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Incomplete penetrance and phenotypic variability of
6q16 deletions including SIM1

Laïla El Khattabi1,2, Fabien Guimiot3,4, Eva Pipiras4,5,6, Joris Andrieux7, Clarisse Baumann3, Sonia Bouquillon7,
Anne-Lise Delezoide3,4, Bruno Delobel8, Florence Demurger9, Hélène Dessuant10, Séverine Drunat3,
Christelle Dubourg11, Céline Dupont3, Laurence Faivre12, Muriel Holder-Espinasse13,14, Sylvie Jaillard15,
Hubert Journel16, Stanislas Lyonnet17, Valérie Malan17, Alice Masurel12, Nathalie Marle12, Chantal Missirian18,
Alexandre Moerman14, Anne Moncla18, Sylvie Odent9, Orazio Palumbo19, Pietro Palumbo19, Aimé Ravel20,
Serge Romana17, Anne-Claude Tabet3, Mylène Valduga21, Marie Vermelle22, Massimo Carella19,
Jean-Michel Dupont1,2, Alain Verloes3,4, Brigitte Benzacken3,4,5,6 and Andrée Delahaye*,4,5,6

6q16 deletions have been described in patients with a Prader–Willi-like (PWS-like) phenotype. Recent studies have shown that

certain rare single-minded 1 (SIM1) loss-of-function variants were associated with a high intra-familial risk for obesity with or

without features of PWS-like syndrome. Although SIM1 seems to have a key role in the phenotype of patients carrying 6q16

deletions, some data support a contribution of other genes, such as GRIK2, to explain associated behavioural problems. We

describe 15 new patients in whom de novo 6q16 deletions were characterised by comparative genomic hybridisation or

single-nucleotide polymorphism (SNP) array analysis, including the first patient with fetopathological data. This fetus showed

dysmorphic facial features, cerebellar and cerebral migration defects with neuronal heterotopias, and fusion of brain nuclei.

The size of the deletion in the 14 living patients ranged from 1.73 to 7.84Mb, and the fetus had the largest deletion (14Mb).

Genotype–phenotype correlations confirmed the major role for SIM1 haploinsufficiency in obesity and the PWS-like phenotype.

Nevertheless, only 8 of 13 patients with SIM1 deletion exhibited obesity, in agreement with incomplete penetrance of SIM1

haploinsufficiency. This study in the largest series reported to date confirms that the PWS-like phenotype is strongly linked to

6q16.2q16.3 deletions and varies considerably in its clinical expression. The possible involvement of other genes in the

6q16.2q16.3-deletion phenotype is discussed.
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INTRODUCTION

Prader–Willi syndrome (PWS, MIM 176270) is an imprinting disease

caused by paternal deletions, maternal uniparental disomy or imprint-

ing anomalies in the 15q11.2q13 region.1 Clinical diagnostic criteria

vary with age,2 and consist chiefly of neonatal hypotonia, early-onset

obesity, and developmental delay.

A PWS-like phenotype, characterised by hypotonia, obesity,

acromicria and variable motor, and cognitive delays,3 has been

reported in several conditions, such as maternal uniparental disomy

for chromosome 14,4,5 certain 1p36 deletions,6,7 2p25 deletions,8 Xq21

duplications,9 Xq23q25 duplications,10 and some cases of fragile X

syndrome.11,12 However, 6q16 deletion is the most common genetic

abnormality in patients exhibiting the PWS-like phenotype.

To date 430 patients with 6q deletions, encompassing the q16.2

and/or q16.3 cytogenetic sub-bands, have been reported.3,13–36

However, few of them underwent molecular characterisation of

their genetic abnormalities, using either chromosomal microarray

analysis,3,13,15–18,22,23,25 fluorescence in situ hybridisation (FISH)

analysis with bacterial artificial chromosomes (BAC) clones21 or

STR analysis.24 Two publications evaluated genotype–phenotype

correlations at the 6q16 locus, but included only five and three

patients, respectively.13,17 The first study identified a 4.1-Mb

minimal critical region for PWS-like within the 6q16 cytogenetic

band.13 Recently, obesity and PWS-like syndrome have been

ascribed to loss-of-function variants in the single-minded 1

(SIM1) gene encompassed in 6q16 critical minimal region,37–40
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whereas a role for GRIK2 deletion in behavioural problems has

been suggested.13

Here, we describe 15 new patients (including one fetus) with 6q16

deletions, including 6q16.2 and/or 6q16.3 sub-bands, investigated by

chromosomal microarray analysis. Genotype–phenotype correlations

were assessed. Our results confirm the major role for SIM1 haploin-

sufficiency in obesity and the PWS-like phenotype.

SUBJECTS AND METHODS

Patients
Seven French centres and one Italian centre recruited one fetus and 14 children

or young adults with 6q16 deletions, encompassing the 6q16.2 and/or 6q16.3

sub-bands. Experienced geneticists examined all patients. Informed consent was

obtained from all patients and/or parents for a genetic evaluation, an

assessment of deletions’ parental origin and publication of clinical pictures.

For the fetus, the parents provided their written informed consent to an

autopsy.

Fetal examination (patient no. 1)
After termination of pregnancy, an autopsy of the fetus (patient no. 1) was

performed according to protocols, including radiographs, photographs, and

macroscopic and microscopic examination of all organs.41 Biometrics were

compared with previously established reference values.42

Cytogenetic studies
The karyotype of the fetus was determined using in situ cultured amniocytes,

following conventional procedures. For the other 14 patients, cultured

peripheral lymphocytes were used.

Microarray studies were done in all 15 patients. DNA was extracted using

standard procedures from cultured amniocytes (patient no. 1) or peripheral

blood lymphocytes (patients no. 2–15). Patients no. 1–12 were investigated

using the following oligonucleotide arrays: CGX-12 (Roche NimbelGen,

Madison, WI, USA) in patient no. 1, Agilent 44 K (Agilent Technologies, Santa

Clara, CA, USA) in patients no. 2–8, 10 and 11, Agilent 60 K in patient no. 9, or

Agilent 180 K in patient no. 12. Patients no. 13 and 14 were evaluated

using HumanHap 300 and HumanCytoSNP-12, respectively (Illumina,

San Diego, CA, USA), and patient no. 15 was evaluated using Genome-Wide

Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA). Results were

analysed according to Human Feb. 2009 (GRCh37/hg19) Assembly. All 15

patients have been submitted for registration in the DECIPHER database

(https://decipher.sanger.ac.uk/).

FISH was performed using chromosomal preparations according to standard

protocols to confirm the 6q deletions characterised by microarray.43

Figure 1 Fetopathological study of patient no. 1. (a) Facial features: short straight forehead, marked suborbital folds, broad nasal bridge, prominent philtrum,

thin upper lip, micrognathia, and abnormally hemmed ears with a small horizontal fold along the upper edge of the helix. (b) Radiographs of the feet:

bilateral calcaneal fragmentation and hypermineralisation. (c) Sagittal section through the brain: internal capsule dysmorphism with fusion of anterior caudate

nucleus and putamen (black arrows). (d) Cerebral white matter containing ectopic neurons (black arrows). (e) Cerebellar grey matter containing ectopic

neurons (black arrows). (f) Sagittal section through the cerebellum showing focal neuronal ectopia.
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Probes were prepared from bacterial artificial chromosomes BAC using rolling

circle amplification followed by nick translation labelling. The absence of

parental deletion was checked in 14 cases, the exception being patient no. 4.

Parental origin study
Microsatellites and SNP array analysis were performed in nine patients (patients

no. 2, 3, 5, 7, 8, 11, 13, 14, and 15) to investigate the parental origin of the

imbalance. We either selected microsatellites at the common deleted region of

the UCSC Genome Browser microsatellite or designed simple repeat tracks and

primers using the NCBI Primer-BLAST program (D6S1671, D6S475, D6S2079,

D6S20CA, D6S15AAT, D6S21TA, and D6S18GT). After PCR, fragment analysis

was performed on an ABI 3730 XL DNA sequencing analyser and processed

using GeneMapper 3.7 software (Applied Biosystems, Foster City, CA, USA).

For the patient no. 15, parental origin study was performed analysing a total of

16 informative SNPs selected from 1008 SNPs located in the deleted region.

Supplementary Table S1 in the Supplementary Information lists the primers

used for each microsatellite.

RESULTS

Clinical and fetopathological data

Patient no. 1. Patient no. 1 was a male fetus at 35 weeks of gestation

(WG), who was the product of the first pregnancy of unrelated

parents. The mother has unilateral hearing loss and the maternal

grandmother has a bilateral hearing loss. A high-risk maternal

screening test for Down syndrome prompted karyotype determination

on amniotic fluid cells, which showed a 6q14-q16 deletion. Pyelectasis

was seen on sonogram at 23 WG. The parents requested termination

of pregnancy at 35 WG. Foot length was under the 5th centile and

weight was 2140 g (5th centile). The pyelectasis was confirmed. The

facial gestalt consisted of a short straight forehead, marked suborbital

folds, a broad nasal bridge, prominent philtrum with a thin upper lip,

micrognathia, and abnormally overfolded helices with a small

horizontal fold along the upper edge (Figure 1a).

The radiographic skeletal survey showed delayed bone maturation

relative to gestational age, absence of ossification of the distal femoral

epiphyses, hypoplasia of the sixth cervical vertebral body, sternal

dysplasia, bilateral brachymesophalangia of the fifth digits, and

bilateral calcaneal fragmentation with increased mineralisation

(Figure 1b).

Microscopic examination of the brain evidenced fusion of the

anterior caudate nucleus and putamen (Figure 1c), multiple ectopic

neurons in the white matter (Figure 1d) and ectopic Purkinje cells in

the internal granular layer of the cerebellum (Figure 1e). Two large

heterotopias were identified in the white matter of the paravermis

(Figure 1f).

Patients no. 2–15. All 14 patients had developmental delay with

variable degrees of cognitive deficiency. Table 1 lists the main clinical

data and Figure 2 shows photographs of several patients.

Cytogenetic and molecular results

Table 2 reports the cytogenetic abnormalities. Microarray analyses

showed overlapping 6q deletions, extending from 92 138 719 bp to

108 227 875 bp (hg19). Supplementary Table S2 lists the genes

included in the deletions. Except for patients no. 14 and 15, all

patients had deletions that included the SIM1 gene. Minimal deletion

size across patients ranged from 1.73 to 14Mb.

DISCUSSION

Our results obtained in the largest reported series of patients with

6q16 deletion, including 6q16.2 and/or 6q16.3 sub-bands, support aT
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strong association between this chromosomal abnormality and a

distinct phenotype reminiscent of PWS.

The 6q16.2q16.3 chromosomal region is not polymorphic: the

Database of Genomic Variants (http://dgv.tcag.ca/) contains no large

copy number variation in this region in healthy individuals, and all

reported 6q16 deletions occurred de novo in symptomatic patients.

The region contains no low copy repeats or recurrent breakpoints.

An imprinting effect in 6q16 deletions was hypothesised by Faivre

et al14 based on the paternal origin of a de novo 6q16 deletion in a

patient with PWS-like. The authors speculated that the phenotype

might be ascribable to the haploinsufficiency of paternally expressed

genes located in the deleted region. Other observations support this

hypothesis.18,19 In our series, only two of nine deletions in patients, for

whom parental-origin data were obtained, were located in the

maternal chromosome, which is consistent with the ratio reported

previously for interstitial deletions at any site.44 In another study,

de novo imbalances not mediated by low copy repeats were signifi-

cantly more often of paternal than of maternal origin.45 Thus, to date,

although there is no strong evidence supporting an imprinting

mechanism in the 6q16 region, a parent-of-origin effect cannot be

excluded, as none of the three maternally derived deletions, which

were currently reported, (patient no. 11, 14, and case 4 from Bonaglia

et al report)13 was associated with PWS-like features.

Learning disabilities, behavioural disorders, and obesity are com-

mon in 6q16 deletions (Figure 3 and Table 3). Our observations

narrow the minimal critical region for PWS-like phenotype (obesity,

developmental delay with or without hypotonia and/or short extre-

mities) to a 1-Mb region within the previously reported 4.1-Mb

minimal region,13 from nt 100 382 250 bp to nt 101 346 495 bp on

Human Feb. 2009 (GRCh37/hg19) Assembly. This region contains the

SIM1,MCHR2, and ASCC3 genes. SIM1 encodes a transcription factor

that mediates hypothalamic paraventricular nucleus development. In

mice, postnatally induced Sim1 deficiency causes hyperphagic obesity,

and Sim1 overexpression partially corrects the obesity by normalising

food intake.46,47 Sim1 neuron ablation in adult mice induces

hyperphagic obesity.48 In humans, SIM1 disruption due to an

apparently balanced translocation caused severe obesity and hyper-

phagia in a girl.49 Obesity was a feature in several patients with 6q16

deletion and SIM1 deficiency (Figure 3 and Table 3). Loss-of-function

variants in SIM1 may cause human obesity with or without PWS-like

features.37–40 However, in our study, SIM1 deletions in patients no. 5,

11, 12, and 13 were not associated with obesity. Thus, although SIM1

may have a critical role in regulating body weight, SIM1 deletion is not

sufficient to develop obesity. In patients no. 12 and 13, the impact of

other associated chromosomal abnormalities cannot be excluded. In

particular, patient no. 13 had an additional 16p11.2 duplication that

might have protected against obesity, as this copy number variation is

associated with a low body mass index.50 On the contrary, patient no.

15 is obese, despite having a deletion that does not encompass SIM1.

Another obese patient with a 6q16 deletion, sparing SIM1, was

previously reported, but no gene is known in the overlapping deleted

region in these two patients (our patient no. 15 and the patient no. 11

of Rosenfeld and collaborators study).17 A position effect cannot be

excluded, although none of the known SIM1 enhancer sequences is

deleted in these two patients.51

Some patients with SIM1 loss-of-function variants have cognitive

impairments and/or behavioural disorders.38–40 However, none of

those described to date had a history of neonatal hypotonia or feeding

difficulties early in life.38 Recently, a statistically significant association

was demonstrated between the SIM1 SNP rs3734354 (Pro352Thr) and

language impairment.52 SIM1 loss-of-function is possibly responsible

for neurobehavioural disorders. The penetrance and severity of

neurobehavioural disorders in patients with SIM1 loss-of-function

variants seem to be lower than of those of obesity. Thus, the very high

penetrance of cognitive impairment and behavioural disorders in

patients with 6q16 deletions is probably due to haploinsufficiency of

other genes in the same region. GRIK2 abnormalities may be

associated with autistic-like behaviour in patients with 6q16

deletion.13 In our study, three of eight patients having behavioural

disorders (patient no. 3, 13, and 14) were not deleted for GRIK2.

Although a position effect on GRIK2 cannot be excluded, an

alternative possibility is the involvement of other genes in the deleted

region. MCHR2 encodes a melanin-concentrating hormone receptor

expressed in the brain, and may contribute to regulate body weight in

rodents.53 In humans, a SNP of this gene may exert a moderate effect

on food-intake abnormalities.54 Genome-wide association studies

identified MCHR2 as a putative risk factor for bipolar affective

disorders.55 None of our patients had psychiatric diagnoses, but

80% exhibited MCHR2 haploinsufficiency and displayed behavioural

features (emotional instability, fits of anger, aggressiveness, hyper-

phagia). Patient no. 14, who had severe autistic traits and profound

intellectual disability, carried the smallest 6q16 deletion in this patient

series, encompassing only theMCHR2 gene within the minimal region

described here. The functions of the other deleted genes in our

Figure 2 Photographs of four study patients. Note the round face, full cheeks, bulbous nose, and a prominent philtrum in patient no. 2; horizontal eyebrows

and a prominent philtrum in patient no. 5; round face and full cheeks in patient no. 7; and a triangular face shape in patient no. 14.
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patients would not seem to bear any obvious relationship to their

phenotype (Supplementary Table S2).

Patient no. 1 is the second prenatally diagnosed reported case of

molecularly characterised 6q16 deletion, but the first one with

fetopathological examination.24 Autopsy finding included abnormal-

ities in neuronal migration and grey nuclei. However, he had a large

6q16 deletion (14Mb) that encompassed several developmental genes,

including EPHA7.56 In addition, none of the central nervous system

abnormalities observed in this patient has been found by brain-

imaging studies in previously reported cases of 6q16 deletion. In one

study, various brain malformations were found in 65% of patients

with 6q16 deletions.17 Of the seven patients who underwent cerebral

magnetic resonance imaging in our study, only one had ventriculo-

megaly, and none had neuronal migration abnormalities.

Figure 3 Schematic alignment of 6q16 deletions obtained using Database of genomic Variants (DGV) Custom Tracks tool (http://dgv.tcag.ca/gb2/gbrowse/

dgv2_hg19/). (a) Representation of molecularly defined 6q16 deletions encompassing 6q16.2 and/or 6q16.3 sub-bands, reported here (red bars) or

previously (grey bars). Previously reported deletions were characterised by DNA microarray,3,13,15–18,22,23,25 FISH analysis using BAC clones,21 or STR

analysis.24 *Fetal case, **overweight, ***only perinatal data were available. (b) Enlargement of the minimal critical region defined by PWS-like patients,

excluding patient no. 15 from the present series and Subject 11 from Rosenfeld et al series. The region contains three genes: MCHR2, SIM1, and ASCC3.
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To conclude, 6q16 deletion syndrome is a contiguous gene-deletion

syndrome, in which SIM1 haploinsufficiency probably explains the

incomplete penetrance of the obesity phenotype. Our clinical observa-

tions support a role in human neurodevelopment for other genes

located in the 6q16 region. Further research on how these genes

impact brain development and behaviour, together with the identifi-

cation of additional individuals carrying 6q16 abnormalities, will

improve our understanding of how loss of these genes may contribute

to the genesis of neurodevelopmental diseases.
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