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Abstract
Learning from multi-view multi-label data has wide
applications. Two main challenges characterize this
learning task: incomplete views and missing (weak)
labels. The former assumes that views may not in-
clude all data objects. The weak label setting implies
that only a subset of relevant labels are provided
for training objects while other labels are missing.
Both incomplete views and weak labels can lead to
significant performance degradation. In this paper,
we propose a novel model (iMVWL) to jointly ad-
dress the two challenges. iMVWL learns a shared
subspace from incomplete views with weak labels,
local label correlations, and a predictor in this sub-
space, simultaneously. The latter can capture not
only cross-view relationships but also weak-label
information of training samples. We further develop
an alternative solution to optimize our model; this
solution can avoid suboptimal results and reinforce
their reciprocal effects, and thus further improve
the performance. Extensive experimental results on
real-world datasets validate the effectiveness of our
model against other competitive algorithms.

1 Introduction
In many real-world applications, a sample may have several
heterogenous representations, each one giving a different view
of the data, and may also have multiple labels. For example, a
web image can be tagged with multiple topics given as labels,
such as cattle, grass, and tree. At the same time, the image can
also be described using heterogenous features, such as texture
descriptors, shape descriptors, color descriptors, surrounding
texts, and so on. Multi-view multi-label learning, as a natural
formulation for this type of data, has attracted a lot of attention
in machine learning and in many application domains [Liu
et al., 2015; Luo et al., 2015]. Although many multi-view
multi-label learning methods have been proposed in recent
years, a main challenge remains for this problem: the lack of
fully labeled training samples. In practice, it is rather difficult
to collect all the relevant labels of a sample, and only a subset
may be available. One such example is image annotation. An
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annotator may only afford to annotate an image with some
labels, especially when the number of relevant labels is large.
Learning from partially labeled samples is termed as the weak-
label learning problem [Sun et al., 2010; Bucak et al., 2011;
Kong et al., 2014]. Several weak-label learning methods have
been proposed in single-view [Yu et al., 2014; Cabral et al.,
2015] and multi-view scenarios [Zhang et al., 2013].

However, almost all aforementioned methods do not accoun-
t for another important challenge: incomplete data. Namely,
some samples may be missing their representation in one view.
This can happen, in practice, for a variety of reasons, e.g., a
temporary failure of sensors, or a man-made error. It has been
observed that incomplete data are likely to lead to degradation
in multi-view learning performance [Xu et al., 2015a].

The more challenging case is when both missing labels and
incomplete data co-exist in a multi-view multi-label learning
problem. To the best of our knowledge, few studies exist that
handle incomplete data [Xu et al., 2015a] or missing labels
[Zhang et al., 2013] in multi-view learning, but no previous
work simultaneously takes into account both issues. To bridge
this gap, we propose a novel unified model, called incomplete
Multi-View Weak-Label Learning (iMVWL), to jointly handle
incomplete views and missing labels. The basic strategy of
iMVWL is to seek a shared subspace across heterogenous
incomplete views, and a robust weak-label classifier in this
subspace in a unified learning framework, where label cor-
relations and discriminative information can be learned. In
summary, our main contributions are as follows:
• The proposed iMVWL can jointly address incomplete

views and missing labels. It learns a shared subspace from
incomplete views with weak labels, label correlations, and a
predictor in this subspace simultaneously.
• We develop a solution to iteratively optimize our model,

avoiding suboptimal problems.
• Experiments on five widely used datasets and comparison-

s with a number of competitive methods [Yuan et al., 2012;
Zhang et al., 2013; Xu et al., 2015a; Liu et al., 2015] demon-
strate the superiority of the proposed work.

2 Related Work
This work is related to two branches of studies, weak-label
learning and multi-view learning. Weak-label learning was
pioneered by [Sun et al., 2010]. Many weak-label learning
algorithms have subsequently been proposed. To name a few,
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weak-label learning algorithms under a supervised setting [Bu-
cak et al., 2011; Kong et al., 2014], under a semi-supervised
setting [Zhao and Guo, 2015; Wu et al., 2015], and under a
multi-instance multi-label framework [Yang et al., 2013].

Multi-view learning deals with data represented in dif-
ferent views and has attracted increasing interest in recent
years. Previous approaches have considered multi-views in
conjunction with semi-supervised learning [Xu et al., 2015a;
Nie et al., 2017], with multi-label learning [Zhang et al., 2013;
Liu et al., 2015] or with active learning [Wang and Zhou,
2010]. Others tried to estimate a latent subspace by as-
suming that samples (in different views) corresponding to
the same object are close to each other when mapped in-
to the latent subspace [Zhang et al., 2013; Liu et al., 2015;
Xu et al., 2017].

Almost all previous weak-label learning studies focus on a
single-view setting. Likewise, almost all existing multi-view
learning studies typically assume completeness of each view
(i.e., each sample appears in all views). The only exceptions
are LabelMe [Zhang et al., 2013] and MVL-IV [Xu et al.,
2015a]. LabelMe is a multi-view weak-label learning method,
but it assumes complete views of each training sample. As
discussed above, this assumption is often violated in practice.
MVL-IV is a recently proposed multi-view learning solution
that considers incomplete views. It integrates multiple incom-
plete views by assuming that the views are generated from a
common subspace, so that the learned subspace may capture
cross-view relationships. Nevertheless, MVL-IV is an unsu-
pervised subspace learning approach, which may be lacking
discriminative ability due to missing label information [Xu et
al., 2017]. On the other hand, MVL-IV assumes the available
labels of training samples are complete, ignoring the widely
witnessed weak-label scenarios. Moreover, MVL-IV decou-
ples the subspace learning from the follow-up classification
learning tasks, which may result in suboptimal models due to
the lack of mutual adaptation of the two steps.

To address these challenges, this paper proposes a novel
unified framework (iMVWL) to jointly handle incomplete
views and weak labels. iMVWL simultaneously learns the
shared subspace from incomplete views, a predictor in this
subspace, and local label structure. iMVWL not only achieves
a discriminative shared subspace from incomplete views, but
also a robust weak-label classifier that can dynamically capture
local label correlations. To the best of our knowledge, no
previous work has been developed to jointly handle challenges
from both incomplete views and weak labels.

3 Proposed Approach
Suppose X = {Xv}nv

v=1 represents a dataset with n samples

and nv views, where Xv = [x1
v,x

2
v, ...,x

n
v ] ∈ R

n×dv indi-
cates the full feature space in view v. Y = [y1,y2, ...,yn]

T ∈
{−1, 1}n×c is the corresponding weak-label matrix, where
yi ∈ {−1, 1}c is the label vector of xi and c is the number of
distinct labels. yic′ = 1 (c′ = 1, ..., c) means the c′-th label is
relevant, while yic′ = −1 does not provide any information.
In the multi-incomplete view setting, a sample may appear in
some views, but not all. That is, the data matrix X may have
a number of missing rows. An easy fix to this problem is to

remove any sample missing in at least one view. However,
this approach will significantly reduce the number of samples
that can be used for training. Our goal is to predict the labels
of unlabeled samples based on multiple incomplete feature
spaces X and the weak-label space spanned by Y.

3.1 Problem Formulation
With multi-view multi-label data, how to generate a shared dis-
criminative subspace across views and how to train an efficient
and robust multi-label classifier in that subspace for label pre-
diction are two challenging problems. Some subspace learning
algorithms have been proposed to seek the shared subspace
across views [Zhao et al., 2017], such as multi-view subspace
learning methods based on a low rank constraint [Liu et al.,
2015], matrix factorization [Žitnik and Zupan, 2015], and
nonnegative matrix factorization (NMF) [Wang and Zhang,
2013]. Among them, NMF has been successfully applied in
text mining, image annotations, bioinformatics, recommender
systems and other domains [Wang and Zhang, 2013], since
most data matrices are naturally nonnegative, or can be easi-
ly transformed into nonnegative ones. The major difference
between NMF and other matrix factorization methods, such
as SVD (singular value decomposition), is the nonnegative
constraints, which help to obtain a part-based representation
as well as to enhance interpretability of the learned subspace.
In this paper, we also focus on nonnegative data matrix min-
ing tasks, and adapt NMF to learn a discriminative low-rank
representation from incomplete views by using weak-label in-
formation. Given a multi-view datasets X , the standard NMF
can be adapted to find a shared subspace V as follows:

min
{Uv,V}

nv∑

v=1

||Xv −VUT
v ||2F s.t. U ≥ 0,V ≥ 0 (1)

where Uv ∈ R
dv×k, V ∈ R

n×k, and k is the desired low-rank
size, ||.||F represents the Frobenius norm, Uv ≥ 0 and V ≥ 0
are the nonnegative constraints for the matrices. The learned
subspace V in Eq. (1) can capture the cross-view relationships
since it enables the integration of complementary information
across multiple views [Xu et al., 2015a]. In many applications,
however, Eq. (1) may be unreliable due to the presence of
incomplete views. A remedy for Eq. (1) to deal with this
problem is to fill the missing samples with average feature
values; nonetheless, this approach may introduce errors, espe-
cially when the number of missing samples is large, hence not
suitable for incomplete view setting. Besides, the above unsu-
pervised subspace learning process is lacking discriminative
ability because it ignores label information. To address these
drawbacks, we formulate subspace learning from incomplete
views as a supervised approach, which considers label infor-
mation and complementary information across incomplete
views as follows:

min
{Uv,V,W}

nv∑

v=1

||Ov � (Xv −VUT
v )||2F + α||VW −Y||2F (2)

where � is the Hadamard product (element-wise product).
Ov ∈ R

n×dv is an indicator matrix that denotes the missing
entries, where Ov

i,j = 1 if (i, j) is an observed entry in Xv;

Ov
i,j = 0, otherwise. Y ∈ R

n×c denotes the available label
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matrix of n samples. W ∈ R
k×c is the coefficient matrix,

which maps the shared feature subspace into a semantic label
space. In Eq. (2), we can achieve two goals. On one hand,
the learned subspace can capture the cross-view relationships
as discussed before. On the other hand, we can utilize the
label information Y to induce the shared subspace towards a
semantic label space via the second term, which not only helps
to obtain a discriminative subspace but also may alleviate the
widely spread semantic gap [Datta et al., 2008] between the
input heterogeneous feature spaces and the semantic label
space, since V can be viewed as a bridge between them.

Eq. (2), however, ignores another important issue in multi-
view weak-label learning, i.e., the presence of missing labels.
Namely, often in practice, Y is incomplete and contains many
missing entries. As such, we need to avoid the influence of
missing labels in Y and improve the robustness of Eq. (2).
Considering that label correlation is very important in weak-
label setting and usually can further improve the performance
[Dong et al., 2018], we leverage label correlation among weak
labels to estimate the predicted likelihood scores and extend
Eq. (2) as follows:

min
{Uv,V,W,S}

nv∑

v=1

||Ov � (Xv − VU
T
v )||2F + α||M � (VWS − Y)||2F

(3)

where M ∈ R
n×c is an indicator matrix for missing labels:

Mi,j = 1 if (i, j) is an observed entry in Y; Mi,j = 0, other-
wise. S ∈ Rc×c denotes the label correlation matrix, α > 0 is
the trade-off parameter. By incorporating the label correlation
matrix S, Eq. (3) not only can estimate the predicted likeli-
hood scores, but also can enhance the discriminative ability
of the learned subspace by using label correlations among
weak labels. However, since the observed relevant label sets
of samples are incomplete, we cannot directly compute the
label correlation matrix S from prior knowledge Y; we need
to learn it. In addition, we also need to account for the fact
that label correlations are naturally local [Huang and Zhou,
2012], and can manifest as direct or indirect dependencies
[Wu et al., 2015]. As such, it is reasonable to assume that label
correlations are locally structured, that is, there exists a sub-
set of labels, which are closely related to each other through
complex correlations, and are independent from the rest. This
local structure typically implies a low-rank structure of S,
which is common in real-world applications [Xu et al., 2015b;
Xu et al., 2016]. To capture local label correlations, we add a
low-rank constraint on S, and make Eq. (3) more suitable for
weak-label problems as follows:

min
{Uv,V,W,S}

nv∑

v=1

||Ov � (Xv −VUT
v )||2F

+α||M� (VWS−Y)||2F + βrank(S)

(4)

where β is the trade-off parameter, which balances the rela-
tive importance of the low-rank constraint on S. By adding
the rank term, our model can capture local label correlation-
s among weak labels which is more suitable for real-world
applications. It’s worth noticing that the work in [Xu et al.,
2015b] also makes a low-rank assumption among labels, but
its usage is different. In particular, the authors in [Xu et al.,
2015b] multiply the low rank correlation matrix with Y to

replenish missing labels. In contrast, we use the low rank cor-
relation matrix with the predicted likelihood label vectors. As
such, since the estimated label correlation values may not be
very reliable in practice, our method is less impacted by them.
Furthermore, since V is the low-rank feature representation
learned across incomplete views, Eq. (4) is robust to outliers
and background noise that may affect the feature space. The
rank minimization problem is NP-hard. Here we can relax
the rank problem using the nuclear norm || · ||∗ [Candès and
Recht, 2009], and reformulate Eq. (4) as follows:

min
{Uv,V,W,S}

nv∑

v=1

||Ov � (Xv −VUT
v )||2F

+α||M� (VWS−Y)||2F + β||S||∗
(5)

Eq. (5) considers cross-view relationships and local (low
rank) label structure. In addition, it absorbs label information
to induce the shared subspace and enhance its discriminative
power. Another advantage of our model is that it jointly learns
a shared subspace from incomplete views with weak labels,
the local label structure, and the predictor in this subspace.
This unified model reinforces their reciprocal effects and thus
further improves the performance.

4 Optimization
The minimization problem in Eq. (5) is defined with respect to
{Uv}vv=1, V, W and S. Since a close-form solution cannot
be computed, we develop an alternative optimization method
to optimize the objective function.

(I). Keep {Uv}, V and S fixed, update W
When {Uv}, V and S are fixed, we have the following e-
quation for W by taking the derivative of Eq. (5) w.r.t. W,

J1(W) = 2VT (M�VWS)ST − 2VT (M�Y)ST (6)

We can derive the following fixed-point updating rule for W,

W = W � VT (M�Y)ST

VT (M�VWS)ST
(7)

(II). Keep {Uv}, V and W fixed, update S
When {Uv}, V and W are fixed, optimizing Eq. (5) with
respect to S is equivalent to

J2(S) = α||M� (XWS−Y)||2F + β||S||∗ (8)

Eq. (8) can be viewed as a matrix completion problem [Candès
and Recht, 2009], and many algorithms have been proposed
to solve this problem in recent decades. Here we adopt an
efficient speedup algorithm, Maxide [Xu et al., 2013], to solve
it. Maxide only needs to estimate a c× c matrix.

(III). Keep {Uv}, W and S fixed, update V
When keeping {Uv}, W and S fixed, we obtain the following
equation for V by taking the derivative of Eq. (5) w.r.t. V:

J3(V) =2

nv∑

v=1

(Ov �VUT
v )Uv + 2α(M�VWS)STWT

− 2

nv∑

v=1

(Ov �Xv)Uv − 2α(M�Y)STWT

s.t. Uv ≥ 0,Vv ≥ 0, v = 1, 2, ..., nv

(9)
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Using the Karush-Kuhn-Tucker (KKT) condition [Boyd and
Vandenberghe, 2004], we can derive the following updating
rule,

Vi,j ← Vi,j

(
nv∑
v=1

(Ov �Xv)Uv + α(M�Y)STWT )i,j

(
nv∑
v=1

(Ov �VUT
v )Uv + α(M�VWS)STWT )i,j

(10)

(IV). Keep {V}, W and S fixed, update Uv

With {V}, W and S fixed, the computation of Uv is indepen-
dent from Uv′ , v′ �= v. Thus, for each view v, we obtain the
following equation for Uv by taking the derivative of Eq. (5)
w.r.t. Uv:

J4(Uv) = 2(Ov �UvV
T )V − 2(Ov �Xv)

TV (11)

Using the KKT condition, we can derive the following updat-
ing rule:

(Uv)i,j ← (Uv)i,j
((Ov �Xv)

TV)i,j
((Ov �UvVT )V)i,j

(12)

4.1 Complexity Analysis
The time complexity of iMVWL is dominated by matrix
multiplication. In each iteration, the time complexities of
solving W and S in Eq. (7) and Eq. (8) are O(nck) and
O(rc ln c lnn) respectively, where r is the rank of S; the
time complexity of updating V in Eq. (10) and Uv in E-
q. (12) is less than O(nv(nkdmax + 2nk2 + nck)) and
O(nv(nkdmax+dmaxk

2)), respectively. dmax represents the
largest dimensionality of the views. Since n � k and n � c,
the overall time complexity of iMVWL is O(tnvnkdmax),
where t is the number of iterations to reach convergence. In
practice, t does not exceed 60. In our study, some of the views
have sparse feature matrices; as such, the actual time cost of
the above operations can be further reduced.

5 Experiments
5.1 Experimental Setup
The five multi-view datasets used in the experiments (Core15k,
Pascal07, ESPGame, IAPRTC-12, and Mirflicker) are summa-
rized in Table 1. These datasets1 are obtained from [Guillau-
min et al., 2010], and each is represented by six feature views:
HUE, SIFT, GIST, HSV, RGB, and LAB. For each dataset,
we randomly sample 70% of the data for training, and use the
remaining 30% data for testing (unlabeled data). Moreover, to
create weak-label scenarios, we follow the protocol given in
[Xu et al., 2013]: for each label c′ we remove the assignment
of c′ for ω% randomly sampled positive and negative training
samples (c′ becomes a missing label); to create incomplete-
view data scenarios, we randomly remove ε% samples from
each view, while ensuring each sample appears in at least
one view. For each dataset, dmin represents the minimum
dimensionality of the different views.

Methods: We compare iMVWL against four state-of-the-
art methods: LabelMe [Zhang et al., 2013], MVL-IV [Xu et

1Available at http://lear.inrialpes.fr/people/guillaumin/data.php

datasets n nv c #avg
Core15k 4999 6 260 3.396
Pascal07 9963 6 20 1.465
ESPGame 20770 6 268 4.686
IAPRTC12 19627 6 291 5.719
Mirflicker 25000 6 38 4.716

Table 1: Statistics of five multi-view datasets: n is the number of
samples; nv is the number of views; c is the number of distinct labels;
and #avg is the average number of labels per sample.

al., 2015a], lrMMC [Liu et al., 2015], and iMSF [Yuan et
al., 2012]. The first two methods have been introduced in the
Related work Section. lrMMC is a matrix completion based
multi-view learning method, but it assumes complete views of
each training sample and does not explicitly consider missing
labels and label correlations. iMSF was initially proposed for
single label classification with multiple incomplete sources;
we extend it for multi-label classification by training multiple
classifiers (one for each label). These comparing methods can-
not directly handle incomplete multi-view weak-label settings.
For experimental comparisons, we adapt LabelMe and lrMMC
by filling missing features with average values, and set the
missing labels of MVL-IV and iMSF as negative labels. In
addition, we introduce iMVWL-Sp, iMVWL-X, and iMVWL-
Nc to investigate the contribution of learning a discriminative
shared subspace, separately handling multiple feature views,
and capturing local label correlations, respectively. iMVWL-
Sp excludes label information during the subspace learning
process. iMVWL-X concatenates multi-view features into a
single vector. iMVWL-Nc excludes label correlations. Five-
fold cross validation on the training set is used to select the
optimal parameter values for each competitive method. Op-
timal parameters for the competitive methods are selected as
suggested in the corresponding papers. For our method, we
selected the parameters α and β from {10i|i = −5, · · · , 0}.
Experimental results show that iMVWL yields relatively sta-
ble performance with α around 10−2 and β around 10−2, and
therefore we use these values. All the experiments are repeat-
ed ten times, and both the average and standard deviation are
reported. The source code of iMVWL is publicly available at
http://mlda.swu.edu.cn/codes.php?name=iMVWL.

Evaluation: Four widely used multi-label evaluation met-
rics are adopted for performance comparisons, i.e., Ranking
Loss (RL), Average Precision (AP), Hamming Loss (HL), and
adapted AUC. A formal definition of the first three metrics
can be found in [Zhang and Zhou, 2014]. The adapted AUC
is suggested in [Bucak et al., 2011]. To maintain consistency
with other evaluation metrics, in our experiments, we report
1-RL instead of RL. Thus, as for other metrics, the higher the
value of 1-RL, the better the performance is.

5.2 Results On All Datasets
Table 2 and 3 give the results of all methods on five datasets
across four evaluation metrics. In the table, •/◦ indicates
whether iMVWL is statistically (using a pairwise t-test at
95% significance level) superior/inferior to the corresponding
method.

It can be seen that iMVWL outperforms the other methods
in most cases. MVL-IV, iMSF, and iMVWL are all designed
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Dataset metric lrMMC MVL-IV LabelMe iMSF iMVWL

Core15k

1-HL 0.954 ± 0.000• 0.954 ± 0.000• 0.946 ± 0.000• 0.943 ± 0.000• 0.956 ± 0.000
1-RL 0.762 ± 0.002• 0.756 ± 0.001• 0.638 ± 0.003• 0.709 ± 0.005• 0.822 ± 0.001
AP 0.240 ± 0.002• 0.240 ± 0.001• 0.204 ± 0.002• 0.189 ± 0.002• 0.313 ± 0.002
AUC 0.763 ± 0.002• 0.762 ± 0.001• 0.715 ± 0.001• 0.663 ± 0.005• 0.824 ± 0.001

Pascal07

1-HL 0.882 ± 0.000• 0.883 ± 0.000• 0.837 ± 0.000• 0.836 ± 0.000• 0.886 ± 0.000
1-RL 0.698 ± 0.003• 0.702 ± 0.001• 0.643 ± 0.004• 0.568 ± 0.000• 0.749 ± 0.002
AP 0.425 ± 0.003• 0.433 ± 0.002• 0.358 ± 0.003• 0.325 ± 0.000• 0.455 ± 0.001
AUC 0.728 ± 0.002• 0.730 ± 0.001• 0.686 ± 0.005• 0.620 ± 0.001• 0.784 ± 0.001

ESPGame

1-HL 0.970 ± 0.000• 0.970 ± 0.000• 0.967 ± 0.000• 0.964 ± 0.000• 0.971 ± 0.000
1-RL 0.777 ± 0.001• 0.778 ± 0.000• 0.683 ± 0.002• 0.722 ± 0.002• 0.803 ± 0.001
AP 0.188 ± 0.000• 0.189 ± 0.000• 0.132 ± 0.000• 0.108 ± 0.000• 0.236 ± 0.001
AUC 0.783 ± 0.001• 0.784 ± 0.000• 0.734 ± 0.001• 0.674 ± 0.003• 0.808 ± 0.001

IAPRTC12

1-HL 0.967 ± 0.000• 0.967 ± 0.000• 0.963 ± 0.000• 0.960 ± 0.000• 0.969 ± 0.000
1-RL 0.801 ± 0.000• 0.799 ± 0.001• 0.725 ± 0.001• 0.631 ± 0.000• 0.830 ± 0.001
AP 0.197 ± 0.000• 0.198 ± 0.000• 0.141 ± 0.000• 0.101 ± 0.000• 0.234 ± 0.002
AUC 0.805 ± 0.000• 0.804 ± 0.001• 0.746 ± 0.001• 0.665 ± 0.001• 0.832 ± 0.001

Mirflicker

1-HL 0.839 ± 0.000• 0.839 ± 0.000• 0.778 ± 0.000• 0.775 ± 0.000• 0.844 ± 0.001
1-RL 0.802 ± 0.001• 0.808 ± 0.001• 0.771 ± 0.001• 0.641 ± 0.001• 0.817 ± 0.001
AP 0.441 ± 0.001• 0.449 ± 0.001• 0.375 ± 0.000• 0.323 ± 0.000• 0.497 ± 0.003
AUC 0.806 ± 0.001• 0.807 ± 0.000• 0.761 ± 0.000• 0.715 ± 0.001• 0.816 ± 0.001

Table 2: Results on all datasets with ω% = 50%, ε% = 50%, and k = 0.5dmin.

Dataset metric iMVWL-Sp iMVWL-Nc iMVWL-X iMVWL

Core15k

1-HL 0.955 ± 0.000• 0.955 ± 0.000• 0.955 ± 0.000• 0.956 ± 0.000
1-RL 0.790 ± 0.001• 0.798 ± 0.002• 0.808 ± 0.000• 0.822 ± 0.001
AP 0.285 ± 0.003• 0.272 ± 0.003• 0.299 ± 0.000• 0.313 ± 0.002
AUC 0.791 ± 0.001• 0.798 ± 0.002• 0.811 ± 0.001• 0.824 ± 0.001

Pascal07

1-HL 0.883 ± 0.000• 0.884 ± 0.000• 0.884 ± 0.000• 0.886 ± 0.000
1-RL 0.721 ± 0.001• 0.728 ± 0.002• 0.726 ± 0.003• 0.749 ± 0.002
AP 0.436 ± 0.001• 0.440 ± 0.002• 0.446 ± 0.001• 0.455 ± 0.001
AUC 0.750 ± 0.001• 0.745 ± 0.003• 0.759 ± 0.001• 0.784 ± 0.001

ESPGame

1-HL 0.971 ± 0.000• 0.970 ± 0.000• 0.970 ± 0.000• 0.971 ± 0.000
1-RL 0.790 ± 0.001• 0.780 ± 0.001• 0.787 ± 0.001• 0.803 ± 0.001
AP 0.213 ± 0.002• 0.199 ± 0.001• 0.198 ± 0.001• 0.236 ± 0.001
AUC 0.795 ± 0.001• 0.785 ± 0.001• 0.791 ± 0.000• 0.808 ± 0.001

IAPRTC12

1-HL 0.968 ± 0.000• 0.968 ± 0.000• 0.967 ± 0.000• 0.969 ± 0.000
1-RL 0.810 ± 0.001• 0.804 ± 0.002• 0.797 ± 0.003• 0.830 ± 0.001
AP 0.213 ± 0.001• 0.206 ± 0.001• 0.202 ± 0.003• 0.234 ± 0.002
AUC 0.813 ± 0.001• 0.804 ± 0.002• 0.800 ± 0.002• 0.832 ± 0.001

Mirflicker

1-HL 0.843 ± 0.000 0.839 ± 0.000• 0.841 ± 0.001• 0.844 ± 0.001
1-RL 0.817 ± 0.001 0.813 ± 0.001• 0.806 ± 0.002• 0.817 ± 0.001
AP 0.486 ± 0.002• 0.486 ± 0.002• 0.480 ± 0.004• 0.497 ± 0.003
AUC 0.816 ± 0.001 0.807 ± 0.001• 0.805 ± 0.003• 0.816 ± 0.001

Table 3: Results of variants of iMVWL on all datasets with ω% = 50%, ε% = 50%, and k = 0.5dmin.

for incomplete multi-view data, but iMVWL almost always
outperforms the other two across the four evaluation metrics.
The main reason is that MVL-IV and iMSF assume that the
available labels are complete and ignore the widely witnessed
weak-label scenarios. Both lrMMC and LabelMe are multi-
view learning methods based on subspace learning, and they
can handle weak-labels. But LabelMe is outperformed by
lrMVL across five datasets. A possible reason is that lrMMC
considers the multi-view weak-label learning task as a matrix
completion problem, which is more robust to missing values.
However, lrMMC is outperformed by iMVWL in many cases.
This is mainly because lrMMC assumes the completeness of
multiple views. As discussed in the Introduction section, this
assumption is often violated in practice.

In Table 3, iMVWL-Sp is a degenerate case of iMVWL,
which is obtained by excluding label information during sub-
space learning, thereby isolating the subspace learning process
from the subsequent classification task. iMVWL almost al-
ways performs better than iMVWL-Sp on these datasets. This
is mainly because in iMVWL-Sp the learned subspace may
lack the ability to discriminate between different labels. In
addition, when the objectives are treated separately, an op-
timal subspace can be achieved, but it may not be optimal
for the subsequent prediction. These results corroborate our
motivation to jointly optimize the two objectives. iMVWL-
Nc is obtained from iMVWL by excluding label correlations,
and is almost always outperformed by iMVWL. This fact
demonstrates the effectiveness of the proposed method in cap-
turing local label correlations. iMVWL-X is another variant
of iMVWL; it concatenates all feature view vectors into a
single vector, and follows the same process of iMVWL for

prediction. It’s outperformed by iMVWL in almost every case.
These results justify the rationale of handling multiple feature
views separately.

An interesting observation is that iMVWL-Sp performs
better than (or comparable to) other methods in most cases.
This is mainly because iMVWL-Sp addresses both incomplete
multi-view and weak-label problems, while the other methods
only address one of the two. The performance margin achieved
by iMVWL and iMVWL-Sp further justifies our motivation
to jointly handle incomplete multi-view data and weak-labels.

5.3 Handling Weak-Labels
We conducted additional experiments on Core15k to inves-
tigate the performance of iMVWL and other methods when
handling missing labels. We set the dimensionality of the
shared subspaces equal to 20%, 50%, and 80% of dmin, with
ω% that varies from 0% to 50% with a step-size of 10%. Since
iMSF is not a subspace learning method, its performance is the
same for all dimensionality. Since the results on all evaluation
metrics are similar, for space limitation, we report only the
results of AUC in Figure 1.

We can see that the performance of all the methods de-
creases when ω% increases, and iMVWL outperforms the
competitive methods in all the settings. Also, regardless of
the dimensionality of the learned subspaces, iMVWL perform-
s consistently better than the other methods under different
ratios of missing labels.

5.4 Handling Incomplete Multi-View Data
We also performed experiments to investigate the impact of
different percentages (ε%) of incomplete views on the perfor-
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Figure 1: AUC values of compared methods on the Core15k dataset
with different missing label proportions ω%. The dimensionality
(k) of the shared subspace is set to 0.2dmin(Left), 0.5dmin(Middle),
and 0.8dmin(Right).

lrMMC MVL-IV LabelMe iMSF iMVWL

Core15k 50.94 156.77 424.6 5531.75 52.47
Pascal07 184.04 299.06 928.69 2019.98 44.60
ESPGame 410.64 4449.91 2314.93 6887.37 1107.85
IAPRTC-12 405.07 6965.33 1900.96 49540.29 1268.97
Mirflicker 341.03 38404.08 3098.72 729.84 111.24
Total 1392.89 50281.76 8668.69 64778.68 2585.13

Table 4: Runtime comparison (in seconds).

mance of various methods. Similarly to previous experimental
protocols, we set the dimensionality of the learned subspace
equal to 20%, 50%, and 80% of dmin, and then increase the
percentage of incomplete views ε% from 0% to 50% with a
step-size of 10%. Due to space limitation, we report only the
results for ε% equal to 0%, 30%, and 50% in Figure 2. The
performance trend for ε% equal 10%, 20%, and 40% is similar
to those reported in Figure 2.

It can be seen that the performance of all the methods de-
creases with the increasing of ε%, and iMVWL gives the best
performance in all the cases. In addition, as the dimensionality
(k) of the shared subspace increases, the performance of all the
methods shows an increasing trend, but iMVWL still performs
consistently better than the competitors, under the different
percentages of incomplete views.

5.5 Parameter Analysis
In this section, we test the sensitivity of iMVWL w.r.t. α and
β. The tested range for α and β is {10i|i = −5, · · · , 0}. For
brevity, we only report the 1-RL and AUC results on Core15k
in Figure 3; similar results were obtained for the other datasets
as well.

From the Figure, we can see that iMVWL achieves rel-
atively stable and good performance when α ≈ 10−2 and
β ≈ 10−2. We also observe that when α = 10−5 or β = 10−5,
iMVWL has reduced 1-RL or AUC. This result confirms the
contribution of weak-label information and local label corre-
lation in improving the performance of iMVWL. When α or
β are close to one, the AUC and 1-RL sharply decrease. This
is because large values of α (or β) overweight the effect of
weak-label information in subspace learning (or local label
correlations), while underweighting the shared subspace V,
which encodes cross-view relationships.

5.6 Runtime And Convergence Analysis
We also study the runtime cost of the competing methods
on the five datasets, and report the costs in Table 4. The
experiments are conducted on CentOS 6.9 with Inter(R) Xeon
E5-2678, 64GB RAM and MATLAB 2013a. We can see that
iMVWL runs much faster than other comparing methods in

0 30 500.6

0.7

0.8

ε % 

AU
C

LabelMe
iMSF
lrMMC
MVL−IV
iMVWL

0 30 500.6

0.7

0.8

ε % 

AU
C

0 30 500.6

0.7

0.8

ε % 

AU
C

Figure 2: Results on the Core15k dataset with different incomplete
view percentages ε%. The dimensionality (k) of the shared subspace
is set to 0.2dmin (Left), 0.5dmin(Middle), and 0.8dmin(Right).
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Figure 3: Parameter analysis w.r.t. α and β on Core15k.
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Figure 4: Convergence trend analysis.

most cases. The only exception is lrMMV on ESPGame and
IAPRTC-12 datasets. This is mainly because lrMMC needs to
estimate a target matrix of size n×k just once, while iMVWL
has to estimate the label correlation matrix of size c× c in
each iteration. As a result, when c is large, iMVWL costs
more. These results corroborate the efficiency of the proposed
method. The convergence trends on the other datasets are
similar.

Figure 4 shows the convergence curve of iMVWL on
Core15k and Pascal07 datasets. As we can see, on both
datasets, iMVWL tends to converge after 60 iterations. The
convergence trends on the other datasets are similar.

6 Conclusion
In this paper, we propose a novel model called iMVWL to
learn from data with incomplete views and missing labels.
iMVWL learns a discriminative shared subspace from incom-
plete views with weak labels. At the same time, it learns a
robust weak-label classifier in the subspace and the local label
structure. An alternative optimization solution is developed
to optimize this model, which not only can avoid subopti-
mal problems, but also reinforces the reciprocal effects of the
shared subspace and of the classifier, and further improves the
performance. The experimental results show that iMVWL out-
performs other competitive methods. How to further improve
the efficiency of iMVWL is an interesting future pursue.
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