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INCOMPLETE LU PRECONDITIONING WITH THE MULTILEVEL

FAST MULTIPOLE ALGORITHM FOR ELECTROMAGNETIC

SCATTERING∗

TAHİR MALAS† AND LEVENT GÜREL†‡

Abstract. Iterative solution of large-scale scattering problems in computational electromagnet-
ics with the multilevel fast multipole algorithm (MLFMA) requires strong preconditioners, especially
for the electric-field integral equation (EFIE) formulation. Incomplete LU (ILU) preconditioners are
widely used and available in several solver packages. However, they lack robustness due to potential
instability problems. In this study, we consider various ILU-class preconditioners and investigate
the parameters that render them safely applicable to common surface integral formulations without
increasing the O(n logn) complexity of MLFMA. We conclude that the no-fill ILU(0) preconditioner
is an optimal choice for the combined-field integral equation (CFIE). For EFIE, we establish the need
to resort to methods depending on drop tolerance and apply pivoting for problems with high condi-
tion estimate. We propose a strategy for the selection of the parameters so that the preconditioner
can be used as a black-box method. Robustness and efficiency of the employed preconditioners are
demonstrated over several test problems.
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1. Introduction. A popular approach in studying wave scattering phenomena
in computational electromagnetics (CEM) is to solve discretized surface integral equa-
tions, which give rise to large, dense, complex systems in the form of A · x = b. Two
kinds of surface integral equations are commonly used. The electric-field integral
equation (EFIE) can be used for both open and closed geometries, but it results
in poorly conditioned systems, especially when the geometry is large in terms of the
wavelength. On the other hand, the combined-field integral equation (CFIE) produces
well-conditioned systems, but it is applicable to closed geometries only [21].

For the solution of such dense systems, direct methods based on Gaussian elimina-
tion are still widely used due to their robustness [34]. However, the large problem sizes
confronted in computational electromagnetics prohibit the use of these methods which
have O(n2) memory and O(n3) computational complexity for n unknowns. On the
other hand, by making use of the multilevel fast multipole algorithm (MLFMA) [12],
the dense matrix-vector products required at least once in each step of the iterative
solvers can be performed in O(n log n) time and by storing only the sparse near-field
matrix elements, rendering these solvers very attractive for large problems.

However, the iterative solver may not converge, or convergence may require too
many iterations. We need to have a suitable preconditioner to reach convergence in
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INCOMPLETE LU PRECONDITIONING AND FAST MULTIPOLE 1477

a reasonable number of iterations and retain the O(n log n) complexity of MLFMA.
We can use the sparse near-field matrix N to construct a preconditioner. Since this
matrix is the best available approximation to the coefficient matrix A, it makes sense
to use the near-field matrix as a preconditioner and solve (for example) the left-
preconditioned system

(1.1) N
−1

· A · x = N
−1

· b.

The inversion of the near-field matrix N can be accomplished using direct meth-
ods which decompose the matrix into a product of a unit lower-triangular matrix
L and an upper-triangular matrix U. However, during the factorization of sparse
matrices, in general, fill-in occurs and the resulting factors lose their sparsity [28].
This may make it difficult to preserve the O(n log n) complexity of MLFMA. Nev-
ertheless, we can discard part of the fill-in and partially incorporate the robustness
of the LU factorization into the iterative method by using the incomplete factors of
N as a preconditioner. This is the general idea behind the incomplete LU (ILU)
preconditioners.

In a general setting, depending on the dropping strategy, we can talk about two
kinds of ILU-class preconditioners. The first one depends on the matrix structure and
the entries are dropped by their position. A “levels of fill-in” concept is introduced and
stronger preconditioners can be constructed by increasing the level of fill-in [31]. Since
this technique does not consider numerical values, it becomes ineffective in predicting
the locations of the largest entries, particularly for matrices that are far from being
diagonally dominant and indefinite [13]. This is the case for the matrices arising from
the EFIE formulation. Alternatively, one can drop the matrix elements depending on
their magnitudes, and the zero pattern is generated dynamically during the factor-
ization. Among such methods, ILUT(τ, p) proposed by Saad has been successful for
many general systems [3]. During the factorization, ILUT drops matrix elements that
are smaller than τ times the 2-norm of the current row; and of all the remaining en-
tries no more than the p largest ones are kept. ILUT is known to yield more accurate
factorizations than the level-of-fill methods with the same amount of fill-in [13].

Although ILUT is more robust than its counterparts depending on the level of
fill-in, it may occasionally encounter problems of instability for real-life problems.
Even when factorization terminates normally, the resulting incomplete factors may
sometimes be unstable. The common reasons of instability are in general excessive
dropping and small pivots [13]. If the problem is related to the small pivots, one
can significantly increase the quality of the ILUT preconditioner by using partial
pivoting as in the complete factorization case. The resulting preconditioner is called
ILUTP [31].

In order to understand the quality of the preconditioner, or to understand the
reason for failure when it occurs, we can use ‖(L · U)−1 · e‖∞, where e is the vector
of ones. This statistic is called condest (for condition estimate) and it provides an
upper bound for ‖(L · U)−1‖∞ [13]. If the condest value is not very high, but the
preconditioner still does not work, one can deduce that fill-in should be increased to
achieve a successful preconditioner. On the other hand, if the condest value is high,
one can first try pivoting to remedy the situation instead of including more elements
in the incomplete factors.

Considering the remarkable success of ILU-class preconditioners for general non-
symmetric and indefinite systems [13] and the wide availability of ILU-class precondi-
tioners in various packages [2, 24, 6], the present study aims to develop a strategy for
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1478 TAHİR MALAS AND LEVENT GÜREL

both selecting the most appropriate ILU-class preconditioner and determining their
parameters to use them as black-box preconditioners for CFIE and EFIE formula-
tions. We perform tests on canonical, quasi-canonical, and real-life problems with
increasing number of unknowns and show that when these preconditioners fail for the
reasons stated earlier, the failure can be circumvented using pivoting strategies with-
out increasing the memory cost. We also show that the condest value is very useful
for determining the quality of the resulting factorization before starting the iterative
solution.

ILU-class preconditioners have been tested for electromagnetic problems in [8,
32, 26]. In [8], ILU(0) was tried on systems resulting from EFIE formulation with
discouraging results in all test problems. Sertel and Volakis [32] tried ILU(0) on two
model problems. For the very small problem of 480 unknowns, ILU(0) was successful
with the EFIE and CFIE formulations, but clearly such a small problem is not repre-
sentative of large-scale CEM simulations. They presented only CFIE results for the
50,000-unknown problem; in this case, ILU(0) was quite successful in reducing the
number of iterations. Probably the most impressive results are those of Lee, Zhang,
and Lu [26], who tried the ILUT preconditioner on hybrid surface-volume integral
equations and showed it to be successful on many test problems. However, they nei-
ther tried commonly used EFIE or CFIE formulations nor applied pivoting or any
other techniques to increase the effectiveness of the preconditioner.

The rest of the paper is organized as follows. In the next section, we outline the
surface integral equations of CEM, their discretizations, resulting matrix equations,
and MLFMA. Spectral properties of such matrices are analyzed in section 3. Then,
in section 4, we comment on the preconditioning of the systems arising from integral-
equation formulations. In section 5, we present experimental results for the CFIE and
EFIE formulations. In the last section, we make some suggestions for the effective
and safe usage of ILU-class preconditioners with EFIE and CFIE.

2. Surface integral equations and fast solvers. EFIE and CFIE are surface
integral equations that are formed from the application of physical boundary condi-
tions; they are formulated to solve the radiation and scattering problems of arbitrarily
shaped geometries. This leads to the reduction of a three-dimensional problem into a
two-dimensional problem, but the resulting matrix equation becomes fully populated.

The boundary condition stating that the total tangential electric field should
vanish on a conducting surface can be mathematically expressed to obtain EFIE as

(2.1) t̂ ·

∫

S′

dr′G(r, r′) · J(r′) =
i

kη
t̂ · Einc(r),

where Einc represents the incident electric field, S′ is the surface of the object, t̂ is
any tangential unit vector on S′, J(r′) is the unknown induced current residing on
the surface,

(2.2) G(r, r′) =

[

I +
∇∇

k2

]

g(r, r′)

is the dyadic Green’s function, and

(2.3) g(r, r′) =
eik|r−r

′|

4π|r − r′|

is the scalar Green’s function for the three-dimensional scalar Helmholtz equation.
Green’s function represents the response at r due to a point source located at r′.

D
o

w
n
lo

ad
ed

 0
9
/2

8
/1

7
 t

o
 1

3
9
.1

7
9
.7

2
.1

9
8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



INCOMPLETE LU PRECONDITIONING AND FAST MULTIPOLE 1479

Similarly, the boundary condition for the tangential magnetic field on a conduct-
ing surface is used to derive the magnetic-field integral equation (MFIE) [22, 14] as

(2.4) J(r) − n̂×

∫

S′

dr′J(r′) ×∇′g(r, r′) = n̂× Hinc(r),

where n̂ is any unit normal on S′ and Hinc(r) is the incident magnetic field. It should
be noted that EFIE is valid for both open and closed geometries, whereas MFIE is
valid only for closed surfaces [18, 16].

Combining EFIE and MFIE, we obtain CFIE, i.e.,

(2.5) CFIE = αEFIE + (1 − α)MFIE,

where α is a parameter between 0 and 1. CFIE is free from the internal resonance
problems of both EFIE and MFIE and leads to well-conditioned systems [19]. On
the other hand, CFIE is not applicable to open geometries since it contains MFIE.
Therefore, CFIE is preferred over MFIE for closed geometries, but EFIE is the only
choice for open geometries. CFIE can also be extended for geometries containing both
closed and open surfaces [23].

Surface integral equations can be converted to linear systems of equations using
the method of moments (MOM). In fact, MOM can be used to reduce any linear-
operator equation to a matrix equation. Using a linear operator L, we can represent
EFIE and CFIE as

(2.6) L{f} = g,

where f is the unknown vector function, and g is the excitation. To discretize this
equation, f is first approximated by a set of vector basis functions via the expansion

(2.7) f ≈
n
∑

j=1

xjfj ,

where xj is the unknown coefficient of the jth basis function. Then this discretized
equation is tested at n points and a linear system is obtained, i.e.,

(2.8)

n
∑

j=1

xj〈ti, L{fj}〉 = 〈ti,g〉, i = 1, . . . , n.

In (2.8), ti is the vector testing function and the inner product is defined as

(2.9) 〈t, f〉 =

∫

S

dr t(r) · f(r).

By defining the elements of the coefficient matrix (or the so-called impedance
matrix) as

(2.10) Aij = 〈ti, L{fj}〉

and the elements of the right-hand-side vector (or the excitation vector) as

(2.11) bi = 〈ti,g〉,
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1480 TAHİR MALAS AND LEVENT GÜREL

the linear system of equations can be expressed as

(2.12) A · x = b.

In order to implement a Galerkin approach for discretization, we use Rao–Wilton–
Glisson (RWG) functions [29] for both basis and testing functions. RWG functions
are linearly varying vector functions defined on planar triangular domains. They are
widely used in MOM applications to discretize surface current distributions.

Surfaces of geometries are meshed with planar triangles in accordance with the
RWG functions. Each basis function is associated with an edge; hence the number
of unknowns n is equal to the total number of edges in a triangulation. For high
accuracy, triangle sizes have to be small, but this leads to problems with large numbers
of unknowns. As a rule of thumb, we choose the average size of the mesh about one-
tenth of the wavelength.

Since the integrodifferential operator L for both EFIE and CFIE involves long-
distance interactions, the resulting coefficient matrix is dense, which is expensive to
store and to solve. However, when we use iterative solvers, direct solution is replaced
with a series of matrix-vector multiplications, and we have the opportunity to perform
the matrix-vector product with O(n log n) complexity using MLFMA.

MLFMA can be described as the multilevel application of the fast multipole
method (FMM). An important concept, on which FMM relies, is the diagonalized
factorization of the Green’s function, i.e.,

(2.13) g(r, r′) =
eik|r−r

′|

4π|r − r′|
=

eik|D+d|

4π|D + d|
≈

1

4π

∫

d2
k̂eik̂·dTL(k,D, ψ),

where D = |D| < d = |d|, the integration is on the unit sphere, k̂ is the unit vector
normal to the unit sphere, and TL is the truncated sum

(2.14) TL(k,D, ψ) =
ik

4π

L
∑

l=0

il(2l + 1)h
(1)
l (kD)Pl cos(ψ),

which is called the translation function [17]. In (2.14), h
(1)
l (x) is the spherical Hankel

function of the first kind, Pl is the Legendre polynomial, and ψ is the angle between
unit vectors k̂ and D̂. The truncation number L is determined by the formula given
in [12],

(2.15) L ≈ kd + 1.8d
2/3
0 (kd)1/3,

where d0 is the number of accurate digits required in the matrix-vector multiplication.
In a physical setting, we can think of a matrix-vector multiplication as a set of

electromagnetic interactions between the basis and testing functions. When the basis
and testing functions are clustered according to the proximity of their locations in
space, the same translation function can be used for all interactions between pairs
of functions in any two clusters, instead of calculating the interactions separately.
For this purpose, radiation patterns of the basis functions fj weighted with the cor-
responding coefficients xj are evaluated on the unit sphere at K directions. Next,
in each basis group, the radiation patterns are added at each direction, a process
called aggregation. For each pair of basis and testing groups, a translation function
is defined. The overall radiation pattern of each basis group is multiplied by a trans-
lation function and thereby translated to the center of a testing cluster. Following
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Fig. 2.1. (a) Multilevel partitioning of the scatterer for the case of a sphere with diameter

1λ. The shaded boxes are empty. (b) Tree structure of MLFMA for the sphere. Unfilled nodes

correspond to empty boxes.

the translations, radiation patterns of the basis groups are added at the center point
of each testing group. Finally, the total radiation from all basis functions at each
testing cluster is disaggregated onto individual testing functions in order to complete
the testing process. Since the factorization of the Green’s function is not valid for
basis and testing functions that are close to each other, the near-field interactions
are calculated directly. In a multilevel scheme, MLFMA requires interpolations and
anterpolations to pass from one level to another [15].

In MLFMA, to perform a multilevel application of FMM, the whole geometry
is placed in a cube and then this cube is recursively divided into smaller ones until
the smallest cube contains only a few basis or testing functions. However, during
the partitioning, if any cube becomes empty, recursion stops there. This partitioning
defines the levels of MLFMA and corresponds to a tree structure. An example of a
sphere with a diameter of one wavelength (1λ) is shown in Figure 2.1.

With the partitioning scheme described, we can easily determine the near-field
and far-field clusters. On any level, pairs of same-size cubes touching at any point
are in the near-field zone of each other and the others are in the far-field zone. In the
MLFMA tree, we refer to the filled cubes as clusters. A cluster contains either some
basis functions (in the lowest level) or low-level clusters. In MLFMA, the replacement
of the element-to-element interactions with cluster-to-cluster interactions is made in
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Fig. 2.2. Near-field pattern of the 930-unknown sphere problem.

a multilevel scheme.
In the lowest level, interactions between the near-field clusters are computed ex-

actly and stored in the sparse near-field matrix. When the ordering of the unknowns
is in accordance with the clustering, the near-field matrix is composed of small blocks,
but the distribution of the blocks does not exhibit any structured pattern. For the
sphere geometry shown in Figure 2.1, the nonzero pattern of the near-field matrix
is presented in Figure 2.2. Self-interactions of the second-level clusters can easily be
observed in the diagonal blocks of the nonzero pattern.

Interactions among the far-field clusters are computed approximately (but with
controllable accuracy) and efficiently. For each level excluding the highest two, ra-
diated fields of each cluster are aggregated at the centers of the clusters. Then, for
each pair of far-field clusters whose parents are in the near-field zone of each other,
cluster-to-cluster interaction is computed via a single translation. If the parents of
the pair of clusters are not in the near-field of each other, the cluster-to-cluster in-
teraction is included in a higher-level translation. Finally, after the translations, the
summed values at the centers of the testing clusters are disaggregated towards the
testing functions, completing the matrix-vector multiplication.

3. Spectral analysis. For electromagnetic scattering problems, iterative meth-
ods with MLFMA provide new opportunities to solve large-scale problems that were
previously unsolvable. However, EFIE, MFIE, and CFIE formulations produce indef-
inite systems for which convergence becomes an issue. Moreover, since we consider
the solution of very large problems with millions of unknowns, the condition of the
matrix deteriorates (especially for EFIE) as the problem sizes grow. Hence, effective
preconditioning is indispensable for attaining convergence in a reasonable time.

Though they are indefinite and nonhermitian, CFIE produces well-conditioned
systems that are close to being diagonally dominant. As a consequence, the number
of iterations required for convergence has been limited with a simple block-Jacobi
preconditioner even for large-scale problems [19]. Nonetheless, for some geometries,
the number of iterations is still large. Considering the dominant cost of matrix-vector
product for large problems, better preconditioners for CFIE are still desirable.

Systems resulting from EFIE are much more difficult to solve. In addition to being
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Fig. 3.1. Pseudospectra of the EFIE, MFIE, and CFIE formulations for three ǫ values, i.e.,

10−1, 10−1.25, and 10−1.5. The black dots denote the exact eigenvalues of the unperturbed matrices.

indefinite and nonhermitian, EFIE matrices may have large elements away from the
diagonal, and some of the nonstored far-field interactions may be stronger than the
near-field interactions.

For a better understanding of the properties of the systems resulting from surface
integral equations, we show in Figure 3.1 both the eigenvalues and the pseudospectra
of the EFIE, MFIE, and CFIE matrices for the 930-unknown sphere problem. For
nonnormal matrices, information obtained from eigenvalues may be misleading, since

D
o

w
n
lo

ad
ed

 0
9
/2

8
/1

7
 t

o
 1

3
9
.1

7
9
.7

2
.1

9
8
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



1484 TAHİR MALAS AND LEVENT GÜREL

they may become highly unstable [33]. More reliable and telling information can be
obtained using the ǫ-pseudospectrum, ∧ǫ(A), which can be defined as

(3.1) ∧ǫ(A) =

{

z | z ∈ C
n, ‖(zI − A)−1‖2 ≥

1

ǫ

}

.

Denoting the spectrum of A with ∧(A), if an eigenvalue λ ∈ ∧(A), then ‖(zI −
A)−1‖2 = ∞, so ∧(A) ⊂ ∧ǫ(A) for any ǫ > 0. The pseudospectrum represents the
topology of the eigenvalues of the perturbed matrices associated with the exact matrix
A, and thus gives an idea about the nonnormality.

The ultimate aim in preconditioning is to move all eigenvalues towards the point
(1,0). However, if the matrix is close to normal, a spectrum clustered away from the
origin also implies rapid convergence for Krylov subspace methods [3, 25]. Comparison
of the EFIE and CFIE pseudospectra in Figure 3.1 indicates that combining EFIE
with MFIE (to obtain CFIE) has the effect of clustering the distributed eigenvalues
and moving them towards the right half-plane. In contrast, most of the eigenvalues
of EFIE are scattered in the left half-plane. Moreover, the 0.1-pseudospectrum of the
EFIE matrix contains the origin, signaling the near-singularity of the matrix. Hence,
effective preconditioning for EFIE becomes more difficult, and also more crucial.

4. ILU-class preconditioners. Various preconditioners have been used for the
solution of CEM problems. For CFIE, a block-Jacobi preconditioner is frequently
used. In an MLFMA setting, a block-Jacobi preconditioner can be constructed from
the self-interactions of the lowest-level clusters. Since there are O(n) such blocks and
each block is composed of a fixed number of unknowns, both the construction and the
application of the preconditioner scale with O(n). Because of its optimal complexity
and success with many problems, this simple preconditioner is a common choice for
CFIE. However, probably due to the weaker diagonal dominance and indefiniteness of
EFIE, the block-Jacobi preconditioner performs even worse than the no-preconditioner
case. Sparse approximate inverse (SAI) preconditioners depending on a fixed a priori
pattern have been thoroughly studied in some recent works [9, 10, 11, 27, 1]. The
electromagnetics community has started to use SAI preconditioners more frequently
because of ease of parallelization. However, the construction cost of SAI can become
prohibitively large unless one chooses the prefiltering and postfiltering threshold pa-
rameters carefully [27]. Hence, it is not suitable for use as a black-box preconditioner;
there is still the need for a more easily attainable preconditioner, particularly for
sequential implementations.

As an alternative, the ILU-class preconditioners have been widely used and in-
cluded in several solver packages. They were historically developed for positive-
definite and structured matrices arising from the discretization of partial differential
equations. For general systems, the failure rate of ILU-class preconditioners is still
high. Nonetheless, there have been many improvements to increase their robust-
ness [13, 4, 5].

For iterative solvers utilizing MLFMA, the near-field matrix N is the natural
candidate to generate the incomplete factors. Consider an incomplete factorization
of the near-field matrix, N ≈ L · U. If we let the sparsity patterns of N and L + U

be the same, that is, if we retain nonzero values of L and U only at the nonzero
positions of N, we end up with the no-fill LU method, or ILU(0). This simple idea
works successfully for well-conditioned matrices [31]. Denser and potentially more
effective preconditioners can be obtained by increasing the level of fill-in, but this
strategy is unsuccessful in determining the largest entries, particularly for matrices
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that are indefinite and far from being diagonally dominant. A more robust strategy is
to drop the nonzero elements by comparing the magnitudes during the factorization.
Such a strategy discards elements that are small with respect to a suitably chosen
drop tolerance τ .

One of the disadvantages of the dropping strategy, which depends on the size
of matrix entries, is the difficulty in predicting storage. For this purpose, a dual
threshold strategy can be used [30]. The resulting preconditioner, called ILUT(τ, p),
retains no more than p elements in the incomplete factors after dropping all the
elements that are smaller than τ times the 2-norm of the current row. The threshold
parameter τ determines the CPU time and p determines the storage requirement of
the preconditioner. This preconditioner is known to be quite powerful and robust.

Despite ILUT’s good reputation, there are two important drawbacks preventing
its use as a black-box and general library software. The first problem is determin-
ing the appropriate parameters. For our specific applications and in the context of
MLFMA, we propose to select a small drop tolerance and then set the parameter p so
that the preconditioner will have approximately the same number of nonzero elements
as the near-field matrix N. Once the near-field matrix is generated, this value can
easily be found. With this strategy, we aim to obtain a powerful preconditioner with
modest storage and low complexity.

Probably the more problematic aspect of threshold-based ILU-class precondition-
ers is their potential inaccuracy and/or instability. Accuracy refers to how close the
incomplete factors are to A; this is measured by the norm of the error matrix, i.e.,
accuracy = ‖E‖ = ‖A − L · U‖. Stability refers to how close the preconditioned
matrix is to the identity matrix and is measured by the norm of the preconditioned

error, i.e., stability = ‖(L · U)−1 · E‖. If ‖L
−1

‖ or ‖U
−1

‖ are extremely large, a fac-
torization may turn out to be accurate but unstable; in that case, the preconditioner
may not work even if fill-in is increased [13]. Thus, for general matrices, stability is a
more informative measure of the preconditioning quality.

Although we cannot compute these metrics with MLFMA, a rough estimate of
‖(L ·U)−1‖, called condest, gives a clue about the instability of the triangular factors
[13]. This condition estimate is defined as

(4.1) ‖(L · U)−1 · e‖∞, e = [1, . . . , 1]T .

One can easily compute condest before the iterations, by using a forward substitution
followed by a backward substitution, and it provides a strong indicator of the quality
of the ILU preconditioner.

When the incomplete factors turn out to be unstable, there are some remedies
that can be utilized depending on the cause. Preprocessing steps such as diagonal
perturbation, reordering, and scaling can be applied on the coefficient matrix to sta-
bilize the preconditioner. To increase the stability, diagonal perturbations can be
used to make the LU factors more diagonally dominant, but quite large perturbations
may be required for indefinite systems, and such large perturbations may introduce
too much inaccuracy into the preconditioner. Diagonal shifts have already been tried
on EFIE systems to increase the robustness of ILU, but the effect of the shift is
undetermined, and furthermore it is difficult to select suitable shift parameters [7].
Reorderings aimed at improving the condition of the incomplete factors are widely
studied. Indeed, some reordering schemes significantly improve the convergence of
the Krylov methods [4]. However, the effect of ordering becomes significant when the
incomplete factors are allowed to be denser than the original matrix [3]. We usually
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prefer to keep the memory required by the preconditioner bounded by the storage
needed for the near-field matrix. Hence, this remedy is not a good candidate because
of the storage considerations. Finally, for threshold-based ILU-class preconditioners,
it is recommended to scale the matrix so that each column has unit 2-norm, and then
scale it again so that each row has unit 2-norm. This suggestion is not applicable in
the context of MLFMA, since the preconditioner is constructed from a sparse portion
of the coefficient matrix and the coefficient matrix is not explicitly available.

On the other hand, if the instability is caused by the small pivots, partial piv-
oting is helpful. This is a well-known and much simpler method. Column pivoting
can be applied in a rowwise factorization with negligible cost. The resulting pre-
conditioner is known as ILUTP [31]. In some cases, it may be useful to include a
permutation tolerance permtol and perform the permutation for the ith row when
permtol × |aij | > |aii|. It is best not to select a very small value for permtol; 0.5 is
accepted as a good choice [31].

5. Results. In this section, we show the effectiveness of ILU-class precondition-
ers for electromagnetic scattering problems. We first identify the most appropriate
ILU-class preconditioner for the problem type (i.e., open geometries vs. closed ge-
ometries, EFIE vs. CFIE), then compare the selected ILU preconditioner with other
commonly used preconditioners. For this purpose, we implement an SAI precondi-
tioner, whose sparsity pattern is chosen to be the same as the near-field matrix. In
this way, it has the same storage cost as that of ILU(0).

Instead of giving several results with varying parameters for ILUT, we adopt the
following strategy for the selection of the parameters. We set the drop tolerance τ to
a low value such as 10−6 and set p, the maximum number of nonzero elements per
row, such that the memory cost of factorization does not exceed that of the no-fill
ILU preconditioner. We accomplish this by simply letting p be the average number
of nonzero elements in a row of the near-field matrix. In this way, we obtain robust
preconditioners with modest computational requirements.

For the specific implementation of the MLFMA considered here, we set the size
of the smallest clusters to 0.25λ, the number of accurate digits d0 to 3, and the α

parameter of CFIE to 0.2. The CPU times reported in this section were obtained
on a 64-bit server with 1.8 GHz AMD Opteron 244 processors and 4 GB of memory.
In addition to performing numerical experiments involving ILU-class preconditioners,
we also obtain the exact solution of the near-field matrix to use it as a benchmark
preconditioner. This solution, which is denoted by LU, is performed on another 64-bit
server with 24 GB of memory. Due to its excessive computational requirements, this
LU preconditioner is presented merely for comparison purposes.

For the iterative solver, starting with the zero initial guess, we try to reduce the
initial residual norm by 10−6 and set the maximum number of iterations at 1,500.
We use the generalized minimal residual method (GMRES) with no-restart and apply
right-preconditioning in order to minimize the true residual norm. For CFIE solu-
tion of closed geometries, the performance of other Krylov subspace methods, such
as conjugate gradient squared (CGS), biconjugate gradient (Bi-CG) or biconjugate
gradient stabilized (Bi-CGSTAB), approximates GMRES in terms of the number of
matrix-vector products. However, for EFIE, other solvers are less robust and do not
always converge with preconditioning. Even when they converge, they require more
matrix-vector multiplications than GMRES. Though GMRES with no-restart brings
extra CPU and memory costs with increasing number of iterations, reduction in the
number of matrix-vector products significantly decreases the overall solution time due
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PATCH
OPEN CUBE

HALF SPHERE HALF WING

Fig. 5.1. Open geometries.

to the high cost of matrix-vector multiplications, particularly for large problems.

5.1. Open geometries. Figure 5.1 displays the open geometries used in the
numerical experiments, i.e., a patch (P), a half sphere (HS), an open prism (OP),
and an open cube (OC). These geometries are solved at various frequencies, requiring
different meshes and numbers of unknowns as shown in Table 5.1. In Table 5.1 the
“Size” column stands for the diameter for the spheres, and the maximum side length
for others. The subsection sizes of different meshes are consistently selected as one-
tenth of the wavelength. As mentioned in section 2, EFIE is the only choice for these
geometries.

We compare the ILU-class preconditioners in Table 5.2. The summary of our
observations are as follows:

(i) It is easily noticed that as the number of unknowns increases, ILU(0) pro-
duces highly unstable and hence useless factorizations. ILU(0) works well for small
problems due to the fact that the near-field matrices used to generate the precondi-
tioner and consequently the incomplete factors are nearly dense for such problems.

(ii) ILUT produces stable factors for all geometries except HS3. When we use
0.5 pivoting tolerance (ILUTP5) or 1.0 pivoting tolerance (ILUTP), we overcome the
problem. However, for HS3, ILUTP yields a larger condest value and requires more
iterations compared to ILUTP5. A similar situation is also encountered in some other
experiments and the high value of condest for full pivoting is related to a poor pivoting
sequence [13].

(iii) From the results, we also see a strong relationship between condest and the
usefulness of the preconditioner. When the condest value is very high (i.e., higher than
105), the iterative method either requires too many iterations or does not converge at
all.

Since ILUTP5 is robust for all our geometries, in Table 5.3 we compare it with
other commonly used preconditioners. Block-Jacobi preconditioning performs poorer
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1488 TAHİR MALAS AND LEVENT GÜREL

Table 5.1

Information about the open geometries.

Frequency Size

Problem (MHz) (λ) n

P1 2,000 2 1,301

P2 6,000 6 12,249

P3 20,000 20 137,792

OC1 313 1.0 1,690

OC2 781 2.6 16,393

OC3 2,370 7.9 171,655

OP1 683 2.3 1,562

OP2 2,270 7.6 14,705

OP3 6,820 22.7 163,871

HS1 750 1.5 1,101

HS2 2,310 4.6 9,911

HS3 7,890 15.8 116,596

Table 5.2

ILU results for open geometries.

ILU(0) ILUT ILUTP5 ILUTP

Problem n condest iter condest iter condest iter condest iter

P1 1,301 189 37 83 22 73 21 69 21

P2 12,249 60,855 228 712 42 309 39 5,606 56

P3 137,792 6.3E+09 - 1,398 82 1,350 81 2,545 78

OC1 1,690 59 76 14 37 12 35 11 33

OC2 16,393 2,154 333 52 110 48 109 44 109

OC3 171,655 9.6E+05 - 192 377 240 376 2,892 376

OP1 1,562 198 65 41 27 50 26 151 39

OP2 14,705 1.3E+05 416 161 98 164 92 151 91

OP3 163,871 5.3E+05 - 948 268 835 253 2,424 251

HS1 1,101 47 48 26 26 31 24 27 23

HS2 9,911 990 248 1,095 73 126 46 95 45

HS3 116,596 6.3E+05 - 1.5E+15 - 582 110 22,755 156

than the no-preconditioner case, so the Jacobi preconditioner is used instead. We
emphasize the following observations:

(i) Although we use a robust solver, for a simple preconditioner such as Jacobi,
either the number of iterations turns out to be very high or convergence is not attained
in 1,500 iterations. This is in good agreement with the conclusions derived in section 4.

(ii) ILUTP5 reduces iteration numbers by an order of magnitude compared to
the Jacobi preconditioner. Moreover, the iteration numbers of ILUTP5 are not ex-
tremely higher than those of LU, indicating that the ILUTP5 preconditioners provide
good approximations to the near-field matrices.

(iii) We see that the setup cost of SAI is prohibitively large, proving its inappro-
priateness for sequential implementations. Moreover, except for OC3, ILUTP5 yields
fewer number of iterations compared to SAI.

(iv) Furthermore, the iteration counts reveal that the algebraic scalability of
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Table 5.3

Comparison of preconditioners for open geometries.

LU Jacobi ILUTP5 SAI

Problem n iter iter time iter setup time iter setup time

P1 1,301 15 201 15 21 1 3 25 101 103

P2 12,249 26 431 503 39 33 88 45 1,524 1,573

P3 137,792 53 833 16,209 81 661 2,167 92 19,955 21,384

OC1 1,690 28 224 26 35 4 9 35 569 574

OC2 16,393 97 617 854 109 141 273 114 15,040 15,167

OC3 171,655 332 - - 376 2,243 9,833 354 207,436 213,619

OP1 1,562 18 315 39 26 2 5 48 663 668

OP2 14,705 78 991 1,894 92 97 224 173 12,301 12,524

OP3 163,871 195 - - 253 996 6,883 396 57,606 66,093

HS1 1,101 17 187 15 24 3 5 26 165 167

HS2 9,911 38 490 748 46 107 186 61 1,712 1,813

HS3 116,596 93 1052 25,947 110 1,353 3,579 156 22,079 25,066

ILUTP5 is favorable for open geometries. For two orders of increase in the number
of unknowns, the iteration numbers increase approximately four times for patch and
half sphere, and 10 times for the open cube and open prism.

5.2. Closed geometries. As mentioned in section 2, both EFIE and CFIE can
be used for closed geometries. However, CFIE yields better-conditioned systems, so
it is usually preferred over EFIE. Nonetheless, we will present some of the results
obtained from EFIE for comparison purposes.

Figure 5.2 shows the model problems that we consider for the numerical experi-
ments. These include two canonical geometries, i.e., a sphere (S) and a cube (C); two
quasi-canonical geometries, i.e., a thin box (TB) and a wing (W); and two real-life
problems, i.e., a helicopter (H) and Flamme (F), which is a stealth target [20]. Table
5.4 presents the operating frequency and the size of the geometries in terms of the
wavelength. For Flamme and the helicopter, “Size” denotes the length of the objects
in longitudinal direction.

Due to the well-conditioning of CFIE, ILU(0) is expected to be free from instabil-
ity problems. In Table 5.5, we compare ILU(0) and ILUT by presenting the condest

values and corresponding number of iterations for the systems obtained with CFIE.
Pivoting does not change the iteration counts, and hence is not included in this case.

We note that ILU(0) and ILUT produce very similar preconditioners for CFIE.
This is also observed for regular problems arising from the discretization of partial
differential equations [35]. Since ILU(0) has a lower computational cost and is easier
to implement compared to ILUT, we conclude that ILU(0) is the most appropriate
choice among ILU-class preconditioners for CFIE.

When we use EFIE with closed geometries, it becomes even more difficult to
solve the linear systems. Table 5.6 shows the condest values and iteration numbers
for ILU-class preconditioners. W3 does not converge in 1,500 iterations, and for H2
memory limitation is exceeded during the iterations. All other problems converge
with ILUTP5, but with higher iteration counts compared to open geometries.

In Table 5.7, for CFIE, ILU(0) is compared to the block-Jacobi preconditioner
(where only the self-interactions of the smallest MLFMA clusters are used in the
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1490 TAHİR MALAS AND LEVENT GÜREL

SPHERE

CUBE

WING

FLAMME HELICOPTER

THIN BOX

Fig. 5.2. Closed geometries.

near-field matrices) and the SAI preconditioner. We summarize the results as follows:
(i) For canonical geometries, compared to the block-Jacobi preconditioner,

ILU(0) decreases the iteration numbers slightly. However, due to the larger setup
time of ILU(0), total solution times become comparable. For multiple right-hand-side
solutions, ILU(0) may be still preferable.

(ii) For quasi-canonical geometries and real-life problems, ILU(0) performs re-
markably better compared to the block-Jacobi preconditioner. The number of iter-
ations are halved for the largest problems, and more than halved for smaller sizes.
Also, total solution times are significantly smaller.

(iii) Even though SAI has iteration numbers similar to ILU(0), the setup time
of SAI is too large.

(iv) ILU(0) iteration numbers are very close to those of LU. Hence, among
sequential-algebraic preconditioners for CFIE, ILU(0) emerges as the optimal choice
for preconditioning MLFMA in the context of this study.

(v) Finally, even though the near-field matrix becomes sparser as the number of
unknowns gets larger, we observe that the algebraic scalability of ILU(0) is surprisingly
favorable. For the canonical geometries, as n increases two orders of magnitude, the
iteration numbers only double. For quasi-canonical geometries, the iteration numbers
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Table 5.4

Information about the closed geometries.

Frequency Size

Problem (MHz) (λ) n

S1 500 1 930

S2 1,500 3 8,364

S3 6,000 12 132,003

C1 210 0.7 918

C2 600 2.0 8,046

C3 2,410 8.0 131,436

W1 390 1.3 1,050

W2 1,200 4.0 10,512

W3 4,000 13.3 117,945

TB 1 188 1.9 1,650

TB 2 600 6.0 10,122

TB 3 2,400 24.0 147,180

F1 4,000 8 12,750

F2 6,000 12 28,866

F3 10,000 20 78,030

H1 222 9.6 33,423

H2 636 27.6 183,546

Table 5.5

ILU results for closed geometries using CFIE.

ILU(0) ILUT

Problem n condest iter condest iter

S1 930 8 13 3 13

S2 8,364 24 21 9 20

S3 132,003 108 29 108 29

C1 918 3 11 8 12

C2 8,046 9 20 24 20

C3 131,436 34 26 33 26

TB1 1,650 13 11 12 10

TB2 10,122 13 23 14 22

TB3 147,180 97 45 96 42

W1 1,050 8 10 8 9

W2 10,512 26 16 26 15

W3 117,945 83 32 82 32

F1 12,750 174 24 150 23

F2 28,866 198 34 207 33

F3 78,030 327 66 325 65

H1 33,423 6 30 6 30

H2 183,546 18 44 18 44
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Table 5.6

ILU results for closed geometries using EFIE. “MLE” stands for “memory limitation exceeded.”

ILU(0) ILUT ILUTP(0.5) ILUTP

Problem n condest iter condest iter condest iter condest iter

S1 930 65 46 61 37 16 28 20 29

S2 8,364 4.3E+04 416 3.4E+04 246 65 108 427 116

S3 132,003 1.9E+06 - 1.5E+131 - 381 572 1,346 589

C1 918 22 - 9 32 7 30 7 29

C2 8,046 3.1E+05 - 30 77 37 75 99 77

C3 131,436 2.9E+07 - 210 574 181 563 800 557

TB1 1,650 22 37 49 26 72 30 22 27

TB2 10,122 1.8E+05 - 414 169 166 151 7.5E+05 -

TB3 147,180 1.1E+14 - 48,600 1090 13,410 1084 867 709

W1 1,050 128 - 38 23 38 22 43 30

W2 10,512 6.6E+04 - 240 102 88 95 106 91

W3 117,945 4.5E+07 - 538 - 540 - 1,455 -

F1 12,750 4.7E+06 - 1,043 184 623 159 1,006 170

F2 28,866 9.5E+07 - 2,011 421 2,012 393 2,071 440

F3 78,030 1.5E+09 - 2,830 1106 3,066 1042 85,812 1131

H1 33,423 1,359 469 38 206 39 203 59 206

H2 183,546 29,184 MLE 61 MLE 71 MLE 1,799 MLE

Table 5.7

Comparisons of preconditioners for closed geometries using CFIE.

LU Block-Jacobi ILU(0) SAI

Problem n iter iter time iter setup time iter setup time

S1 930 13 17 1 13 0 1 14 229 230

S2 8,364 20 23 23 21 6 23 21 1,453 1,474

S3 132,003 29 32 684 29 23 665 29 23,102 23,722

C1 918 11 18 0 11 1 1 12 941 941

C2 8,046 20 25 17 20 2 16 21 2,170 2,184

C3 131,436 26 28 419 26 28 485 27 25,066 25,489

TB1 1,650 9 44 3 11 2 3 20 132 135

TB2 10,122 21 60 40 23 6 22 33 10,468 10,489

TB3 147,180 37 106 1,290 45 271 1,025 64 298,479 299,301

W1 1,050 9 30 1 10 1 1 13 970 971

W2 10,512 15 39 31 16 7 21 21 14,445 14,462

W3 117,945 31 52 779 32 46 542 37 73,100 73,587

F1 12,750 21 77 89 24 11 40 40 22,930 22,976

F2 28,866 32 81 264 34 20 130 45 42,214 42,389

F3 78,030 63 115 1,096 66 43 694 76 96,369 96,369

H1 33,423 30 125 326 30 40 142 51 94,150 94,282

H2 183,546 42 106 3,081 44 145 1,739 61 234,614 236,463
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increase by a factor of only 3 or 4. For Flamme, as the number of unknowns increases
15 times, the iteration number only triples. For the helicopter, the increase in the
iteration number is 1.4 compared to 5.5 times increase in the number of unknowns.

6. Conclusion. For iterative solvers, ILU-class preconditioners have been inten-
sively studied and widely used. However, potential instability is still a shortcoming
that reduces their reliability. We show that this drawback can be eliminated when
it occurs, and ILU-class preconditioners can be safely applied to CEM problems em-
ploying MLFMA.

For open geometries, EFIE is the only choice of formulation. For the resulting
systems, ILUT works remarkably well (about 10 times faster than Jacobi and with
disproportionately lower setup time compared to SAI), but sometimes incomplete fac-
tors turn out to be unstable. We show that this situation can be handled by pivoting
without incurring significant CPU costs; 0.5 pivoting tolerance gives the best results.
We also show that the condest value is a strong indicator of the resulting precondi-
tioner. Hence, considering the extra cost of pivoting (though not very significant), we
propose the following strategy for the solution of problems involving open geometries.
Before the iterations begin, compute condest for ILUT. If the condition estimate is
not high (such as less than 104), use ILUT as the preconditioner. Otherwise, switch
to ILUTP5. With this strategy, we have obtained robust and effective preconditioners
for all our test problems.

CFIE can be used for closed geometries and yields linear systems that are well-
conditioned. ILU(0) and ILUT produce very similar factorizations, and therefore
cheaper ILU(0) should be preferred. With ILU(0), overall solution times have been
decreased by at least one-half compared to the commonly used block-Jacobi precon-
ditioner for real-life problems. Iteration numbers obtained with ILU(0) are very close
to those of the exact solution of the near-field matrix, showing that ILU(0) is the
optimum preconditioner in the context of this study. Though EFIE can also be used
with closed geometries, it becomes harder to obtain fast convergence even with the
exact solution of the near-field matrix.
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[14] Ö. Ergül and L. Gürel, Improved testing of the magnetic-field integral equation, IEEE Mi-

crowave Wireless Comp. Lett., 15 (2005), pp. 615–617.
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[17] Ö. Ergül and L. Gürel, Optimal interpolation of translation operator in multilevel fast mul-

tipole algorithm, IEEE Trans. Antennas and Propagation, 54 (2006), pp. 3822–3826.
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