

By a C-tuple on X we mean any mapping t defined on X 13 {con} such that t[X] 
is a V-tuple and t(con) E _~. A conditional table (or C-table) on X is any finite set 
T of C-tuples on X. (Note: We assume that con is not part of a(t) or a(T).) A 

conditional multitable (or C-multitable) of type (X1 . . . .  , An) is any sequence T = 
( Tl . . . .  , T~) where T, is a C-table on X,, 1 <_ i <_ n. The set of all C-multitables is 
denoted by ~c. 

Any valuation can be extended in the natural way to conditions. 
For any valuation v, any C-table T on X, and any C-multitable T = (Tl, . . . .  

T.} of type (At . . . . .  X.), we define 

v(T) = [v(t[X]) : v(t(con)) = true}, (7.1) 
fiT) = (v(Tl) . . . . .  v(T,)), (7.2) 

and finally 

Rep(T) = {r E ~ (Xi  . . . .  , X,) : there exists a valuation v 

such that v(T) C__ rl. (7.3) 
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We say that conditions ,),, 6 E _Ware equivalent, and we write ~, ~ 6, if v(,),) = 
v(6) for any valuation v. It can easily be shown that ~t ~ 6 iff-r can be transformed 
into 6 by using the axioms of Boolean algebra and the axioms of equality. It should 
be clear that if we (a) replace each of the conditions in a C-table Tby  an equivalent 
one, (b) delete all t E T with t(con) ~ false, and (c) replace some tt, . . . ,  tk ~ T 
such that h[X] . . . . .  tk [X] (X -- a(T)) by a single C-tuple t such that t[X] = 
tdX] and t(con) = wk.d,(con), then the resulting C-table U will be Rep-equivalent 
to T 0 . e ,  Rep(T) = Rep(U), see Section 3). We freely make use of the equivalent 
transformations of this kind; in particular, we use rule (c) to normalize a C-table 
7" on X, that is, to replace T by a Rep-equivalent C-table T o on X not containing 
different C-tuples agreeing on X. In what follows we assume all C-tables to be 
normalized. 

THEOREM 7.1. It is possible to correctly evaluate PSUJ-expressions over C- 
tables; more formally, ( 3c, Rep, PSUJ) is a representation system. 

PROOF. We give definitions of the relational operators over C-tables that 
inductively define f(T) for any C-multitable T and PSUJ-expression f(a(T) = aft)), 
in such a way that 

f(Rep(T)) "=PsuJ Rep(f(T)). (7.4) 

For any C-multitable T = ( T 1 , . . . ,  Tn) we put 

pr,(T) = T,, 1 <_ i <_ n, (7.5) 

and for any C-tables T, W on X, Z, respectively, we define 

• "r(T) = {t[r 13 {con}] : t ~ T} °, (7.6) 

ae(T) = {aE(t) : t E T}, (7.7) 

where ae(t) is the C-tuple on X with 

~( t ) [Xl  = ttx], 

.e(t)(con) - t(con) A Eft). 

(Eft) is the result of  substituting t(A) for A in E, for every A E X), and 

TM W={tt4  w : t E  T A  w E  W} °, (7.8) 

where t ~ w is the C-tuple on X 13 Z with 

It(A) if A E X ,  
(t M w)(A) = [w(A) if A E Z \ X ,  

(t t~ w)(con) = t(con) A w(con) A /iX if(A) = w(A)). 
A~_Xt')Z 

If X- -  Z, then 

T 13 W = (T 13 W) °, (7.9) 

where 13 on the left-hand side denotes the relational union operator that we define 
on C-tables, and 13 on the right-hand side is the usual set-theoretical union. 

Finally, if f = ~ ,  . . . ,  j~), then 

f iT)  = ~ (T) . . . . .  A f t ) ) .  (7.10) 

We now prove that under the definition off (T)  given by (7.5)-(7.10), 

v(f(T)) -- f(v(T)) (7.11 ) 

for any valuation v. (On the right-hand side, f(v(T)) is understood as the result of  
performing f over the multirelation v(T) in the usual way.) Clearly, (7.11 ) implies 
Rep(f(T)) ~, f(Rep(T)), which by Lemma 4.2, proves (7.4). 
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We show (7.11 ) by verifying that 

v(pr,(T)) -- pr,(v(T)), 
= 

v(T M W) -- v(T) ~ v(W), 

v(T O W) -- v(T) O v(W) (a(T) = a(W)), 

for any C.-multitable T and any C-tables T, IV. 
Let a ( T )  = X, a ( W )  = Z. In the case of  projection, t ~ v(~rr(T)) iff there is a C- 

tuple t '  E ~-r(T) such that v(t '[Y]) = t, v(t ' (con))  = true; that is, i f f there  exists a 
C-tuple t" E T such that ~rr(v(t"[X])) = t, v(t"(con)) -- true, which is exactly the 
condition for t to be in ~rr(v(T)). 

In the case of  selection, t ~ v(az(T)) iff there is a t ' E Tsuch  that v( t ' (con))  = 
true, v(E(t')) = true, and t = v(t'[X]), that is, l i f t  ~ ae(v(T)). 

In the case of  join, a tuple t o f  type X O Z is in v(T • W) i f f there  are tuples 
t' E T, w' E W s u c h  that v((t' M w')(con))  = true, v((t' ~ w ' ( [ X U  Z])  -- t, and 
this is clearly equivalent to t E v(T) ~ v(W). 

The case of  union is obvious. []  

Example 7.1. Let us evaluate 

f (R)  = ac-c(lrAcOrAs(R) i~ rsc(R))) 

over the following C-table" 

T =  

A B C con 

a b z z # c  

a y c y ~ b  

x b c x # a  

We have 

U = -AB(T)  - B c ( T )  = 

A B C con 

a b z 

a b c 

a b c 

a y z 

a y c 

a y c 

x b z 

x b c 

x b c 

(z # c) A (z # c) A (b = b) 

( z ¢ c )  A ( y # b )  A ( b = y )  

( z ¢ c )  A ( x # a )  A ( b =  b) 

(y # b) A (z ~ c) A (y  = b) 

(y ~ b) 

(y ~ b) 

(x # a) 

( x # a )  

(x¢a) 

A ( y # b )  A ( y = y )  

A ( x ~ a )  A (y= b) 

A ( z # c )  A (b= b) 

A ( y # b )  A ( b = y )  

A ( x ~  a) A (b= b) 

A B C con 

a b z (z ¢ c) 

a b c ( z ~ c )  A ( y C b )  

a y c ( y ~  b) 

x b z ( x ~ a )  A ( z # c )  

x b c ( x ~  a) 
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and finally 

W =  rrAc(U) = 

A C con 

a z ( z # c )  

a c ( y # b )  

x z ( x # a ) A ( z # c )  

x c ( x # a )  

, , c . , ( W )  = 

A C con 

a z ( z # c )  A ( z = c )  

a c ( y # b )  A ( c = c )  

x z ( x # a )  A ( z # c ) A ( z = c )  

x c (x # a) A (c = c) 

A C con 

a c ( y #  b) 

. .  x c ( x # a )  

[] 

Let T be a C-table on X. As usual we assume that no two different tuples in T 
agree on X. We define the unconditionalpart of T to be 

7", = {t E T:  t (con)  ~ true}. 

The unconditional part of a C-multitable T = (T~, . . . ,  Tn) is defined as T ,  = 
(T~. . . . . .  Tn.). 

A C-multitable T = ( T~ . . . .  , Tn) is called positive if for every 7", and every t 
T,, t(con) is positive. 

LEMMA 7.1. Let all attribute domains be infinite, and let T be a positive C- 

multitable. Then 

f'l Rep(T) = FI Rep(T,) .  

PROOf. Obviously, we may restrict ourselves to the case where T is a single C- 
table, T. 

Clearly Rep(T) _.C Rep(T, ), and consequently FI Rep(T,)  _C ff~ Rep(T),  so that 
it is sufficient to prove the converse inclusion. 

Suppose t ~ N Rep(7",). It means that there is a valuation v such that t ~ v(T, ). 
Let v' be a valuation such that v'(x) = v' (y) for x # y and for every variable x 
appearing i n T, v ' (x)  does not appear in T o r t  (the existence of  such a valuation 
v' is an obvious consequence of the assumption that the attribute domains are 
infinite). Clearly, v' makes all atomic conditions (which are positive, by our 
assumption) false, and consequently it makes false all conditions t(con), t E T \ T , .  

Since t ~ v(T,), it follows that T, does not contain any tuple agreeing with t on 
aft). The valuation v' associates constants different from those appearing in t to 
variables in T, so that it cannot produce t; that is, t ~ v'(T). Consequently, t 
N Rep(T). [] 

We are now going to prove, as we promised in the previous section, that 
( ~v, Rep, PS+UJ) is a representation system. 

A C-multitable T is called unconditional if T ,  -- T. Let T -- ( T ~ , . . . ,  T~) be an 
unconditional C-multitable and let U be the V-muRitable obtained from T by 
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deleting the con column from every T,, 1 _< i -< n. Then 

Rep(T) = Rep(U), 

where Rep(T) is computed according to (7.1)-(7.3) and Rep(U) according to 
(6.1)-(6.4). In what follows we always identify an unconditional C-multitable with 
the corresponding V-multitable. To avoid confusion, we write fC(T) and fv(T) for 
an expression f evaluated for an unconditional C-multitable T (identified with a 
V-multitable) according to the rules given for C-tables (see (7.5)--(7.10)) and V- 
tables (see (6.5)-(6.9)), respectively. 

LEMMA 7.2. Let all attribute domains be infinite, let T be a positive C-multitable 

and let f be a PS+ UJ-expression with aft)  = a(T). Then 

PROOF. It is sufficient to 
(T, . . . .  ,7~) 

prY(T,) -- prC(T),, 

and that for any positive C-tables T, W 

• "[(T,) = ~C(T),, 
v = #EC(T), 

T, M v IV, -- (T t~ c W),, 
T, U V W , =  ( T U  c W ) , ,  

( X =  a(T), Z = a(W)). 

fV(T,) = fC(T),. 

prove that for any positive C-multitable T = 

1 _ i-< n (7.12) 

(7.13) 

for E positive, (7.14) 

(7.15) 
(7.16) 

Before we verify these equalities, let us note the following simple fact concerning 
positive conditions: 

For any positive conditions % 

7 V ~ ~ true ~ 7 ~ true or ~ ~, true. (7.17) 

Indeed, it is easy to see that, if 7 ~ true and ~ ~ true, then v(,y V 6) -- false, 

where v is any valuation such that v(x) ~ v(y) for x ~ y and v(x) does not appear 
in ~ V ~ for any x E V. 

Since (7.12) is obvious, we now consider the case of projection. A V-tuple t is in 
~r~(T,) iff there is a t' E T, such that t'[Y] = t[Y], that is, if there is a t" E Tsuch 
that t"[Y] = t[Y] and t"(con) ~ true. On the other hand, t E ~rC(T), iffthere are 
tuples tl . . . . .  tk E T, k - 1 such that t,[Y] = t[Y], 1 -< i <-- k and W~.d,(con) 
true. But by (7.17) the last condition implies that t,(con) ~ true for some i, and 
we obtain exactly the same condition as before. 

In the case of selection, ceV(T,) consists of  all tuples t ~ T such that for every 
valuation v, v(t(con )) = true and v(E(t )) = true, which is exactly the condition for 
t to be in ~C(T),. Notice that (7.14) holds true for any, not necessarily positive, 
condition E. The requirement that E be positive is needed only to guarantee that 
#C(T), is positive, so that we could inductively prove the lemma using (7.12)- 
(7.16). 

We now consider the case of join. It is obvious that T, M v IV, _ (T I~ c W),, 
so it is sufficient to prove the converse inclusion. Suppose t E (T M c W),. Then 
there are C-tuples tl . . . .  , tk ~ T, wt, . . . .  Wk ~ W, k -> l, such that t,[X] = t[X], 
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w,[Z\X] = t[ZkX], 1 _< i -< k, and W~.~(t~ t4 w,)(con) ~, true. By (7.17), for 
some i 

t/(con) A w/(con) A /~A (t~(A) = w,(A)) ~. true. 
A~-XQZ 

This obviously means that ti E T,, wi E W,, and t,[X N ZI = w,[X f) Z]; that is, 
t E T , • r W , .  

Finally, in the case of union, T,  U r W, __C_ (T U c W),, and t ~ (T U c W), 
implies that either t E T,  or t E W, or there are t '  E T, w' E W with t'[X] = 
w'[X] = t[X], t ' (con) V w'(con) ~ true. The last case is reduced, however, by 
(7.17), to either the first or the second one. [] 

We are now ready to give the promised proof  of the fact that ( -~r, Rep, PS+UJ) 
is a representation system. 

PROOF OF THEOREM 6.1. We have to show that for any V-multitable T and 
any PS+UJ-cxpression f with aft)  = a(T), 

Rep(fV(T)) "ps+uJ f(Rep(T)); 

that is, for any PS+UJ-expression g with appropriate o~(g), 

Rep(fV(T)) w = f(Rep(T))' .  (7.18) 

The left-hand side of (7.18) can be transformed as follows: 

Rep(fV(T)) g = N g(r) = ~ g(Rep(fr(T))). 
r~Rep(fr0r)) 

By Theorem 7.1, 

g(Rep(fV(T))) -esuJ Rep(gC(fV(T))), 

which implies the equality of the intersections 

CI g(Rep(fr(T))) -- CI Rep(gC(fV(T))). 

By applying Lemma 7.1 and then Lemma 7.2 to the right-hand side we get 

n g(Rep(fV(T))) = 1"3 Rep(gC(fV(T)),) 
= t3 Rep(gfV(T)). 

Again using Lemmas 7.2 and 7.1 and Theorem 7. l we obtain 

CI Rep(gfV(T)) = O Rep(gfC(T),) 
= f) Rep(gfC(T)) 
-- N gf(Rep(T)) 

which is the same as the right-hand side of (7.18): 

f(Rep(T)) g -- N g(r) = I') gf(Rep(T)). D 
r~-f(Rep(T)) 

To conclude this section, we note that 

f(v(T)) _D v(/(T)) (7.19) 

for any PS+UJ-expression f, any V-multitable T (a(T) = a (f)), and any valuation 
v. This is proved easily by induction on the complexity of f. An immediate corol- 
lary is 

Rep(f(T)) :3 f(Rep(T)). (7.20) 
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An important fact about (7.20) is that it does not require any assumptions on 
the cardinality of attribute domains. Notice that, in the terminology of  the Intro- 
duction, (7.20) says that the representation system based on V-multitables is always 
safe: Rep(f(T)) includes all "possible" f(r*), r* E Rep(T). The assumption that the 
attribute domains are infinite is only needed to prove its completeness. 

8. Renaming  o f  Attributes, Conjunctive Queries 

It may be noted that the relational algebra based on ~2 = PSUJD and a fixed finite 
set f f  of attributes is not relationally complete in the sense of Codd [6]. This is 
because our version of relational algebra is equivalent in expressive power to a 
many-sorted predicate calculus with only one variable available for each sort, and 
certain formulas of the usual (many-sorted) predicate calculus inherently need 
many "auxiliary variables" (cf. [ 14]). One way of making our algebra relationally 
complete is to add the operation of renaming attributes, and to consider an infinite 
set of attributes if, which contains an infinite number of attributes for each sort 
(i.e., for every A ~ if, there exists different A~, A2 . . . .  with D(Ai)  -- D(A)) .  It is 
obvious that 

s](Rep(T))  = Rep(s](T)),  (8.1) 

where sJ(7) (with T either a Codd table, V-table, or C-table) is defined in exactly 
the same way as s~(r). By (8.1), most of our results can easily be extended by 
adding renaming (R) to the set fl of relational operators. In particular, by Theorem 
6.1, we have the following corollary. 

COROLLARY 8.1. ( J r ,  Rep, P S  + U JR)  is a representation system. 

We now discuss another version of the relational algebra (see, e.g., [29]) where 
the type of a relation is defined as a sequence, rather than set, of  attributes 
(repetitions are allowed). The relational operators are modified in the following 
way. In the projection operator, instead of a target attribute set we have a target 
sequence of positions (i.e., numbers of columns of the argument relation); in the 
selection condition, we refer to positions rather than to attributes; and instead of 
the natural join we consider the Cartesian product. The Cartesian product of two 
relations, r, s, of types (A~, . . . ,  A,) and (B~ . . . .  , Bm), respectively, is a relation 
of type (A~ . . . . .  An, Bi . . . . .  Bin) defined as 

r x s = {(a, . . . . .  a., b, . . . . .  bm) : Ca, . . . . .  a . )  E r A (b, . . . .  , bin) ~ s}. 

(8.2) 

Note that any relation, in the modified sense, of type (A~, . . . ,  A,) can be 
uniquely represented by the usual relation of type {(A~, 1 ), . . . ,  (A,, n)], and that 
(8.2) can be expressed by first renaming the attributes of s so that it is of  type 
{(B~, n + 1 ) , . . . ,  iBm, n + m) l  and then performing the natural join. By Corollary 
8.1, this easily implies the following theorem (where X stands for the Cartesian pro- 
duct): 

THEOREM 8.1. ( 9"v, Rep, P S  + UX) is a representation system. 

Conversely, the join can easily be expressed by the Cartesian product, restriction, 
and projection, so that, by Theorem 4.7, the Codd tables cannot support f~ -- PXE 
(E stands for restriction). 

THEOREM 8.2. ( -~o, Rep, PXE)  is not a representation system. 
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(Clearly, in Theorems 8.1 and 8.2 the notions of a V-table and Codd table are 
modified into a "column-ordered" form, in the same way as it was done for 
relations.) 

Another important fact implied by Coronary 8.1 is that the system based on V- 
tables can handle arbitrary conjunctive queries [4]. Roughly speaking, a conjunctive 
query is defined by a conjunction of atomic relational formulas of the form R,(Xl, 
. . . .  xp) (the R,'s are predicates corresponding to database relations), where each of 
the x, is either a constant or variable, preceded by existential quantifiers binding 
some of the variables appearing in the conjunction. The mapping defined by a 
conjunctive query q can be defined, for any database state r, by 

~ r )  -- Iv(s) : v is a valuation such that v(Q) _c r} (8.3) 

where 

Q is a suitable V-multitable (V-tuples appearing in Q correspond in the natural 
way to the atomic relational formulas in q, ,~(Q) = a(r) = a(q)), 

s is a V-tuple such that all variables occurring in s occur in Q (a(s) = ~(q)). 

LEMMA 8. I. For any conjunctive query q there is a PS~JR-expression f such 

that q(r) = f ( r ) for  every r (a(r) = a ( f )  = a(q)). 

SKETCH OF PROOF. Call a variable repeated if it occurs in at least two V-tuples 
in Q, s, and a target variable if it occurs in s (see (8.3)). For every repeated variable 
x, let Ax be an attribute not appearing in Q. Let Q -- (QI, . . . ,  Qn). For any V- 
tuple u in Q,, letf~ be an expression consisting of a relation symbol R, preceded by 
(from right to left) 

(i) selections aAla, for every A E a(u) with u(A) = a, a ~ D, 

(ii) restrictions aA-B, for all A, B E a(u) with u(A) = u(B) = x, a variable, 
(iii) projection ~rr, where Y contains exactly one attribute A for any repeated 

variable x appearing in u (u(A) = x), 

(iv) renaming s~ x, for every A E Y, where x = u(A). 

Let h = ~rx(l~u f~), where u ranges over all V-tuples in Q and X -- {Ax : x is a 
target variable}. The required expressionfis obtained from h by suitably renaming 
the attributes in X. Some easy modifications are required i f s  contains constants or 
multiple occurrences of the same variable. (A similarity of this construction to 
"shallow expressions" of [32] may be noted.) [] 

By Lemma 8.1, we obtain the following corollary. 

COROLLARY 8.2. The representation system ( Jr ,  Rep, PS+UJR) can support 

arbitrary conjunctive queries; that is, for any conjunctive query q and any V- 

multitable T with a(T) = c~(q) there is a V-table U such that Rep(U) "es+trj~ 

q(Rep(T)). 

Here we denote q(Rep(T)) = {q(r) : r E Rep(T)}. The V-table U is obtained by 
finding the PS+JR-expression fequivalent  to q (see I .emma 8.1) and putting U = 

f(T). The V-table U will also be denoted by q(T). 
By using the fact that in computing f (T)  we treat variables and constants in 

exactly the same way, and that the equivalence between q and f d o e s  not depend 
on the nature of the attribute domains, one can easily prove the following fact 
generalizing (8.3): 
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THEOREM 8.3. For any conjunctive query q, given by a V-muititable Q and V- 
tuple s, and for any V-multitable T with a(T) = a(Q) 

q(T) = {p(s) : p is a generalized valuation such that p(Q) _ T}, 

where by a generalized valuation we mean any mapping p: V--~ V LID such that 
x ~ V(A) implies p(x) E V(A) O D(A). 

9. Closed World Interpretation of Tables 

The interpretation of multitables considered so far has been based on the open- 
world assumption [26, 27], which was embodied in the property 

r E Rep(T) A s D r ~ s E Rep(T) 

(see (3.3)). We now consider a different interpretation, which we call the closed 
world interpretation. 

Let T be a V-multitable. The dosed world interpretation of T is defined as 
follows: 

rep(T) = [ r  : there exists a valuation v such that v(T) = r}, (9.1) 

where v(T) is defined as before (see (6.1)-(6.3)). Similarly, for any C-multitable T 
we define rep(T) by formula (9.1), with v(T) defined by (7.1) and (7.2). In the case 
of a Codd multitable T, we define 

rep(T) --- rep(U), 

where U is any V-multitable obtained by replacing every occurrence of @ in T by 
a different variable. It seems that what Codd meant in [6] was in fact the closed 
world interpretation of Codd tables. 

Notice that if a tuple t cannot be obtained by replacing nulls by constants in any 
@-tuple of a Codd table T, then T represents the "negative information" that the 
relationship expressed by t definitely does not hold, a fact not representable under 
the open world interpretation. The situation is similar in the case of V-tables and 
C-tables. 

Clearly, for all three kinds of multitables, 

rep(T) C Rep(T); 

moreover, rep(T) and Rep(T) are coinitial. 
Let fl __. PSS+UJR, f be an ft-expression, T be a multitable of type aft), and U 

be a multitable of type B(f). Since rep(U) = Rep(U), rep(T) ~, Rep(T), by Lemma 
4.2 we obtain 

and 

Hence, 

rep(U) =.  Rep(U) 

f(rep(T)) - a  f(Rep(T)). 

rep(U) =% f(rep(T)) iff Rep(U) ==a f(Rep(T)). 

This equivalence immediately implies that all results concerning representation 
systems developed under the open-world assumption carry over to the dosed-world 
interpretation: 
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THEOREM 9.1. Let 12 C_ PSS+UJR and let .~be  either ~ or .~r or Jc. Then 

( ~,, Rep, 12) is a representation system 

iff ( ~ rep, fi ) is a representation system. 

Moreover, the correct operations on tables are the same under both interpretations. 

It turns out that in the case of conditional tables we can handle all relational 
operations, including the difference, thus supporting the full strength of 
the relational algebra. Indeed, let T, U be two C-tables, a(T) --- a(U) = X. For any 
t E T, let us define tu to be a C-tuple, a(tv) = X, such that 

tv[X] -- t[X], 

tv(con) = t(con) ^ ~ ~' (t(A) ~= u(A)). 
uEU AEX" 

If we define 

then it is easily seen that 

T -  U =  {tu: t ~  T], 

v ( T -  U) = v(T) - v(U) 

for any valuation v, which, combined with (7.1 I), implies that 

r(f(T)) = f(r(T)) 

for any PSUJRD-expression f, any C-multitable T (a(T) ffi a (f)), and any valuation 
v. Consequently, 

rep(f(T)) -- f(rep(T)), (9.2) 

that is, diagram (3.1) commutes. Let us state this as a theorem. 

THEOREM 9.2. ( Jc ,  rep, PSUJRD) is a representation system. Moreover, all 

relational operators can be defined on C-tables in such a way that (9.2) holds. 

10. Conclusions 

We have proposed a general condition that should be satisfied if we want to 
evaluate relational expressions over "tables with nulls" in a semantically correct 
way. 

Suppose that an instance of an incomplete information relational database is 
given by a multitable T, and let f be a relational query. While computing the 
response to f, we think of an unknown r* E Rep(T)--corresponding to the true 
state of the real world--being transformed by f, and we require that I(T) contain 
enough information to determine all tuples that surely (i.e., no matter which 
element of Rep(T) the multirelation r* is) appear in f(r*). 

In this way our approach is similar in spirit to the external interpretation and 
lower value II • I I ,  in [20] (see also [22]). 

Note that the tuples that surely appear in f(r*) are given by Rep(T) t, and it is 
easy to see that Rep(T) f can be obtained by deleting from f(T) all tuples containing 
nulls, both in the case of Codd tables and V-tables. 

Another possibility is to treat f(T), rather than Rep(T) f, as the response to query 
f. This has the advantage of providing more information; for instance, a tuple 
a@c (or ayc) appearing in the response can easily be shown to indicate that a tuple 
of the form abc, b ~ D(B) surely appears in f(r*). Moreover, this approach makes 
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it possible to treat a response to query f as an intermediate step in computing the 
correct response to a more complex query gf (note that in general it is not possible 
to determine Rep(T) 8t on the basis of Rep(T) t and g). 

It should be noted that Rep(T) t = rep(T) f, so that by Theorem 9. l the process of 
computing the response to a query is exactly the same under both open and dosed 
world assumptions. 

The results of the paper show that the devices suitable for representing incomplete 
information heavily depend on what processing of the information we are going to 
correctly perform, or, in more concrete terms, what relational operators are allowed. 
Our approach stresses the requirement for a correct evaluation of relational 
expressions, rather than just single relational operators, as was usually the case in 
previous attempts in the literature to correctly handle null values. 

From the practical point of view an especially appealing system seems to be one 
based on V-tables, supporting projection, positive selection, union, join, and 
renaming, which allows for processing arbitrary conjunctive queries. The reason is 
that all these relational operators and queries can be evaluated over V-tables in 
exactly the same way as in the case of the usual relations. 

There are several important problems that have not been treated here. One is 
how to handle dependencies in our framework. It turns out that functional, 
multivalued, and join dependencies--more exactly, arbitrary implicational de- 
pendencies [2] ("generalized dependencies" in [29])--can be represented in any V- 
table, in the sense that for any V-table T and any set Z of such dependencies, there 
is a V-table U such that Rep(U) =Ps+oJ Rep(T) Iq Sat(~), where Sat(~) is the set of 
all relations satisfying the dependencies in Z (see [12, 13, 16]). This is another 
argument for the usefulness of the representation system based on V-tables. 

Another interesting topic is the relation between V-tables and the tableaux 
of Aho, Sagiv, and Ullman [1]. Roughly speaking, a tableau for a relational 
PSJ-expression f (wi th  only selection of the form *a-a allowed) can be treated as a 
V-table representing the inverse image of the summary of the tableau with respect 
to f (see  [15]). It also turns out that for any PSJ-expression f (wi th  only selection 
of the form *A=a) and every V-multitable T (a(T) = aft)), there is a V-multitable 
U such that Rep(U) = f-~(Rep(T)). This fact has several interesting applications 
(see [ 17]). 
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