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Abstract: 

Plants differ from animals in their capability to easily regenerate fertile adult individuals from 

terminally differentiated cells [1]. This unique developmental plasticity is commonly observed 

in nature where many species can reproduce asexually through the ectopic initiation of 

organogenic or embryogenic developmental programs [2, 3]. However, it is not currently 

known if this developmental reprogramming is coupled to a global epigenomic resetting, or 

what impact it has on the phenotype of the clonal progeny. Here we show that plants asexually 

propagated via induction of a zygotic developmental program do not fully reset cell-specific 

epigenetic imprints. These imprints are instead inherited even over multiple rounds of sexual 

reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological 

phenotypes that depend on the founder cell used. Our results demonstrate how novel 

phenotypic variation in plants can be unlocked through the incomplete reprogramming of cell-

specific epigenetic marks during asexual propagation. 

Main Text: 

Compared to animals, somatic cells of plants can be much more easily coaxed into 

regenerating entire individuals. Asexual reproduction is therefore much more common in 

plants than in animals, and this has been traditionally exploited by humans for the clonal 

propagation and genetic manipulation of many economically important plant species [4]. 

Although clonal propagation provides ecological and evolutionary benefits, the resulting 

restricted genetic variation could be detrimental to fitness [5, 6]. Notably, clonally propagated 

plants are not always phenotypically identical to their parents; a phenomenon often attributed 

to the accumulation of genetic mutations. Yet there is little direct evidence that genetic 

changes are solely responsible for this phenotypic variation, thus we hypothesized that the 

phenotypic diversity apparent in clonal plants may have epigenetic underpinnings. Because 

plants can reproduce asexually from below-ground and above-ground organs, which are 

known to be epigenetically distinct [7, 8] we took advantage of this situation to determine to 

what extent the epigenome could influence clonal plant phenotypes. Specifically, we created 

somatic embryos from distinct root (Root Origin, RO) and leaf (Leaf Origin, RO) tissues of 

Arabidopsis thaliana (Col-0 strain) by the controlled expression of a RWP-RK zygotic factor 

[9] (Supplementary Fig. 1), in order to mimic naturally-occurring events associated with 

asexual propagation [2, 10]. We collected seeds from independently regenerated G0 

individuals after self-pollination and further propagated each line by selfing for over three 
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consecutive generations (G1-G3) (Fig. 1a). Visual examination revealed no obvious 

morphological differences between RO and LO plants. To determine any potential differences 

at the molecular level, we performed whole-genome transcriptome analyses in five randomly 

selected G2 lines. Only 13 differentially expressed genes (DEGs; FDR < 0.05) distinguished 

roots of LO and RO plants, but almost twenty-fold more DEGs (239, FDR < 0.01) were 

identified when comparing leaves of RO and LO plants (Supplementary Fig. 2 and Table 1). 

Gene ontology (GO) analysis revealed that these DEGs were enriched for stress and defence 

related genes (FDR <0.5) (Fig. 1b). The genes in these functional categories (51 total) were 

primarily upregulated in leaves of RO plants and involved in either transcriptional regulation 

(22%) or cellular signaling (27%). Clustering of all samples based on DEG expression levels 

suggested that leaves of RO plants had partial root characteristics, sharing apparent similarity 

with roots from both RO and LO plants (Fig. 1c); in contrast, leaves of LO plants formed a 

single distinct group (Fig. 1c).  

Figure 1. Plants regenerated from leaves and 

roots differ in activity of a discrete defense-

related transcriptional network. 

A) Schematic diagram describing the experimental design 

for assessing the impact of regeneration through somatic 

embryogenesis from roots (RO) and leaves (LO). 

Regenerated plants (n=5 independent lines each) were 

propagated through self-fertilization over three 

generations to determine stability of acquired traits. 

B) Gene ontology analysis of differentially expressed 

genes (DEGs) between leaves of RO and LO plants 

reveals enrichment (FDR < 0.01) for defense-related 

functions. 

C) Heatmap of scaled, normalized log-transformed read 

counts (FPKM, Fragments Per Kilobase per Million) for 

genes underlying the significant enrichment of GO terms 

in (A). 

D) Interaction gene network of DEGs (FDR < 0.01). Of 

4,585 DEGs, 2,752 were represented in the ANAP 

database. Nodes represent genes; triangles highlight 

defense-related genes from (A); edges indicate evidence 

for gene interaction. Blue filled circles, high expression in 

LO; Orange filled circles, high expression in RO; Red 

outlined circles, genes with stress related GO terms. 
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To gain further insight into this transcriptional variation, we performed a network analysis of 

the DEGs [11]. Out of the 239 DEGs that distinguished leaves of RO and LO plants 

(Supplementary Fig. 1 and Table 1), 213 had known interactions with other DEGs, of which 

69 were part of a single functional network (Fig. 1d). This network included several genes 

(WRKY6, SZF1, PYL5, PUB23 and DRIP2) that had been previously implicated in the negative 

regulation of abiotic and biotic stress responses [12-16]. 

We next sought to define whether the gene expression differences between LO and RO 

plants were functionally meaningful and affected whole-plant or tissue-specific functions such 

as interaction with microorganisms. As the latter was an obvious and easily scorable 

physiological function to assess, we grew plants in natural soils, and after four weeks assessed 

the bacterial communities that became associated with these plants. Bacterial communities 

from roots of RO plants differed to those from both non-regenerated plants (ANOSIM, 

r=0.485, p=0.007) and LO plants (ANOSIM, r=0.216, p=0.056) (Fig. 2a and Supplementary Fig. 

2). In addition, the in vitro root colonization by Bacillus amyloliquefaciens FZB42, a soil-borne 

plant-growth-promoting bacterium [17], differed significantly between RO and non-

regenerated plants (Wilcoxon Rank Sum test, W = 3862.5, p-value = 5.9e-05) (Supplementary 

Fig. 3). Finally, we inoculated roots of regenerated and non-regenerated plants with synthetic 

communities (SynComs) consisting of abundant soil- and root-derived bacterial isolates [18]. 

Again, the root bacterial communities differed between non-regenerated and regenerated 

individuals (7.3% variance explained by genotype, permutation-based ANOVA test, p=0.17; 

Fig. S4); this was especially obvious for the Alcaligenaceae family (Beta-proteobacteria) (Fig. 

2b and Supplementary Fig. 4). Similarly, when analyzing leaves of SynCom-inoculated plants 

(9.6% variance explained by genotype, P=0.023), the most notable differences were observed 

for	Xanthomonadaceae	(Gammaproteobacteria) (ANOVA, p < 0.05) (Supplementary Fig. 4,5), 

which include several phytopathogenic strains. These divergences led us to further assess the 

response to known pathogens. For this, we inoculated leaves with the bacterium Pseudomonas 

syringae pv. tomato strain DC3000 and the oomycete Hyaloperonospora arabidopsidis isolate 

Noks1, as the Arabidopsis thaliana Col-0 strain lacks gene-for-gene resistance to both of these 

pathogens [19, 20]. We found that RO plants were more sensitive to infection by either 

pathogen than LO individuals, and that these differences were stably inherited for at least 

three generations (Fig. 2c,d). This result was in line with our previous observation of the 

upregulation of negative regulators of biotic stress in RO plants (Fig. 1d). 
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Figure 2. Plants regenerated from roots and leaves interact differently with microbes. 

A) PCA of Bray-Curtis distances of bacterial communities present in roots of non-regenerated and regenerated plants grown in 

natural soils (n=10). 

B) Canonical analysis of principal coordinates (based on Bray-Curtis distances) reveals that root- (top) and leaf- (bottom) 

associated bacterial communities of SynCom-colonized non-regenerated and regenerated plants differ (n=12). 

D) Susceptibility of non-regenerated and regenerated plants to Pseudomonas syringae pv. tomato strain DC3000 infection. 

Bacterial growth was determined 3 d after inoculation (100 cfu ml-1). Data are the means ± SD from three independent 

experiments. Statistical significance according to Fisher’s Exact test (*** p<0.001; NS, not significant) 

E) Susceptibility of non-regenerated and regenerated plants to Hyaloperonospora arabidopsidis (Hpa) Noks1 infection, as indicated 

by number of sporangiospores on leaves 3 d after inoculation (300,000 spores/ml). Data are the means from two independent 

experiments. The p-value was determined using Student’s t-test. 

Given the non-expected, heritable transcriptional and phenotypic differences between RO and 

LO plants, which ought to be genetically identical, we investigated any potential epigenomic 

basis for these differences. DNA methylation is an important epigenetic mark, for which there 

are excellent statistical methods for genome-wide comparisons [21], and the resetting of DNA 

methylation during sexual reproduction has been well documented [22]. We therefore used 

whole-genome bisulfite sequencing (WGBS) of leaves and roots from LO and RO individuals 

to monitor any methylome changes over three consecutive generations 
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Fig. 3. Whole-genome DNA methylation analysis reveals evidence for stable epigenetic variation in 

regenerated plants. 

A) Principal component analysis (PCA) of DNA methylation levels at differentially methylated positions (DMPs) identified from 

pairwise sample comparisons. Numbers in brackets indicate the fraction of overall variance explained by the respective PC. 

B) Clustering of LO and RO leaf samples in generation G2, based on 765 differentially methylated regions (DMRs) identified in 

all-against-all pairwise comparisons. 

C) PCA of methylation at 255 DMR loci identified in G2 RO vs. LO leaf comparison, divided by cytosine sequence context. Right-

most panel shows PCA on methylation in all contexts within randomly chosen non-differentially methylated regions (non-DMRs). 

Numbers in brackets indicate the amount of variance explained by the respective PC. 

D) Gains and losses of DNA methylation in DMRs identified between RO and LO leaves in the G2 generation. Color keys indicate 

methylation rate differences in relation to leaves of non-regenerated plants. Right-most panel shows differences in a random 

subset of non-DMRs. 

E) Methylation frequencies at DMR loci in leaves of non-regenerated Col-0, RO, and reciprocal crosses (F1) between non-

regenerated Col-0 and RO plants.  

F) Methylation analysis of progeny from F1 reciprocal hybrids. Heatmap shows DMR methylation levels in individual F1 hybrid 

plants (#7 and #16) and each of four independent descendants. Bar plot shows frequency of hypo-methylation in F2 plants of 

DMRs that were hypo-methylated in the F1 hybrid.  

(Supplementary Table 2). Principal component analysis (PCA) of 736,413 differentially 

methylated positions (DMPs) discovered in pairwise contrasts revealed clear differences 
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between root and leaf samples from non-regenerated and regenerated plants (PC1, Fig. 3a). 

Regenerated samples clustered according to their tissue of origin prior to regeneration and 

not, as one might expect, by tissue identity at the time of DNA extraction (PC2, Fig. 3a). 

When repeating PCA with the methylation level of positions not classified as DMPs, we found 

little residual variance, thus indicating a low number of false negatives (Supplementary Fig. 6).  

Because the functional relevance of individual DMPs in plants is unclear, we also analyzed 

differentially methylated regions (DMRs). Cluster analysis based on 765 DMRs identified in 

pairwise comparisons between all G2 leaf samples validated the use of the independent LO 

and RO lines as two replicate groups (Fig. 3b). We found 255 consistent LO-vs-RO DMRs in 

G2 leaves (Supplementary Table 3). Methylation in LO leaves was similar to that of non-

regenerated leaves (PC 1 in Fig. 3c); likewise, roots from RO samples showed patterns similar 

to those of non-regenerated roots. However, leaves from RO populations maintained 

methylation patterns that were more similar to roots, especially in symmetric cytosine 

contexts (Fig. 3c). Conversely, methylation levels at these DMRs in roots of LO plants were 

similar to those found in non-regenerated root samples (Fig. 3c), in line with previous studies 

in A. thaliana and two closely related species [7, 8]. By contrast, methylation levels at non-

differentially methylated regions (non-DMRs) grouped samples primarily by their tissue 

identity, regardless of regenerant origin (Fig. 3c). Our DMR analysis also revealed that leaves 

from RO plants had less overall CG and CHG (but not CHH) methylation in these regions 

when compared to leaves of non-regenerated plants or LO plants (Fig. 3d). To account for 

sampling bias and stochastic effects, we repeated the analyses using randomly selected non-

DMRs, which did not produce any evidence for reduced methylation in roots of root-derived 

plants (Fig. 3d). The reduced DNA methylation in RO leaves was stably inherited over at least 

three generations (Fig. 3c,d), indicating that root-specific DNA methylation patterns are not 

efficiently reset during subsequent sexual reproduction. To understand the importance of the 

methylome status at the time of regeneration, we compared the leaf methylome of RO plants 

with the methylation profiles of roots from non-regenerated seedlings and mature plants 

(Supplementary Fig. 7). The RO leaf methylome was more similar to that of roots from non-

regenerated seedlings, implying that regeneration had been induced at the seedling stage and 

that the cell-specific methylation pattern was maintained throughout the regeneration process 

and in subsequent sexually reproduced progeny.  

Because there is evidence of methylation information being transferable between 

chromosomes [23, 24], we tested whether such information transfer could occur in trans in 
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our system. To this end, we performed reciprocal crosses between RO and non-regenerated 

plants. We found that in both F1 hybrids, DNA methylation was at mid-parent values, indicating 

that the DMRs on chromosomes inherited from the RO parent retained their 

hypomethylation status (Fig. 3e and Supplementary Fig. 8). We assessed the heritability of the 

observed differential methylation at these loci by sequencing individual F2 plant progenies. 

More than two-thirds (80%) of DMRs with mid-parental methylation in the F1 hybrid retained 

their hypomethylated state in at least one F2 descendant, indicating that allele-specific 

methylation was stably inherited both through mitotic and meiotic cell divisions (Fig. 3f).  

Both the establishment and maintenance of DNA methylation in plants rely on a series of 

partially interconnected pathways, depending on the genomic features that are methylated 

[25]. Consequently, when genome-wide demethylation is induced by various mutations, some 

regions can be remethylated upon restoration of the methylation machinery, while others 

cannot, and this is a function of the underlying methylation pathways [26-28]. To gain insight 

into the mechanisms underlying the failure to reset root-specific methylation patterns in RO 

plants, we investigated whether methylated regions that became hypomethylated in RO plants 

were under the control of a specific epigenetic pathway, by comparing the methylation changes 

in different mutant contexts [29]. We found that CG methylation in such regions was affected 

in the chromatin remodelling mutant ddm1 and in the DNA methylation maintenance mutants 

met1 and vim1 vim2 vim3; while CHG methylation was altered in the de novo methyltransferase 

cmt3 mutant and in mutants with a compromised H3K9 methylation machinery 

(Supplementary Fig. 9). Both pointed to the involvement of the RNA-directed DNA 

methylation (RdDM) silencing pathway, which was further supported by the hypomethylated 

states of these regions in hda6 mutants, since HDA6 is an upstream component of RdDM 

[30]. Contrary to our expectations, the regions that were hypomethylated in RO plants were 

not affected in the triple ros1 dml2 dml3 (rdd) mutant, which lacks three DNA demethylases, 

suggesting that DNA hypomethylation in RO plants is due to differences in the establishment 

and/or maintenance of DNA methylation in root initials during embryogenesis. 

To establish a connection between the molecular and phenotypic variation generated by plant 

regeneration, we searched for correlations between changes in DNA methylation (604 DMRs) 

and gene expression (1,537 DEGs; FDR < 0.01) in leaves of regenerated plants, over two 

generations. We identified 29, mostly hypomethylated, DMRs that were within 2 kb up- or 

downstream to DEGs (Supplementary Fig. 10 and Table 4). To confirm that such DMRs indeed 

affect gene expression, we selected a DMR ~1 kb downstream of RADIALIS-LIKE SANT/MYB1 
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(RSM1)/MATERNAL EFFECT EMBRYO ARREST 3 (MEE3), known to regulate plant growth and 

flowering time [31, 32]. To assess the role of DNA methylation on this intergenic genome 

region we introduced an inverted repeat (IR) hairpin to direct DNA hypermethylation to the 

RSM1-DMR (RSM1-IR) by RdDM. Bisulfite sequencing confirmed that the targeted genome 

region became specifically hypermethylated in IR transgenic lines (Fig. 4a), and this was 

accompanied by reduced RSM1 expression (Fig. 4b). RSM1_IR lines suffered from pleiotropic 

developmental defects, including accelerated senescence and earlier flowering (Fig. 4c). 

Transformation of RSM1_IR plants with a synthetic RSM1 construct (synRSM1) resistant to 

RSM1_IR targeting reversed RSM1-IR developmental phenotypes (Fig. 4d), suggesting that 

RSM1 is the causative gene responsible for the underlying developmental defects observed in 

IR lines and that the genomic region identified acts a long-distance regulatory region influenced 

by DNA methylation.  

Here, we set out to determine the cause for phenotypic variation arising from asexual 

propagation in plants. Our data show that, contrary to animals, plant somatic cells do not 

completely reset their epigenomes during cloning via the induction of an embryogenic 

developmental program. Because the somatic embryos induced during asexual plant 

reproduction closely mimics many aspects of normal embryogenesis [33], partial retention of 

tissue-specific epigenetic signatures would be expected in the primary regenerants, as these 

marks have not passed on through gametogenesis – the stage at which the epigenome is known 

to be reset during the plant life-cycle [22, 34]. What is surprising, however, is that progenies 

of regenerated plants, which have undergone multiple cycles of sexual reproduction, continue 

to retain cell-specific epigenetic marks, as well as transcriptional and phenotypic signatures 

typical of the founder tissue used for the initial propagation. The stability of these epigenetic 

marks resemble epialleles that are induced by the inactivation of positive regulators of DNA 

methylation, and which have been demonstrated to be heritable over multiple generations in 

epigenetic recombinant inbred lines (epiRILs) [26, 27, 35] and also exhibit stable phenotypic 

variation [26, 36]. 

Our analysis has also revealed that some epialleles captured during leaf regeneration are later 

reset in roots upon sexual propagation, a process that takes place during embryogenesis. The 

function of these imprints in roots is still unknown, but they have been found also in other 

plant species [7, 8, 37-39]. A tantalizing possibility is that such marks may be involved in 

regulating distinct tissue-specific transcriptional responses to environmental factors, such as 
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exposure and interactions with microorganisms. In support of this argument, A. thaliana leaves 

challenged with bacterial pathogens rapidly remodel their DNA methylation profile [40] and 

root resistance to fungal pathogens requires active DNA demethylation [41]. 

 

Figure 4. Differential methylation affects expression of RSM1. 

A) Snapshot of DNA methylation in different sequence contexts at the RSM1 locus in wild-type Col-0 plants and plants carrying 

an inverted repeat transgene (RSM1-IR). Black block highlights the region targeted by RSM1-IR-induced RdDM for DNA 

hypermethylation. Green bars, CG methylation; blue bars, CHG methylation; orange bars, CHH methylation. 

B) RSM1 expression in leaves and roots of wild-type (WT), RSM1-IR plants and RSM1-IR plants complemented with synRSM1. 

White bar, leaf; black bar, root. 

C) Induced DNA hypermethylation of RSM1-DMR leads to defects in plant growth and development. WT, wild-type; RSM1-IR, 

RSM1 inverted repeat. 

D) Genetic complementation of RSM1-IR with a synthetic RSM1 transgene (synRSM1) resistant to RSM1-IR-induced 

hypermethylation. 
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Cell-specific epigenetic marks captured during somatic embryogenesis are also likely to 

underpin the phenotypic somaclonal variation observed in plants propagated in vitro [42-45] 

as well as in natural, asexually reproducing, plant populations [46]. Our findings thus not only 

suggest new and exciting possibilities for enhancing or, perhaps more importantly, limiting 

phenotypic variation in clonally propagated elite lines [44], but they also raise pertinent 

questions regarding the adaptive significance of the epigenomic changes captured during 

asexual reproduction in plants. 
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