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Abstract—The original rough-set model is primarily concerned with the
approximations of sets described by a single equivalence relation on a given

universe. With granular computing point of view, the classical rough-set
theory is based on a single granulation. This correspondence paper first
extends the rough-set model based on a tolerance relation to an incomplete
rough-set model based on multigranulations, where set approximations are

defined through using multiple tolerance relations on the universe. Then,
several elementary measures are proposed for this rough-set framework,
and a concept of approximation reduct is introduced to characterize
the smallest attribute subset that preserves the lower approximation and

upper approximation of all decision classes in this rough-set model. Finally,
several key algorithms are designed for finding an approximation reduct.

Index Terms—Attribute reduction, granular computing, information
systems (ISs), rough set.

I. INTRODUCTION

Rough-set theory, proposed by Pawlak and Skowron [24], [26], has

become a well-established mechanism for uncertainty management

in a wide variety of applications related to artificial intelligence [4],

[11], [12], [17], [43], [44], [58]. In this framework, an attribute set is

viewed as a granular space, which partitions the universe into some

knowledge granules or elemental concepts. Partition, granulation, and

approximation are the methods widely used in human’s reasoning

[55], [56]. Rough-set methodology presents a novel paradigm to deal

with uncertainty and has been applied to feature selection [18], [48],

[49], knowledge reduction [9], [16], [51], rule extraction [1], [8], [35],

[50], [59], uncertainty reasoning [20], [25], [31], decision evaluation

[36]–[38], and granular computing [2], [3], [19], [21], [29], [30],

[52], [57].

Knowledge representation in the rough-set model is done via in-

formation systems (ISs) which are a tabular form of an OBJECT →
ATTRIBUTE VALUE relationship, similar to relational databases. An

IS is an ordered triplet S = (U, AT, f), where U is a finite nonempty

set of objects, AT is a finite nonempty set of attributes (predictor

features), and fa : U → Va for any a ∈ AT , where Va is the domain

of an attribute a. For any x ∈ U , an information vector of x is given

by Inf(x) = (a, fa(x))|a ∈ AT . In particular, a target IS is given by

S = (U,AT, f,D, g), where D is a finite nonempty set of decision
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attributes and gd : U → Vd for any d ∈ D, where Vd is the domain of

a decision attribute d.

In the past ten years, under different conditions, several extensions

of the rough-set model have been accomplished [26]–[28], which

include variable precision rough-set model [60], rough-set model

based on tolerance relation [13], [14], [32], [45], [47], Bayesian rough-

set model [46], fuzzy rough-set model [5], rough fuzzy set model [5],

and fuzzy probabilistic rough-set model [10]. In the view of granular

computing proposed by Zadeh [56], a target concept in these models is

always characterized via the so-called upper and lower approximations

under a single granulation, i.e., the concept is depicted by available

knowledge induced from a single relation (such as equivalence rela-

tion, tolerance relation, and reflexive relation) on the universe. This

approach in describing a target concept relies mainly on the following

assumption.

If P and Q are two sets of predictor features and X ⊆ U is a

target concept, then the rough set of X is derived from the quotient

set U/(P ∪ Q). In fact, the quotient set is equivalent to the formula

P̂ ∪ Q = {Pi ∩ Qj : Pi ∈ U/P, Qj ∈ U/Q}.

This assumption implies the following conditions.

1) Any two attributes must be independent in ISs.

2) An intersection operation between any Pi and Qj can be

performed.

3) The target concept is approximately described by using the

quotient set U/(P ∪ Q).

In fact, the target concept is described by using a finer granula-

tion (partitions) formed through combining two known granulations

(partitions) induced by two-attribute subsets. Although it generates a

much finer granulation and more knowledge granules, the combina-

tion/fining destroys the original granulation structure/partitions [34].

However, this assumption, in general, cannot always be satisfied

in many practical issues. For example, in some decision-making

processes, for the same object (or sample, project, and element),

there is a contradiction/inconsistent relationship between its values

under one-attribute set P and those under another attribute set Q.

In other words, we cannot perform intersection operations between

their quotient sets, and the target concept cannot be approximated by

the quotient set U/(P ∪ Q). In this case, we often need to describe

concurrently the target concept through multiple binary relations (e.g.,

equivalence relation, tolerance relation, reflexive relation, and neigh-

borhood relation) on the universe according to user requirements or

targets of problem solving [34].

In view of granular computing, an equivalence relation (or a

tolerance relation) on the universe can be regarded as a granulation,

and a partition (or a cover) on the universe can be regarded as a

granulation space [19], [53], [54]. Hence, the classical rough-set theory

is based on a single granulation (only one equivalence relation). Note

that any attribute set can induce a certain equivalence relation in a com-

plete IS. In the literature, to more widely apply the rough-set theory

in practical applications, Qian and Liang [34] extended Pawlak’s

single-granulation rough-set model to a multigranulation rough-set

model (MGRS), where the set approximations are defined by multiple

equivalence relations on the universe. In the literature [39]–[42],

Rasiowa et al. also investigated the approaches to approximation based

on many indiscernibility relations for rough approximations. However,

in essence, the approximations in these approaches are still based on a

singleton granulation induced from an indiscernibility relation, which

can be applied to knowledge representation in distributive systems

1083-4427/$26.00 © 2009 IEEE

Authorized licensed use limited to: CityU. Downloaded on March 28,2010 at 05:06:42 EDT from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 2, MARCH 2010 421

and groups of intelligent agents. Furthermore, in the literature [33],

Qian et al. gave several basic views for establishing an MGRS model

in incomplete ISs.

The main objective of this correspondence paper is to fully establish

a rough-set model based on multiple tolerance relations in incomplete

ISs. The rest of this paper is organized as follows. Some basic concepts

in complete MGRS are briefly reviewed in Section II. In Section III, a

rough-set model based on multiple tolerance relations, called incom-

plete MGRS, is proposed in incomplete ISs, some of its important

properties are investigated, and several elementary measures for this

rough-set model are presented, which are accuracy measure, quality

of approximation, and precision of approximation. In Section IV, we

first introduce a concept of approximation reduct to the incomplete

MGRS, which is based on the so-called upper approximation reduct

and lower approximation reduct, and then design two algorithms to

compute the upper/underapproximation reducts for applications of this

theory in practical issues. In Section V, an illustrative example shows

the actual applicability of the proposed approach. Finally, Section VI

concludes with some remarks.

II. PRELIMINARIES

Throughout this correspondence paper, we assume that the universe

U is a finite nonempty set. Suppose that U/IND(P ) is a partition

of U induced by the attribute set P in an IS. For x ∈ U , let [x]P be

the class containing x in U/IND(P ) and θP the equivalence relation

associated with U/IND(P ), i.e., xθP y ⇔ [x]P = [y]P .

In the rough-set model MGRS, unlike Pawlak’s rough-set theory,

a target concept is approximated through multiple partitions induced

by multiple equivalence relations [34]. Suppose that S = (U, AT, f)
is a complete IS, then X ⊆ U , and P1, P2, . . . , Pm are m-attribute

subsets. We define a lower approximation and an upper approximation

of X related to P1, P2, . . . , Pm by the following:

m
∑

i=1

PiX =
⋃

{x|[x]Pi
⊆ X, for some i ≤ m}

(1)

m
∑

i=1

PiX = ∼

m
∑

i=1

Pi(∼ X). (2)

Similarly, the boundary region in MGRS can be extended as

Bn∑

m

i=1
Pi

(X) =
∑m

i=1
PiX \

∑m

i=1
PiX .

Fig. 1 shows the difference between Pawlak’s rough-set model and

the MGRS model.

In the figure, the bias region is the lower approximation of a

set X obtained by a single granulation P ∪ Q, which are ex-

pressed by the equivalence classes in the quotient set U/(P ∪ Q),

and the shadow region is the lower approximation of X induced by

two granulations P + Q, which are characterized by the equivalence

classes in the quotient set U/P and the quotient set U/Q together.

III. MGRS IN INCOMPLETE ISS

In this section, we extend MGRS in complete ISs to MGRS in

incomplete ISs, which is just called incomplete MGRS.

A. Incomplete ISs

For an IS, any attribute domain Va may contain special symbol

“∗” to indicate that the value of an attribute is unknown. Here, we

Fig. 1. Difference between Pawlak’s rough-set model and MGRS.

TABLE I
INCOMPLETE TARGET IS ABOUT AN EMPORIUM INVESTMENT PROJECT

assume that an object x ∈ U possesses only one value for an attribute

a, a ∈ AT . Thus, if the value of an attribute a is missing, then the real

value must be from the set Va \ {∗}. Any domain value different from

“∗” will be called regular. A system in which values of all attributes

for all objects from U are regular (known) is called complete and

is called incomplete, otherwise [13]–[15], [18]. In particular, S =
(U, AT, f,D, g) is called an incomplete target IS if values of some

attributes in AT are missing and those of all attributes in D are regular

(known), where AT is called the conditional attributes and D is the

decision attributes.

Example 1: Here, we employ an example to illustrate some con-

cepts of an incomplete target IS and computations involved in our

proposed incomplete MGRS. Table I depicts an incomplete target IS

containing some information about an emporium investment project.

Locus, Investment, and Population density are the conditional at-

tributes of the system, and Decision is the decision attribute (in the

sequel, L, I , P , and D will stand for Locus, Investment, Popula-

tion density, and Decision, respectively). The attribute domains are

as follows: VL = {good, common, bad}, VI = {high, low}, VP =
{0.88, 0.33, 0.40, 0.37, 0.60, 0.65, 0.62}, and VD = {Y es,No}.

Let S = (U, AT, f) be an incomplete IS. Each subset of attributes

P ⊆ AT determines a binary relation SIM(P ) on the universe U [13]

SIM(P ) = {(u, v) ∈ U × U | ∀ a ∈ P, a(u) = a(v)

or a(u) = ∗ or a(v) = ∗} .

The relation SIM(P ), P ⊆ AT , is a tolerance relation. If the at-

tributes P ⊆ AT are numerical attributes, we define another tolerance

relation as follows:

SIM(P ) = {(u, v) ∈ U × U | ∀ a ∈ P, |a(u) − a(v)| ≤ δa

or a(u) = ∗ or a(v) = ∗, δa ≥ 0} .
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Fig. 2. Set approximation in Kryszkiewicz’s rough-set model.

It can be shown that SIM(P ) =
⋃

a∈P
SIM({a}). Let SP (u)

denote the set {v ∈ U |(u, v) ∈ SIM(P )}. Clearly, SP (u) is the

maximal set of objects which are possibly indistinguishable by P
with u. Let U/SIM(P ) denote the family of sets {SP (u)|u ∈ U}
called the classification or knowledge induced by the attributes P . A

member SP (u) from U/SIM(P ) is called a tolerance class or an

information granule. Note that the tolerance classes in U/SIM(P )
cannot constitute a partition of the universe U in general. They

constitute a cover of U , i.e., SP (u) = ∅ for every object u ∈ U and
⋃

u∈U
SP (u) = U . In particular, the identity partition is the cover that

each of the tolerance classes contains only a singleton set, and the

universal partition is the cover that each of tolerance classes is equal

to the universe set. The former is the finest cover on any nonempty

set, and the latter is the roughest cover on the universe U . For an

incomplete target IS S = (U, AT, f,D, g), if SIM(AT ) ⊆ θD , we

say S is consistent, and otherwise, S is inconsistent [18].

Given the earlier discussion, we can then define a partial order on

the set of all classifications of U . Let S = (U, AT, f) be an incomplete

IS and P, Q ∈ AT . One says that P is finer than an attribute set Q
(or Q is coarser than P ) if and only if SP (ui) ⊆ SQ(ui) for any

i ∈ {1, 2, . . . , |U |}, denoted by P � Q. If P � Q and U/SIM(P ) =
U/SIM(Q), one says that P is strictly finer than an attribute set

Q (or Q is strictly coarser than P ), denoted by P ≺ Q[33]. In fact,

P ≺ Q ⇔ SP (ui) ⊆ SQ(ui)∀ i ∈ {1, 2, . . . , |U |}, and there exists at

least one j ∈ {1, 2, . . . , |U |} such that SP (ui) ⊂ SQ(ui).

B. Incomplete MGRS on Two Granulation Spaces

Simply, we first investigate the approximation of a target set under

two tolerance relations on the universe, i.e., how to approximate a

target concept through using two granulation spaces.

Definition 1: Let S = (U, AT, f) be an incomplete IS, P, Q ⊆ AT
two-attribute subsets, and X ⊆ U . A lower approximation and upper

approximation of X in U are defined by the following:

P + QX =
⋃

{x |SP (x) ⊆ X or SQ(x) ⊆ X} (3)

P + QX = ∼ P + Q(∼ X). (4)

The order pair 〈P + QX, P + QX〉 is called a rough set of X with

respect to P + Q. The area of uncertainty or boundary region of this

rough set is defined as

BnP+Q(X) = P + QX \ P + QX.

One can understand the rough-set approximation based on multiple

tolerance relations and show the difference between the incomplete

MGRS and the classical rough-set framework based on a tolerance

relation proposed by Kryszkiewicz [13] through Figs. 2 and 3 and

Example 2.

Fig. 3. Set approximation in incomplete MGRS.

In Fig. 2, the dashed region is the lower approximation of

a set X obtained by a single granulation P ∪ Q, and the bias region

is the upper approximation of X induced by the granulation P ∪ Q in

Kryszkiewicz’s incomplete rough-set model. However, in Fig. 3, the

dashed region is the lower approximation of a set X obtained by two

granulations P + Q, and the bias region is the upper approximation of

X induced by the granulations P + Q in incomplete MGRS.

Example 2 (Continued From Example 1): Let X = {e1, e2, e6, e8}
and δP = 0.1. Three covers can be induced from Table I as follows:

U/SIM(L)={{e1, e7}, {e2, e3, e4, e5, e6},

{e2, e3, e4, e5, e6}, {e2, e3, e4, e5, e6},

{e2, e3, e4, e5, e6}, {e2, e3, e4, e5, e6},

{e1, e7}, {e8}}

U/SIM(P )={{e1, e2}, {e1, e2, e3, e4, e5, e6, e7, e8},

{e2, e3, e4, e5}, {e2, e3, e4, e5},

{e2, e3, e4, e5}, {e2, e6, e7, e8},

{e2, e6, e7, e8}, {e2, e6, e7, e8}}

U/SIM(L ∪ P )={{e1}, {e2, e3, e4, e5, e6}, {e2, e3, e4, e5},

{e2, e3, e4, e5}, {e2, e3, e4, e5},

{e2, e6}, {e7}, {e8}} .

From Definition 1, one can obtain that

L + PX =
⋃

{x |SL(x) ⊆ X or SP (x) ⊆ X}

= {e8} ∪ {e1} = {e1, e8}

L + PX = ∼ L + P (∼ X)

= ∼ {∅ ∪ ∅} = {e1, e2, e3, e4, e5, e6, e7, e8}.

However, the lower approximation and the upper approximation of

X in the classical rough-set model based on a single tolerance relation

are calculated as follows:

L ∪ PX =
⋃

{x |SL∪P (x) ⊆ X} = {e1, e6, e8}

L ∪ PX =
⋃

{x |SL∪P (x) ∩ X = ∅}

= {e1, e2, e3, e4, e5, e6, e8}.

Clearly, it follows from the earlier computations that

L + PX = {e1, e8} ⊆ {e1, e6, e8} = L ∪ PX

L + PX = {e1, e2, e3, e4, e5, e6, e7, e8}

⊇{e1, e2, e3, e4, e5, e6, e8} = L ∪ PX.

The difference between the two kinds of set approximations can be

easily understood by the following theorem.
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Theorem 1: Let S = (U, AT, f) be an incomplete IS and X ⊆ U
and P, Q ⊆ AT be two-attribute subsets. Then, the following proper-

ties hold.

1) P + QX ⊆ P ∪ QX .

2) P + QX ⊇ P ∪ QX .

Proof:

1) For any x ∈ P + QX , from Definition 1, it follows that

SP (x) ⊆ X or SQ(x) ⊆ X . Hence, x ∈ SP (x) ∩ SQ(x).

But SP (x) ∩ SQ(x) ∈ SP∪Q(x)∀x ∈ U . Therefore,

x ∈ SP∪Q(x), i.e., P + QX ⊆ P ∪ QX .

2) From the classical rough-set model based on a tolerance

relation, we know that P ∪ QX =∼ P ∪ Q(∼ X). Accord-

ing to the result of 1), one can obtain that P ∪ QX =
∼ P ∪ Q(∼ X) ⊆∼ P + Q(∼ X) = P + QX .

Corollary 1: BnP (X) ⊆ BnP+Q(X) and BnQ(X) ⊆
BnP+Q(X).

From the definition of set approximations under two granulation

spaces, one can get the following properties of the lower approxima-

tion and the upper approximation.

Theorem 2: Let S = (U, AT, f) be an incomplete IS and X ⊆ U
and P, Q ⊆ AT be two-attribute subsets. Then, the following proper-

ties hold.

1) P + QX ⊆X ⊆ P + QX .

2) P + Q∅ = P + Q∅ = ∅, P + QU = P + QU = U .

3) P + Q(∼ X) =∼ P + QX , P + Q(∼ X) =∼ P + QX .

4) P + QX = PX ∪ QX .

5) P + QX = PX ∩ QX .

6) P + QX = Q + PX , P + QX = Q + PX .

To establish the relationship between the approximation of a single

set and that of two sets approximated through using two granulations,

the following properties are given.

Theorem 3: Let S = (U, AT, f) be an incomplete IS and X, Y ⊆
U and P,Q ⊆ AT be two-attribute subsets. Then, the following

properties hold.

1) P + Q(X ∩ Y ) = (PX ∩ PY ) ∪ (QX ∩ QY ).

2) P + Q(X ∪ Y ) = (PX ∪ PY ) ∩ (QX ∪ QY ).

3) P + Q(X ∩ Y ) ⊆ P + QX ∩ P + QY .

4) P + Q(X ∪ Y ) ⊇ P + QX ∪ P + QY .

5) X ⊆ Y ⇒ P + QX ⊆ P + QY .

6) X ⊆ Y ⇒ P + QX ⊆ P + QY .

7) P + Q(X ∪ Y ) ⊇ P + QX ∪ P + QY .

8) P + Q(X ∩ Y ) ⊆ P + QX ∩ P + QY .

C. Incomplete MGRS on Multiple Granulation Spaces

Based on the earlier conclusions, we can then extend the rough-set

model based on a single tolerance relation to a rough-set model based

on multigranulations in the context of incomplete ISs.

Definition 2: Let S = (U, AT, f) be an incomplete IS and X ⊆ U
and P1, P2, . . . , Pm ⊆ AT be m- attribute subsets. We define a lower

approximation of X and an upper approximation of X with respect to

P1, P2, . . . , Pm by the following:

m
∑

i=1

PiX =
⋃

{x |SPi
(x) ⊆ X, for some i ≤ m}

(5)

m
∑

i=1

PiX = ∼

m
∑

i=1

Pi(∼ X). (6)

Similarly, the area of uncertainty or boundary region in incomplete

MGRS can be represented as

Bn∑

m

i=1
Pi

(X) =

m
∑

i=1

PiX

∖

m
∑

i=1

PiX.

From this definition, we obtain the following interpretations.

1) The lower approximation of a set X with respect to
∑m

i=1
Pi

is the set of all objects, which can be certainly classified as X
using

∑m

i=1
Pi (are certainly X in view of

∑m

i=1
Pi).

2) The upper approximation of a set X with respect to
∑m

i=1
Pi is

the set of all objects, which can be possibly classified as X using
∑m

i=1
Pi (are possibly X in view of

∑m

i=1
Pi).

3) The boundary region of a set X with respect to
∑m

i=1
Pi is the

set of all objects, which can be classified neither as X nor as

∼ X using
∑m

i=1
Pi.

To apply this approach in practical issues, we present here an

algorithm for computing a lower approximation of a set X in this

rough-set model based on multiple tolerance relations.

Algorithm I: Let S = (U, AT, f) be an incomplete IS and X ⊆ U
and P ⊆ AT , where P = {P1, P2, . . . , Pm}.

This algorithm gives the lower approximation of X by P :
∑m

i=1
PiX =

⋃

{x|SPi
(x) ⊆ X, i ≤ m}.

We use the following pointers.

1) i = 1, 2, . . . ,m points to Pi.

2) j = 1, 2, . . . , |U | points to SPi
(uj) ∈ U/SIM(Pi).

3) L records the computation of the lower approximation.

For every i and j, we check whether SPi
(uj) ∩ X = SPi

(uj). If

SPi
(uj) ∩ X = SPi

(uj), then we put uj into the lower approximation

of X: L ← L ∪ {uj}.

(I1) Compute m covers: U/SIM(P1), U/SIM(P2), . . . ,
U/SIM(Pm);

(I2) Set i ← 1, j ← 1, L = ∅;

(I3) For i = 1 to m Do

For j = 1 to |U | Do

If SPi
(uj) ∩ X = SPi

(uj), then

let L ← L ∪ {uj},

Endif

Endfor

Set j ← 1,

Endfor

(I4) The computation of the lower approximation X by P is

completed. Output the set L.

We know that the time complexity of computing m covers is

O(m|U |2). The time complexity of (I3) is also O(m|U |2) as there

are
∑m

i=1
|Pi| intersections Y j

i ∩ X (≤ |U | × |U |) to be calculated.

Hence, the time complexity of Algorithm I is O(m|U |2).

This algorithm can be run in parallel mode to compute concurrently

all corresponding covers and intersections from many attributes. Its

time complexity will be O(|U |2). Like this idea, the algorithm for

computing the upper approximation of a set can also be designed

correspondingly.

Directly from Definition 2, one can obtain the following properties

of the lower approximation and the upper approximation in incomplete

MGRS.
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Theorem 4: Let S = (U, AT, f) be an incomplete IS and X ⊆ U
and P1, P2, . . . , Pm ⊆ AT be m-attribute subsets. Then, the follow-

ing properties hold.

1)
∑m

i=1
PiX =

⋃m

i=1
PiX .

2)
∑m

i=1
PiX =

⋂m

i=1
PiX .

3)
∑m

i=1
Pi(∼ X) =∼

∑m

i=1
PiX .

4)
∑m

i=1
Pi(∼ X) =∼

∑m

i=1
PiX .

Proof:

1) From (4) in Theorem 2, it can be easily proved.

2) From (3) and 1) in this theorem, one can have

m
∑

i=1

PiX = ∼

m
∑

i=1

Pi(∼ X) =∼

m
⋃

i=1

Pi(∼ X)

= ∼

m
⋃

i=1

(∼ PiX) =

m
⋂

i=1

PiX.

3) From (3), it is straightforward.

4) Let X =∼ X in (3). Then, we have
∑m

i=1
Pi(∼ X) =∼

∑m

i=1
PiX .

Theorem 5: Let S = (U, AT, f) be an incomplete IS and

X1, X2, . . . ,Xn ⊆ U be n subsets on U and P1, P2, . . . , Pm ⊆ AT
be m-attribute subsets. Then, the following properties hold.

1)
∑m

i=1
Pi(

⋂n

j=1
Xj) =

⋃m

i=1
(
⋂n

j=1
PiXj).

2)
∑m

i=1
Pi(

⋃n

j=1
Xj) =

⋂m

i=1
(
⋃n

j=1
PiXj).

3)
∑m

i=1
Pi(

⋂n

j=1
Xj) ⊆

⋂n

j=1
(
∑m

i=1
PiXj).

4)
∑m

i=1
Pi(

⋃n

j=1
Xj) ⊇

⋃n

j=1
(
∑m

i=1
PiXj).

5)
∑m

i=1
Pi(

⋃n

j=1
Xj) ⊇

⋃n

j=1
(
∑m

i=1
PiXj).

6)
∑m

i=1
Pi(

⋂n

j=1
Xj) ⊆

⋂n

j=1
(
∑m

i=1
PiXj).

Theorem 6: Let S = (U, AT, f) be an incomplete IS and

X1, X2, . . . ,Xn ⊆ U with X1 ⊆ X2 ⊆ · · · ⊆ Xn be n subsets on U
and P1, P2, . . . , Pm ⊆ AT be m-attribute subsets. Then, the follow-

ing properties hold.

1)
∑m

i=1
PiX1 ⊆

∑m

i=1
PiX2 ⊆ · · · ⊆

∑m

i=1
PiXn.

2)
∑m

i=1
PiX1 ⊆

∑m

i=1
PiX2 ⊆ · · · ⊆

∑m

i=1
PiXn.

Proof: Suppose 1 ≤ i ≤ j ≤ n, then Xi ⊆ Xj .

1) Clearly, Xi ∩ Xj = Xi. Hence, it follows from 3) in Theorem 5

that

m
∑

i=1

PiXi =

m
∑

i=1

Pi(Xi ∩ Xj) ⊆

m
∑

i=1

PiXi ∩

m
∑

i=1

PiXj .

Thus,
∑m

i=1
PiXi =

∑m

i=1
PiXi ∩

∑m

i=1
PiXj . Therefore,

we have that
∑m

i=1
PiXi ⊆

∑m

i=1
PiXj . Therefore, it follows

that
∑m

i=1
PiX1 ⊆

∑m

i=1
PiX2 ⊆ · · · ⊆

∑m

i=1
PiXn.

2) Clearly, Xi ∪ Xj = Xj . Hence, it follows from 4) in Theorem 5

that

m
∑

i=1

PiXj =

m
∑

i=1

Pi(Xi ∪ Xj) ⊇

m
∑

i=1

PiXi ∪

m
∑

i=1

PiXj .

Thus,
∑m

i=1
PiXj =

∑m

i=1
PiXi ∪

∑m

i=1
PiXj . Therefore,

we have that
∑m

i=1
PiXi ⊆

∑m

i=1
PiXj . Therefore, it follows

that
∑m

i=1
PiX1 ⊆

∑m

i=1
PiX2 ⊆ · · · ⊆

∑m

i=1
PiXn.

Theorem 7: Let S = (U, AT, f) be an incomplete IS and X ⊆
U and P = {P1, P2, . . . , Pm} with P1 � P2 � · · · � Pm∀Pi ⊆
A (i ≤ m). Then, the following properties hold.

1)
∑m

i=1
PiX = P1X .

2)
∑m

i=1
PiX = P1X .

Proof: Suppose 1 ≤ j ≤ k ≤ m with Pj � Pk. From the

definition of �, we know that for any SPj
(x) ∈ U/SIM(Pj), there

exits SPk
(x) ∈ U/SIM(Pk) such that SPj

(x) ⊆ SPk
(x). Therefore,

one can obtain that

PjX =
{

x |SPj
(x) ⊆ X

}

⊇ PkX =
{

x |SPk
(x) ⊆ X

}

i.e., Pj + PkX = PjX ∪ PkX = PjX . Since P1 � P2 � · · · � Pm,

one can get that
∑m

i=1
PiX =

⋃m

i=1
PiX = P1X .

Similarly, we also have that

PjX =
{

x |SPj
(x) ∩ X = ∅

}

⊇ PkX =
{

x |SPk
(x) ∩ X = ∅

}

i.e., Pj + PkX = PjX ∩ PkX = PjX . Hence, one can obtain that
∑m

i=1
PiX =

⋂m

i=1
PiX = P1X .

D. Several Elementary Measures in Incomplete MGRS

In this section, we investigate several elementary measures in

incomplete MGRS and their properties.

Uncertainty of a set (category) is due to the existence of a borderline

region. The bigger the borderline region of a set is, the lower the

accuracy of the set is (and vice versa). To more precisely express

this idea, we introduce the accuracy measure to incomplete MGRS

as follows.

Definition 3: Let S = (U, AT, f) be an incomplete IS and X ⊆ U
and P = {P1, P2, . . . , Pm}∀Pi ⊆ AT . Approximation measure of

X by P is defined as

αP (X) =

∣

∣

∣

∑m

i=1
PiX

∣

∣

∣

∣

∣

∣

∑m

i=1
PiX

∣

∣

∣

(7)

where X = ∅, |X| denotes the cardinality of set X .

From this definition, one can derive the following theorem.

Theorem 8: Let S = (U, AT, f) be an incomplete IS and X ⊆ U ,

P = {P1, P2, . . . , Pm}∀Pi ⊆ AT , and P ′ ⊆ P be a subset of P .

Then

αP (X) ≥ αP ′(X) ≥ αPi
(X), (i ≤ m).
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TABLE II
DATA SETS DESCRIPTION

Proof: Since P ′ ⊆ P , it follows from Definition 2 that

m
⋃

i=1

PiX ⊇
⋃

Pi∈P,Pi �∈P ′

PiX

m
⋂

i=1

PiX ⊆
⋂

Pi∈P,Pi �∈P ′

PiX.

Then, it is clear that |
⋃m

i=1
PiX| ≥ |

⋃

Pi∈P,Pi /∈P ′ PiX| and

|
⋂m

i=1
PiX| ≤ |

⋂

Pi∈P,Pi /∈P ′ PiX|. Hence

αP (X) =

∣

∣

∣

∑m

i=1
PiX

∣

∣

∣

∣

∣

∣

∑m

i=1
PiX

∣

∣

∣

=

∣

∣

⋃m

i=1
PiX

∣

∣ |
∣

∣

⋂m

i=1
PiX

∣

∣

≥

∣

∣

∣

⋃

Pi∈P,Pi /∈P ′ PiX
∣

∣

∣

∣

∣

∣

⋂

Pi∈P,Pi /∈P ′ PiX

∣

∣

∣

=

∣

∣

∣

∑

Pi∈P,Pi /∈P ′ PiX
∣

∣

∣

∣

∣

∣

∑

Pi∈P,Pi /∈P ′ PiX

∣

∣

∣

=αP ′(X).

Similarly, we have αP ′(X) ≥ αPi
(X) (i ≤ m). Thus, αP (X) ≥

αP ′(X) ≥ αPi
(X) (i ≤ m).

Theorem 8 shows that the approximation measure of a target con-

cept enlarges as the number of granulations for describing the concept

increases.

Example 3 (Continued From Example 2): Suppose A = {L,P}.

Computing the approximation measures, it follows that

αA(X) =
|L + PX|

|L + PX|
=

1

4

αL(X) =
|LX|

|LX|
=

1

8

αP (X) =
|PX|

|PX|
=

1

8
.

Clearly, it follows from the earlier computations that αA(X) >
αL(X) and αA(X) > αP (X).

In particular, αA(X) > αL(X) if L � P , which can be easily

derived from Theorem 7.

Note that the approximation measure of a target concept approx-

imated by using multiple granulations is always much better than

that approximated by using a single granulation, which is suitable for

more precisely characterizing a target concept and problem solving

according to user requirements.

Definition 4: Let S = (U, AT, f,D, g) be an incomplete target IS,

U/IND(D) be a decision induced by the decision attributes D, and

P = {P1, P2, . . . , Pm} be m-attribute sets. Approximation quality of

D by P , also called a degree of dependence, is defined as

γ(P,D) =

∑

{∣

∣

∣

∑m

i=1
PiY

∣

∣

∣
: Y ∈ U/IND(D)

}

|U |
. (8)

This measure can be used to evaluate the deterministic part of the

rough-set description of U/IND(D) by counting those objects which

can be reclassified as blocks of U/IND(D) with the knowledge given

by
∑m

i=1
Pi. As a result of the earlier definition, we come to the

following two theorems.

Theorem 9: Let P = {P1, P2, . . . , Pm} be m-attribute sets and

D1, D2 with D1 � D2 be two decisions, then γ(
∑m

i=1
Pi, D1) ≤

γ(
∑m

i=1
Pi, D2).

Theorem 10: Let P = {P1, P2, . . . , Pm} be m-attribute

sets and D be a decision. If P ′ ⊆ P , then γ(
∑m

i=1
Pi,D) ≥

γ(
∑

Pi∈P ′ Pi,D) ≥ γ(Pi, D).

Gediga and Düntsch [6] introduced a simple statistic π(R,X) =
|RX|/|X| for the precision of (deterministic) approximation of X ⊆
U given U/IND(R), which is not affected by the approximation of

∼ X . This is just the relative number of elements in X which can be

approximated by R. Clearly, π(R,X) ≥ α(R, X). It is important to

point out that π(R,X) requires complete knowledge of X , whereas

α does not, since the latter uses only the rough set (RX, RX). In

incomplete MGRS, it can be extended to be the formula

π

(

m
∑

i=1

Pi, X

)

=

∣

∣

∣

∑m

i=1
PiX

∣

∣

∣

|X|
. (9)

It is clear that π(
∑m

i=1
Pi,X) ≥ α(

∑m

i=1
Pi, X). In fact, this

measure denotes the relative number of objects in X which can be

approximated by
∑m

i=1
Pi. Then, the following theorem can be easily

proved.

Theorem 11: Let P = {P1, P2, . . . , Pm} be m-attribute sets

and X be a target concept. If P ′ ⊆ P , then π(
∑m

i=1
Pi,X) ≥

π(
∑

Pi∈P ′ Pi,X) ≥ π(Pi,X).

E. Experimental Analysis

In the following, through experimental analyses, we illustrate the

difference between the incomplete MGRS and Kryszkiewicz’s rough-

set model. We have downloaded four public data sets (incomplete

target ISs) from UCI Repository of machine learning databases, which

are described in Table II.

Here, we compare the degree of dependence in incomplete MGRS

with that in Kryszkiewicz’s rough-set model on these two practical

data sets. The comparisons of values of two measures with the numbers

of features in these two data sets are shown in Figs. 4–7.

In Figs. 4–7, the term MGRS is the incomplete MGRS frame-

work proposed in this correspondence paper, and the term SGRS

is Kryszkiewicz’s rough-set model. It is shown in Figs. 4–7

that the value of the degree of dependence in incomplete MGRS is

not bigger than that in Kryszkiewicz’s rough-set model for the same

number of selected features, and this value increases as the number of

selected features does in the same data set. In particular, from Fig. 6, it

is easy to see that the values of the degree of dependence in incomplete

MGRS are equal to zero when the number of features falls in between

one and five. In this situation, the lower approximation of the target

decision equals an empty set in the incomplete decision table. In

essence, it is because that the tolerance classes induced by a singleton

attribute are all coarser than those induced by all attributes. One can

draw the same conclusion from the other figures. Further illustrations

and applications are shown in Section V.
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Fig. 4. Variation of the 2◦ of dependence with the numbers of features
(data set breast-cancer-wisconsin).

Fig. 5. Variation of the 2◦ of dependence with the numbers of features
(data set audiology).

IV. ATTRIBUTE REDUCTION IN INCOMPLETE MGRS

Reduct is a minimal attribute subset of the original data which

is independent and has the same discernibility power as all of the

attributes in the classical rough-set framework. Obviously, reduction

is a feature-subset selection process, where the selected feature subset

not only retains the representation power but also has the minimal

redundancy [22], [23]. In this section, we deal with attribute reduction

in incomplete MGRS.

We first introduce the notions of two approximation distribution

functions. Let S = (U, AT, f,D, g) be an incomplete target IS, P ⊆
AT , and the decision U/IND(D) = {Y1, Y2, · · · , Yr}. Lower ap-

proximation distribution function and upper approximation function

are defined as

DP =

⎛

⎝

∑

Pi∈P

PiY1,
∑

Pi∈P

PiY2, . . . ,
∑

Pi∈P

PiYr

⎞

⎠

DP =

(

∑

Pi∈P

PiY1,
∑

Pi∈P

PiY2, . . . ,
∑

Pi∈P

PiYr

)

.

Fig. 6. Variation of the 2◦ of dependence with the numbers of features
(data set hepatitis).

Fig. 7. Variation of the 2◦ of dependence with the numbers of features
(data set crx).

Through using these two approximation distribution functions, three

new reducts can be defined in the following, which are lower approxi-

mation reduct, upper approximation reduct, and approximation reduct.

Definition 5: Let S = (U, AT, f,D, g) be an incomplete target IS

and P be a nonempty subset of AT .

1) If DP = DAT , we say that P is a lower approximation consis-

tent set of S. If P is a lower approximation consistent set and no

proper subset of P is lower approximation consistent, then P is

called a lower approximation reduct of S.

2) If DP = DAT , we say that P is an upper approximation consis-

tent set of S. If P is an upper approximation consistent set and

no proper subset of P is upper approximation consistent, then P
is called an upper approximation reduct of S.

3) If P is not only a lower approximation reduct but also an upper

approximation reduct, then P is called an approximation reduct

of S.

It is easy to prove that an upper approximation consistent set

must be a lower approximation consistent set. However, the converse

relationship cannot be satisfied in an inconsistent incomplete target IS.

From the earlier definition, it is clear that P is a lower approximation

consistent set if and only if P is an upper approximation consistent set

Authorized licensed use limited to: CityU. Downloaded on March 28,2010 at 05:06:42 EDT from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 2, MARCH 2010 427

Fig. 8. Relationship between approximation reducts and approximation core.

in a consistent incomplete target IS. In particular, if U/IND(D) =
X , we can regard P as a lower approximation reduct, an upper

approximation reduct, and an approximation reduct of a target concept

X , respectively.

Let A be the set of all lower approximation reducts and B be the set

of all upper approximation reducts. Then, it is obvious that the set of

all approximation reducts C = A ∩B.

Suppose that S = (U, AT, f,D, g) be an incomplete target

IS, where U = {e1, e2, . . . , e|U|}, AT = {P1, P2, . . . , P|AT |}, and

U/IND(D) = {Y1, Y2, . . . , Yr}. We denote all lower approxima-

tion reducts of Y ∈ U/IND(D) by A(Y ), all upper approxima-

tion reducts of Y ∈ U/IND(D) by B(Y ), and all approximation

reducts of Y ∈ U/IND(D) by C(Y ), respectively. Moreover, we call

Core(A(Y )) the lower approximation core of Y , Core(B(Y )) the

upper approximation core of Y , and Core(C(Y )) the approximation

core of Y , respectively.

Theorem 12: Let S = (U, AT, f,D, g) be an incomplete target IS

and U/IND(D) = {Y1, Y2, . . . , Yr}. Then

A =

r
⋂

k=1

A(Yk) B =

r
⋂

k=1

B(Yk).

We call Core(A) =
⋂

Ai(Ai ∈ A), Core(B) =
⋂

Bi(Bi ∈
B), and Core(S) =

⋂

Ci(Ci ∈ C) as the lower approximation core,

the upper approximation core, and the core of an incomplete target IS

S, respectively.

Theorem 13: Let S = (U, AT, f,D, g) be an incomplete target IS

and U/IND(D) = {Y1, Y2, . . . , Yr}. Then

Core(A) =

r
⋂

k=1

Core (A(Yk))

Core(B) =

r
⋂

k=1

Core (B(Yk)) .

Clearly, Core(S) = Core(A) ∩ Core(B). In fact, the core is in-

dispensable to construct an approximation reduct. Fig. 8 shows the

relationship between the approximation reducts and the approximation

core of a target IS.

Now, we consider how to find attribute reducts from an in-

complete target IS in the framework of incomplete MGRS. Let

S = (U, AT, f, d, g) be an incomplete target IS, where U =
{e1, e2, . . . , eU}, AT = {P1, P2, . . . , PAT }, and U/IND({d}) =
{Y1, Y2, . . . , Yr}. As follows, in the framework of incomplete MGRS,

we design an algorithm for computing all lower approximation reducts,

i.e., all subsets AT0 : AT01, AT02, . . . , AT0s of AT such that we have

as follows: 1) dAT0
= dAT and 2) if AT ′ ⊂ AT0, then dAT0

= dAT .

Algorithm II: This algorithm gives all lower approximation reducts

of the incomplete target IS S (similar to the idea in [7, Algorithm K]).

Let us denote the binomial coefficients by Ck
|AT | =

|AT |!/k!(|AT | − k)!.

1) Let us denote C1
|AT | = |AT | one-attribute subsets by

AT11 = {P1}

AT12 = {P2}, . . . , AT1j = {Pj}, . . . , AT1C1

|AT |
=

{

P|AT |

}

.

2) Let us denote C2
|AT | = |AT |(|AT | − 1)/2! two-attribute sub-

sets by

AT21 = {P1, P2}, . . . , AT2j

= {P1, Pj}, . . . , AT2C2

|AT |
=

{

P|AT |−1, P|AT |

}

.

3) Generally, let us denote Ck
|AT | = |AT |!/k!(|AT | − k)!k-

attribute subsets by

ATk1 = {P1, P2, . . . , Pk}, . . . , ATkj , . . . , ATkCk
|AT |

=
{

P|AT |−k+1, . . . , P|AT |−1, P|AT |

}

.

4) Notice that C
|AT |

|AT | = 1 and the |AT |-attribute subset is

AT|AT |1 = AT .

The algorithm is to search subsets of AT as follows: singletons,

two-attribute subsets, . . ., t-attribute subsets, and so on. Continue up

to the unique |AT |-attribute subset AT itself.

We use the following variables.

1) s—The number of the lower approximation reducts we have

already found.

2) t—Counting from 1 to s.

3) k—We are currently searching k-attribute subset ATkj .

4) j—We are currently searching the jth subset ATkj in all k-

attribute subsets ATk1, . . . , ATkj , . . . , ATkCk
|AT |

.

(II1) Set j ← 1, s ← 0, k ← 1;

(II2) While k ≤ |AT | Do

j ← 1;

While j ≤ Ck
|AT | Do

for t = 1 to s Do

If AT0t ⊂ ATkj , then break;

Endif

Endfor

if dATkj
= dAT , then

s ← s + 1, AT0s ← ATkj ;

Endif

j ← j + 1;

Endwhile

k ← k + 1;

Endwhile

(II3) Output AT01, AT02, . . . , AT0s (s lower approximation

reducts).

The time complexity of this algorithm for all lower approxima-

tion reducts is exponential since it checks all subsets in 2AT , and

|2AT | = 2|AT |. We know that the time complexity of computing |AT |
covers is O(|AT ||U |2), and the time complexity of computing a lower

approximation of every Y ∈ U/IND({d}) by ATkj (k ≤ |AT |) is

O(|AT ||U |3). Thus, the time complexity of Algorithm II is

2|AT | × O
(

|AT ||U |2 + |AT ||U |3
)

= O
(

2|AT ||AT ||U |3
)

.

Through Algorithm II, one can obtain that the attribute set {L, P}
is only one lower approximation reduct of Table I. However, the time

complexity of Algorithm II is exponential so that it cannot be applied

efficiently in practical applications. To reduce the time complexity of
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computing an approximation reduct, we introduce, in the following,

two heuristic functions, which are an importance measure of lower

approximation and an importance measure of upper approximation.

Let S = (U, AT, f,D, g) be an incomplete target IS and P be

a nonempty subset of AT . Given a condition attribute a ∈ P and

Y ∈ U/IND(D), we first give two preliminary definitions in the

following, which will be helpful for constructing heuristic functions.

Definition 6: We say that a is lower approximation significant in P
with respect to X if

|P |
∑

i=1

PiX ⊃

|P |
∑

i=1,Pi �=a

PiX, (Pi ∈ P )

and a is not lower approximation significant in P with respect to X if

|P |
∑

i=1

PiX =

|P |
∑

i=1,Pi �=a

PiX, (Pi ∈ P )

where |P | is the cardinality of attribute set P .

Definition 6 shows that if a is lower approximation significant with

respect to X , then the lower approximation of X will become smaller;

if a is not lower approximation significant with respect to X , then the

lower approximation of X will be keep unchanged.

Definition 7: We say that a is upper approximation significant in P
with respect to X if

|P |
∑

i=1

PiX ⊂

|P |
∑

i=1,Pi �=a

PiX, (Pi ∈ P )

and a is not lower approximation significant in P with respect to X if

|P |
∑

i=1

PiX =

|P |
∑

i=1,Pi �=a

PiX, (Pi ∈ P )

where |P | is the cardinality of attribute set P .

Analogously to Definition 6, Definition 7 states that if a is upper

approximation significant with respect to X , then the upper approx-

imation of X will become bigger; if a is not upper approximation

significant with respect to X , then the upper approximation of X will

be keep unchanged.

Through these two definitions, one can easily construct two heuristic

functions. An important measure of lower approximation of P ⊆ AT
with respect to D is defined as

SP (D) =

∑

Y ∈U/D

∣

∣

∣

∣

∣

m
∑

i=1

PiY \
m
∑

i=1,Pi /∈P

PiY

∣

∣

∣

∣

∣

|U |
(10)

and an important measure of upper approximation of P ⊆ AT with

respect to D is defined as

SP (D) =

∑

Y ∈U/D

∣

∣

∣

∣

∣

m
∑

i=1,Pi /∈P

PiY \
m
∑

i=1

PiY

∣

∣

∣

∣

∣

|U |
. (11)

In particular, when P = {a}, Sa(D) and Sa(D) can be regard as

the importance measure of lower approximation and the importance

measure of upper approximation of the attribute a ∈ AT with respect

to D, respectively.

From Algorithm I, we know that the time complexity of com-

puting the lower approximation of Y by P = {P1, P2, . . . , Pm}

is O(m|U |2). For computing the measure of importance of a, we

need to calculate the lower approximations for at most |U | times.

Therefore, the time complexity of computing an importance measure

of lower/upper approximation of an attribute with respect to D is

O(m|U |3).

From the earlier denotations, we come to the following

conclusions.

1) SP (D) ≥ 0 and SP (D) ≥ 0.

2) P is not lower approximation significant with respect to D if and

only if SP (D) = 0.

3) P is not upper approximation significant with respect to D if

and only if SP (D) = 0.

As follows, we provide a heuristic algorithm based on the impor-

tance measure of lower approximation of a condition attribute with

respect to the decision attribute d to find a lower approximation reduct

in an incomplete target IS.

Algorithm III: Let S = (U, AT, f, d, g) be a complete target

IS, where U = {e1, e2, . . . , e|U|}, AT = {P1, P2, . . . , P|AT |}, and

U/IND({d}) = {Y1, Y2, . . . , Yr}. This algorithm finds a lower

approximation reduct through using a heuristic.

The following variables will be used in the algorithm.

1) AT0—To record a lower approximation reduct.

2) i—We are currently searching the ith condition attribute AT ′
i in

the sequence given.

(III1) Compute |AT | covers and a decision partition

U/IND({d});

(III2) Sort AT = {P ′
1, P

′
2, . . . , P

′
|AT |}, where SP ′

i
(d) ≥ SP ′

i+1
(d);

(III3) Set i ← 1, AT0 = ∅.

(III4) If dAT0
= dAT , then

AT0 ← AT0 ∪ P ′
i ,

i ← i + 1;

(III5) Found a lower approximation reduct: AT0. Output the

set AT0.

The time complexity of this algorithm for computing |AT | covers,

and a decision partition U/IND({d}) is O(|AT ||U |2). The time

complexity of computing |AT | importance measures is O(|AT ||U |3),

and the time complexity of sorting is O(|AT | log2 |AT |). Moreover,

the time complexity for running |AT | comparisons dAT0
= dAT is

O(|AT ||U |3). Thus, the time complexity of Algorithm III is

O
(

|AT ||U |2 + |AT ||U |3 + |AT | log2 |AT |

+|AT ||U |3
)

= O
(

|AT ||U |3
)

.

Through Algorithm III, a lower approximation reduct can be found,

which keeps the lower approximation distribution function of this

incomplete target IS. Analogously, we can design a heuristic algorithm

to find an upper approximation reduct of an incomplete target IS

through using a heuristic function SP (D).

V. APPLICATION TO VENTURE INVESTMENT

Venture capital has become an increasingly important source of

financing for new companies, particularly when such companies are

operating on the frontier of emerging technologies and markets. It

plays an essential role in the entrepreneurial process. For an investor or

decision maker, he may need to adopt a better one from some possible

investment projects or find some directions from existing successful

investment projects before investing. The purpose of this section is,

through a venture-investment issue, to illustrate the mechanism of

incomplete MGRS and its applications.
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TABLE III
INCOMPLETE EVALUATION TABLE ABOUT VENTURE INVESTMENT

Let us consider a real investment issue of a venture-investment

company (here, we conceal the company’s name and the details

of investment projects). There are 50 investment projects xi (i =
1, 2, . . . , 50) to be considered, which are evaluated by five evaluation

experts. Venture level is classified to three: classes 1, 2, and 3. The

bigger the value of venture level is, the higher the venture of investment

project is. Table III is an incomplete evaluation table about venture

investment given by these five experts, in which the symbol “∗”

means that an expert cannot decide the venture level of a project. In

the evaluation process, each of the evaluation experts makes a deci-

sion independently, i.e., one does not perform intersection operations

between any two evaluation results. For this situation, the classical

Kryszkiewicz’s rough-set model will be helpless. In the following, we

apply incomplete MGRS proposed in this correspondence paper for

decision-making.

From Table III, it is easy to see that U/IND(D) = {{x1, x2,
x6, x8, x9}, {x3, x4, x5, x7, x10}}. Suppose that Y1 = {x1, x2, x6,
x8, x9} and Y2 = {x3, x4, x5, x7, x10}.

To acquire certain decision rules, we only calculate the lower

approximation of the decision D with respect to the five granula-

tion spaces determined by the five experts. It easily follows from

Definition 2 that

DAT = {{x1, x2, x8, x9}, {x3, x4, x5, x10}} .

From Definition 5, one can obtain the following lower

approximation reducts of Table III, which are as follows:

A(D) = {{E1, E2}, {E2, E4}, {E2, E5}} .

Thus, there is only a core E2. That is to say, the decision given by

the second expert is indispensable.

From the earlier three reducts, one can extract three groups of

certain decision rules as follows:

(E1 = 3) ∨ (E2 = 3) ⇒ (D = High),

(E2 = 1) ⇒ (D = Low);

(E2 = 3) ∨ (E4 = 3) ⇒ (D = High),

(E2 = 1) ∨ (E4 = 1) ⇒ (D = Low);

(E2 = 3) ∨ (E5 = 3) ⇒ (D = High),

(E2 = 1)∨ ⇒ (D = Low).

In addition, from (10), one can calculate the importance measure

of lower approximation of each expert’s decision. Through using

the sequence and Algorithm III, we obtain one of the reducts from

Table III, which is {E2, E1}.

Remark: The incomplete MGRS model does not attempt to keep or

reduce the uncertainty induced by the classical Kryszkiewicz’s model

but aims at concept representation and rule extraction on the basis of

keeping the original granulation structures. The incomplete MGRS has

several useful applications.

1) It can deal with intelligent decision-making under multiple gran-

ulations. For example, the earlier evaluation issue demands that

each of the evaluation experts makes a decision independently,

i.e., one does not perform intersection operations between any

two evaluation results.

2) To extract decision rules from distributive decision systems

using rough-set approaches, the incomplete MGRS can largely

reduce the time complexity of rule extraction when the increase

of uncertainty is tolerable, in which there is no need to perform

the intersection operations in between all the sites.

VI. CONCLUSION

The contribution of this correspondence paper is twofold. On one

side, the incomplete single-granulation rough-set theory has been

extended, and an incomplete MGRS model has been obtained. In this

extension, the approximations of sets are defined by using multiple

tolerance relations on the universe. These tolerance relations can be

chosen according to user requirements or targets of problem solving.

The theoretical analyses show that some properties of the original

incomplete rough-set model become special instances of incomplete

MGRS. Under the incomplete MGRS, we also have developed several

important measures, such as the accuracy measure, the quality of

approximation, and the precision of approximation. On the other side,

to acquire a brief representation for the approximation of a target

decision, the attribute reduction has been discussed in incomplete ISs.

A concept of approximation reduct has been used to characterize the

Authorized licensed use limited to: CityU. Downloaded on March 28,2010 at 05:06:42 EDT from IEEE Xplore.  Restrictions apply. 



430 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 2, MARCH 2010

smallest attribute subset that preserves the lower approximation and

upper approximation of all decision classes in incomplete MGRS.

Two key attribute reduction algorithms have been designed, which will

be helpful for applying this theory in practical issues. The MGRS

framework proposed in this correspondence paper maybe lead to

a mechanism for more widely applying the incomplete rough-set

theory in real-world applications. Above all, the incomplete MGRS

can be applied to concept representation, rule extraction, and data

analysis from incomplete data set under multigranulation spaces and

has much wider applicability ranges than Kryszkiewicz’s rough-set

model.
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