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The acetyl-CoA “Wood–Ljungdahl” pathway couples the folate-

mediated one-carbon (C1) metabolism to either CO2 reduction or

acetate oxidation via acetyl-CoA. This pathway is distributed in

diverse anaerobes and is used for both energy conservation and

assimilation of C1 compounds. Genome annotations for all se-

quenced strains of Dehalococcoides mccartyi, an important bacte-

rium involved in the bioremediation of chlorinated solvents, reveal

homologous genes encoding an incomplete Wood–Ljungdahl

pathway. Because this pathway lacks key enzymes for both C1

metabolism and CO2 reduction, its cellular functions remain elu-

sive. Here we used D. mccartyi strain 195 as a model organism to

investigate the metabolic function of this pathway and its impacts

on the growth of strain 195. Surprisingly, this pathway cleaves

acetyl-CoA to donate a methyl group for production of methyl-

tetrahydrofolate (CH3-THF) for methionine biosynthesis, representing

an unconventional strategy for generating CH3-THF in organisms

without methylene-tetrahydrofolate reductase. Carbon monoxide

(CO) was found to accumulate as an obligate by-product from the

acetyl-CoA cleavage because of the lack of a CO dehydrogenase

in strain 195. CO accumulation inhibits the sustainable growth

and dechlorination of strain 195 maintained in pure cultures, but

can be prevented by CO-metabolizing anaerobes that coexist with

D. mccartyi, resulting in an unusual syntrophic association. We also

found that this pathway incorporates exogenous formate to support

serine biosynthesis. This study of the incomplete Wood–Ljungdahl

pathway in D. mccartyi indicates a unique bacterial C1 metabolism

that is critical for D. mccartyi growth and interactions in dechlorinat-

ing communities andmay play a role in other anaerobic communities.

reductive dechlorination |
13C isotope analysis | acetyl-CoA synthase

The acetyl-CoA “Wood–Ljungdahl” pathway consists of two
joined linear branches that couple folate-mediated one-carbon

(C1) metabolism to CO2 reduction or acetate oxidation via acetyl-
CoA (Fig. 1). This pathway plays crucial roles in both microbial
energy conservation and carbon assimilation under anaerobic
conditions (1–3). Initially elucidated in homoacetogenic bacteria
operating in a reductive direction, this pathway is now known to
exist in a variety of forms that are used in reductive or oxidative
directions in bacteria and archaea with diverse respiratory pro-
cesses, including methanogenesis, hydrogen generation, sulfate
reduction, and possibly anaerobic ammonium oxidation (4–9).
An incomplete Wood–Ljungdahl pathway was identified in ge-
nome annotations of all five sequenced strains of the organohalide-
respiring bacterium Dehalococcoides mccartyi (Fig. 1) [strain195,
VS, BAV1, CBDB1 (10–12), and GT (http://img.jgi.doe.gov)].
D. mccartyi strains play a crucial role in the bioremediation of
chlorinated solvents, as they are the only known organisms capable
of converting the common groundwater contaminants tetra-
chloroethene and trichloroethene (TCE) to the nontoxic end
product ethene (13). However, the cellular functionality and
ecological impact of the incomplete Wood–Ljungdahl path-
way of D. mccartyi are currently unknown.

In annotations of the incomplete Wood–Ljungdahl pathway,
four essential gene homologs appear to be missing (10–12) (http://
img.jgi.doe.gov). One of the missing genes, metF, corresponds
to methylene-tetrahydrofolate reductase (MTHFR) in the C1
metabolism pathway, which reduces 5-, 10-methylene-tetrahy-
drofolate (CH2-THF) to 5-methyl-tetrahydrofolate (CH3-THF),
a required methyl donor for methionine biosynthesis (14). Al-
though deletion of metF in bacteria often leads to methionine
auxotrophy, D. mccartyi exhibits the ability of de novo methio-
nine biosynthesis without this gene, suggesting the existence of
an alternate mechanism for generation of the methyl donor for
methionine biosynthesis (15–18).
The other three missing gene homologs, acsE, fdh, and acsA,

correspond to a methyltransferase (MeTr), formate dehydrogenase
(FDH), and the carbon monoxide dehydrogenase (CODH) sub-
unit of a bifunctional enzyme-complex CODH/acetyl-CoA syn-
thase (ACS), respectively. When functioning in the reductive
direction, MeTr is responsible for methyl transfer from CH3-THF
to the corrinoid iron–sulfur protein (CFeSP) for synthesizing
acetyl-CoA, and FDH and CODH reduce CO2 to formate and
carbon monoxide (CO), respectively (Fig. 1). Indeed, D. mccartyi
strains 195 and CBDB1 have been found to be incapable of
reducing CO2 to either the methyl or carbonyl group of acetyl-
CoA in 13C-labeled tracer experiments (16, 18). However, as
the reactions catalyzed by MeTr, FDH, and CODH are often
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bidirectional, the previous experiments were insufficient to
distinguish whether the enzyme functions are truly missing or
actually occur only in the reverse direction or are encoded by
genes with unknown sequences (1). In strain 195, expression of
both the transcripts and proteins corresponding to the identified
genes of the Wood–Ljungdahl pathway has been detected under

a variety of growth conditions, suggesting metabolic utility of this
pathway (19–21).
All D. mccartyi strains identified thus far exhibit common

metabolic restrictions; that is, all require organohalide com-
pounds as electron acceptors, hydrogen as electron donor,
acetate for biosynthesis, and corrinoids as coenzymes (13).
However, even when all known metabolic requirements are met,
the growth of D. mccartyi has been found to be less robust in
axenic cultures than in defined consortia and communities (20–
23), for reasons that remain elusive. Because the incomplete
Wood–Ljungdahl pathway is present in all sequenced D. mccartyi
strains and is constantly expressed in strain 195, we hypothesized
that it plays an important role in C1 compound and acetyl-CoA
metabolism, and that its cellular functionality may be necessary
for the growth of D. mccartyi. In this study, we applied 13C-tracer
experiments to study the Wood–Ljungdahl pathway of strain 195
and used sensitive analytical techniques to detect and quantify
CO and CO2 generated from this pathway. We also evaluated
the effects of CO on the growth of strain 195 in isolation and in
defined coculture. Finally, we performed a bioinformatics anal-
ysis to examine the presence of similarly incomplete Wood–
Ljungdahl pathways in other sequenced bacteria and archaea.

Results

Identification of the Functional Elements of the Wood–Ljungdahl

Pathway. To investigate the potential functionality of specific
reactions within the Wood–Ljungdahl pathway, we examined the
ability of strain 195 to use formate as a supplementary carbon
source by growing strain 195 with [2-13C]acetate and unlabeled
formate with a H2/CO2 headspace, and quantified the isotopo-
mers as mass fractions (i.e., M0, M1, M2), representing un-
labeled, singly 13C-labeled, and doubly 13C-labeled amino acids,
respectively (24). Therefore, if the unlabeled formate was used
as a supplemental source of carbon by strain 195, the 13C-labeling
profiles of amino acids synthesized from C1 intermediates would
be diluted with the unlabeled carbon (25). Analysis of isotopo-
mer distribution of amino acids (Fig. 2 and Table S1) showed
that although 94% of serine was singly labeled (M1 = 0.94) in the
samples fed [2-13C]acetate alone (16), only 75% of the serine was
singly labeled (25% unlabeled, M0 = 0.25) when unlabeled for-
mate was amended to the culture, clearly demonstrating incor-
poration of the exogenous formate into serine synthesis. In
contrast, significant dilution was not observed in the other amino
acids and was notably not detected in methionine (M2 = 0.96
and 0.93 in the samples fed [2-13C]acetate alone and [2-13C]acetate
and unlabeled formate, respectively), which is biosynthesized
using CH3-THF as a precursor.
To confirm this pattern, the isotopomer distribution was

also analyzed for cultures grown with [13C]formate and un-
labeled acetate. Similarly, 22% of the serine was singly labeled,
whereas 78% was unlabeled, indicating that formate was in-
corporated into serine, and methionine remained unlabeled

Fig. 1. Schematic of the Wood–Ljungdahl pathway (thick arrows) with as-

sociated steps of serine and methionine biosynthesis pathways (thin arrows).

Colored arrows indicate the reactions missing in the genome annotations of

all five sequenced D. mccartyi isolates (blue, confirmed missing functions;

light green, detected function in this study). Gray arrow indicates that ace-

tate fuels central carbon metabolism via acetyl-CoA. Different from the

conventional Wood–Ljungdahl pathway where CO is a transient inter-

mediate often channeled to downstream enzymes to prevent leakage

(shown in brackets) (1–3), the incomplete pathway in D. mccartyi strain 195

produces or incorporates free CO. Three-color–labeled carbons indicate

three labeling experiments in strain 195 (see Results for details): green

for [13C]formate, red for [2-13C]acetate, blue for [1-13C]acetate. Putative

homologs of genes involved in each step of the pathway in the strain 195

genome are present in a single genomic locus shown at the bottom with

locus numbers (12). The pink arrow indicates a hypothetical ORF. Colored

boxes designate the identified homologs. Gray-shaded boxes indicate miss-

ing homologs in the genome annotation of strain 195. Framed gray-shaded

boxes indicate the detected functions without annotated homologs [metH/

metE (16, 18); acsE, see Results and Discussion for details]. Gene abbrevia-

tions: acsA, carbon monoxide dehydrogenase (CODH); acsB, acetyl-CoA

synthase (ACS); acsCD, corrinoid iron sulfur protein (CFeSP); acsE, methyl-

transferase (MeTr); acsF, ACS chaperone; COG3894, ferredoxin; fdh, formate

dehydrogenase (FDH); fhs, formyl-tetrahydrofolate (HCO-THF) synthase;

folD, methylene-tetrahydrofolate (CH2-THF) dehydrogenase/cyclohydrolase;

glyA, glycine hydroxymethyltransferase; metF, methylene-tetrahydrofolate

reductase (MTHFR); metE/metH, methionine synthase.

Fig. 2. Relative abundance of different mass isotopomers for serine and

methionine in strain 195 cultures grown on [2-13C]acetate with or without

unlabeled formate or unlabeled acetate with [13C]formate. The technical vari-

ance is less than 2% in duplicated samples for mass isotopomer analysis (16).
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(M0 = 0.95) (Fig. 2 and Table S1). Examination of the labeled
carbon position in serine revealed that 13C-carbon from formate
was only incorporated into the R side chain of the serine mol-
ecule (Table S2). This labeling pattern clearly rules out the
incorporation of 13C via pyruvate formate lyase (EC 2.3.1.54)
(i.e., acetyl-CoA+formate → pyruvate →→→→→→ serine), which
should result in serine labeled at the carboxyl group. Instead, the
integration of formate carbon in serine is presumably achieved via
the portion of the methyl branch of the Wood–Ljungdahl pathway
(DET 0671/0707, DET0668/0702) that involves a formate activation
by formyl-tetrahydrofolate (HCO-THF) synthase and sequential
reduction reactions catalyzed by a bifunctional CH2-THF cyclo-
hydrolase/dehydrogenase (Fig. 1). This labeling pattern is con-
sistent with CH2-THF donating the methylene group to a glycine
to synthesize a serine via the glycine hydroxymethyltransferase
(DET0436) (Fig. 1). However, the further reduction from CH2-
THF to CH3-THF does not occur because carbon from formate
was not incorporated into methionine, indicating that as predi-
cated by the genome annotation, strain 195 lacks a functional
MTHFR to reduce CH2-THF to CH3-THF (Fig. 1).
When cultures were fed [2-13C]acetate and unlabeled pyru-

vate, analysis of isotopomer distribution shows that strain 195
incorporated unlabeled carbons from pyruvate for biosynthe-
sis of methionine and aspartate. That is, the doubly labeled
methionine decreased (M2 = 0.71) and the singly labeled frac-
tion increased (M1 = 0.23), and for aspartate, the singly labeled
decreased (M1 = 0.75) and the unlabeled fraction increased
(M0 = 0.23) (Fig. 3A and Tables S1 and S3). Our previous
study showed that when strain 195 was fed [2-13C]acetate
alone, the third carbon in aspartate (M1 = 0.97) and the third
and fifth carbons in methionine (M2 = 0.96) were labeled with
13C (16). Because the first four carbons for methionine bio-
synthesis are derived from aspartate and the fifth comes from
CH3-THF, the similarity in patterns of M1/M2 for methionine
and M0/M1 for aspartate suggests that all of the unlabeled car-
bon from pyruvate that was incorporated in methionine came
from aspartate rather than CH3-THF. That is, if the unlabeled
pyruvate contributed any carbon to CH3-THF, the fifth carbon
on the methionine would become unlabeled, creating a mis-
matched labeling pattern between the aspartate and methionine.
Therefore, CH3-THF was not derived from pyruvate, but rather
was derived from the labeled second carbon of [2-13C]acetate
through acetyl-CoA (Fig. 3B). In addition, D. mccartyi is pre-
dicted to possess a pyruvate:ferredoxin oxidoreductase [PFOR,
EC 1.2.7.1 (DET0724-0727)] that typically functions in either
direction to catalyze the oxidative decarboxylation of pyruvate to
form acetyl-CoA or reductive carboxylation of acetyl-CoA to
form pyruvate (26) (Fig. 3B). For the cultures fed [2-13C]acetate
and unlabeled pyruvate, unlabeled (M0 = 0.24) alanine (derived
from pyruvate) showed similar mass fractions to singly labeled
(M1 = 0.23) glutamate (derived from pyruvate and acetyl-CoA),
demonstrating that PFOR only functions as a unidirectional
enzyme (acetyl-CoA + CO2→ pyruvate) (Fig. 3C and Table S3).
This finding is consistent with previous observations that pyru-
vate cannot serve as sole carbon source for strain 195 (27).
We also tested the ability of strain 195 to take up and incor-

porate other C1 compounds and tricarboxylic acid cycle inter-
mediates, including methyl-THF, methyl chloride, methyl iodide,
methyl thiol, dimethyl sulfide, and trimethyl amine, as well as
malate, fumarate, succinate, and citrate. Results indicate that
strain 195 is unable to grow on or incorporate any of these
compounds under the provided experimental conditions (Tables
S4 and S5, no data shown for the cultures incapable of dechlo-
rination and growth).

Cleavage of Acetyl-CoA for Methionine Biosynthesis. The missing
MTHFR function in D. mccartyi poses an interesting question
about the origin of the methyl group in methionine. Exogenous
CH3-THF was not used by strain 195 for methionine biosynthesis
when provided with [2-13C]acetate in a H2/CO2 headspace, sug-
gesting that CH3-THF has to be formed endogenously (Table S4).

To confirm that the methyl group of methionine comes from
acetyl-CoA cleavage by ACS (Fig. 1) as part of the incomplete
Wood–Ljungdahl pathway, we examined whether CO or CO2 was
liberated and released from the carbonyl group of acetyl-CoA
using cultures fed with unlabeled, [1-13C]acetate, or [2-13C]acetate.
Cultures fed [1-13C]acetate generated CO that was almost

exclusively labeled with 13C (atomic percentage >90%) (Fig. 4A).
In contrast, less than 5% of the generated CO was labeled in the
[2-13C]acetate and unlabeled acetate cultures, indicating that
CO is generated from the carbonyl group of acetyl-CoA. Carbon
isotope compositions of CO2 in these experiments exhibited
negligible differences for the cultures grown with unlabeled ac-
etate, [1-13C]acetate, or [2-13C]acetate, confirming that CODH
and FDH, the two enzymes potentially responsible for oxidizing
CO and formate to CO2, are missing in strain 195, as predicted in
the genome annotation (12) (Fig. 1).

Fig. 3. Isotopomer analyses of amino acid generation from [2-13C]acetate

and unlabeled pyruvate in strain 195. (A) Relative abundance of different

mass isotopomers for aspartate and methionine for strain 195 grown on

[2-13C]acetate with or without unlabeled pyruvate. (B) Schematic of methionine

biosynthesis using aspartate and CH3-THF as precursors and carbon integration

into alanine and glutamate from pyruvate and acetate. 13C-labeled carbon

originating from [2-13C]acetate is shown in red. Colored boxes indicate the

carbons derived from pyruvate. (C) Relative abundance of isotopomers for

alanine and glutamate in strain 195 cultures grown on [2-13C]acetate with

unlabeled pyruvate.
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Our previous study demonstrated that strain 195 can uptake
and incorporate more than 30% of its proteinogenic methionine
from the extracellular environment (25). To further confirm that
CO is a by-product of the acetyl-CoA cleavage reaction for
methionine biosynthesis, we compared the CO concentrations of
cultures amended with methionine to those without methionine.
As a positive control, cultures provided with phenylalanine were
also analyzed for their CO concentrations, because exogenous
phenylalanine can also be imported and integrated into strain
195 biomass but does not play a role in methionine synthesis
(25). We reasoned that if strain 195 cleaves acetyl-CoA to gen-
erate the methyl group for methionine biosynthesis, then pro-
viding exogenous methionine for import would decrease the
need for its synthesis, resulting in decreased CO production. As
expected, the cultures amended with methionine produced
∼50% less CO than the cultures without amendment or with
phenylalanine after five doses of TCE amendment (Fig. 4B).
Because ACS is often a bidirectional enzyme, we also tested

whether CO can be incorporated via acetyl-CoA synthesis in
the partial Wood–Ljungdahl pathway (28). We compared iso-
topomer distribution of three amino acids (alanine, glutamate,
and leucine) between cultures fed [1-13C]acetate alone and those
fed [1-13C]acetate with unlabeled CO. Approximately 6∼10%
dilution by the unlabeled carbon from CO was detected in the
three amino acids that contain one to three carbons derived from
the carbonyl group of acetyl-CoA (Fig. 4 C and D and Table S6),
indicating that CO can be incorporated into the central metab-
olism even when present in minor amounts, presumably via ACS.

CO Accumulation in Strain 195 Isolates and Cocultures.We compared
CO accumulation in strain 195 isolates with accumulation in
cocultures of strain 195 and Desulfovibrio vulgaris Hildenborough
(DvH) over consecutive feeding doses of TCE (Fig. 5A). We
found that CO was generated and accumulated during the growth
of the strain 195 isolate, eventually reaching 5 μmol per bottle
after five doses of TCE (totaling 385 μmol) were completely
transformed. TCE dechlorination activity ceased during the sixth
dose of amended TCE as previously observed (20). In contrast,
although small amounts of CO accumulated in the strain 195/DvH
coculture, it remained around 0.5 μmol per bottle, and did not
increase even after nine consecutive doses (totaling 693 μmol),
and the coculture continued to support TCE dechlorination over
15 doses (Fig. 5A and Fig. S1).
To understand the potential inhibitory effects of CO on strain

195, we examined the growth of strain 195 in a titration experi-
ment with exposure to different amounts of CO after one dose of
TCE (Fig. 5B). We found that CO concentrations amended as
low as 0.8 μmol per bottle exerted slight adverse effects on strain
195’s growth, whereas amended concentrations of 6–10 μmol per
bottle exerted moderate to severe inhibition, with cell numbers
significantly decreasing over three consecutive TCE doses.

Bioinformatic Analyses of MTHFR and ACS Genes in Sequenced

Microbial Genomes. Because the substitution of missing MTHFR
function by acetyl-CoA cleavage has not been previously repor-
ted, we conducted a bioinformatics analyses on the sequenced
bacterial and archaeal genomes to determine whether this char-
acteristic is present in other microorganisms. We first identified
the genomes without an annotated MTHFR gene. Of 2,277
bacterial and archaeal genomes in the National Center for
Biotechnology Information (NCBI) genomes database (as of
February of 2013), 1,548 were found to have annotated MTHFR
genes (Dataset S1). A blastx search comparing the remaining 729
genomes to the annotated MTHFR protein sequences identified
an additional 303 genomes containing MTHFR homologous
genes, and another seven genomes with MTHFR genes were
identified by manual curation (Dataset S1). MTHFR genes were
not identified in 419 genomes (Dataset S1). Some of these genomes
belonged to parasitic or symbiotic organisms, whose close asso-
ciation with a host may explain their absence.
Further analysis of the 419 genomes without MTHFR genes

focused on the presence of an ACS gene. Within this group,
homologs of this gene were only found in sequenced D. mccartyi
strains, but not in other genomes. In addition, all D. mccartyi
strains were found to be missing gene homologs of bacterial
betaine-homocysteine methyltransferase, proteins that catalyze
a methyl transfer reaction from betaine instead of CH3-THF for
methionine biosynthesis.

Discussion

Compared with identified functionalities of the Wood–Ljungdahl
pathway in homoacetogens, sulfate-reducers, and methanogens,
little is known regarding the metabolic role of the incomplete

Fig. 4. CO released and incorporated by strain 195. (A) 13CO was dominant

in the cultures amended with [1-13C]acetate, but not in cultures amended

with either unlabeled or [2-13C]acetate. (B) CO quantified in strain 195 cul-

tures grown in the presence of methionine (Met), no amino acid (no AA), or

phenylalanine (Phe). (C) Relative abundance of isotopomers for alanine,

glutamate and leucine in strain 195 cultures grown on [1-13C]acetate with or

without unlabeled CO. (D) Biosynthesis of alanine, glutamate and leucine

from acetyl-CoA. ThPP, thiamine diphosphate.

Fig. 5. (A) CO generation during dechlorination of multiple TCE doses by

strain 195 in pure cultures and in cocultures with DvH. (B) Inhibitory effects

of different CO concentrations on strain 195 growth.
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Wood–Ljungdahl pathway in organohalide-respiring D. mccartyi
(1, 3). It has also been unknown how D. mccartyi strains without
identified metF homologs achieve methylation of homocysteine
for methionine biosynthesis. In this study, we demonstrated that
although the Wood–Ljungdahl pathway in D. mccartyi can as-
similate formate and to a lesser extent CO in certain amino
acids, the most important role of this pathway is to cleave acetyl-
CoA for CH3-THF generation to substitute for the missing
MTHFR function in methionine biosynthesis. Others have pre-
viously suggested that some soil and marine bacteria use an al-
ternative methionine biosynthesis pathway using betaine instead
of CH3-THF as the methyl donor to homocysteine via the
activities of betaine-homocysteine methyltransferase (29–32).
However, our analysis does not support this possibility in
D. mccartyi because bioinformatics analysis indicates lack of a
homolog to betaine-homocysteine methyltransferase in all five
sequenced D. mccartyi strains. Moreover, 13C-experiments dis-
tinctly demonstrated that acetyl-CoA cleavage is the origin of the
methyl group of methionine, evidenced by the comparison of
13C-labeling profile of methionine and aspartate (Fig. 3B), as
well as reduced CO production in the presence of exogenous
methionine (Fig. 4B). Although variations in C1 metabolism,
such as the replacement of tetrahydrofolate by polyglutamate or
methanopterins and NAD(P)H instead of ferredoxin as the co-
factor for MTHFR (2, 33, 34), have previously been reported
for bacteria and archaea, to our knowledge, the complete re-
placement of the MTHFR function with acetyl-CoA cleavage is
novel. Although our bioinformatics analysis suggested that this
strategy for generating CH3-THF is not found in other se-
quenced bacteria and archaea, it is still unclear whether this
strategy has wider distribution in the environment, given the
limited numbers of sequenced organisms and the inherent
challenges associated with growing CO-generating organisms
in isolation.
In addition to its pivotal roles in methionine biosynthesis, the

incomplete Wood–Ljungdahl pathway of D. mccartyi was also
found to affect the growth of D. mccartyi in axenic cultures
through the generation of CO, an obligate by-product of acetyl-
CoA cleavage. Our analysis revealed that CO accumulated in the
headspace of strain 195 axenic cultures because of the lack of
CODH function and caused slight to severe inhibition to growth
(Fig. 5). The inhibition may be because of adverse effects of CO
on metalloenzymes, such as hydrogenases, with which CO can
competitively form stable complexes that block the interactions
of substrate and enzymes (35). Compared with the reported CO
concentrations [1–2%, 7.5%, and 50–100% (vol/vol)] that cause
severe inhibition to other anaerobes with hydrogenases, the se-
vere CO toxicity level of strain 195 [6 μmol per bottle, (∼0.1%)
(vol/vol)] is orders-of-magnitudes lower (36, 37). This extreme
CO toxicity is likely one reason that growth of axenic D. mccartyi
cultures is observably unreliable (20–23).
Fortunately, the adverse effects of CO toxicity on D. mccartyi

growth and dechlorination can be ameliorated by the presence of
CO-oxidizing organisms, as demonstrated in our experiments
with the coculture of strain 195 and DvH. In fact, we propose
that CO might be an important substance exchanged between
D. mccartyi and its coinhabitants within microbial communities.
Because of the low redox potential (E0′) of the CO2/CO couple
(−524 mV), CO oxidation can serve as an excellent source of
energy for anaerobic microorganisms (38, 39). CO oxidation
has been observed in anaerobic organisms with various respi-
ratory processes, including sulfate-reducers, hydrogen-producers,
homoacetogens, and methanogens that have commonly been
found to coexist with D. mccartyi in diverse environments (40–42).
Consequently, bacteria and archaea capable of CO-oxidization
could gain additional energy from coexistence with D. mccartyi,
while enhancing the robust growth of D. mccartyi, representing
another potentially important substrate for interspecies transfer
and syntrophic interactions between D. mccartyi and other com-
munity members.

Analysis of the acetyl-CoA cleavage activity of D. mccartyi
indicates that the reaction is catalyzed by a monomeric ACS,
rather than a bifunctional heteromeric enzyme complex, CODH/
ACS, indicating that the ACS function can be separate from
CODH. Indeed, the activity of a monomeric ACS has been
previously demonstrated in Carboxydothermus hydrogenoformans
grown under excess CO concentrations, where ACS showed
a comparable specific activity to CODH/ACS in acetyl-CoA
cleavage or synthesis (8). Like the monomeric ACS in C.
hydrogenoformans, the ACS of D. mccartyi is also likely a bi-
directional enzyme, but with a more prevalent in vivo acetyl-CoA
cleavage activity than acetyl-CoA synthesis from CO, a methyl
group and CoA (Figs. 1 and 4 C and D). In addition, although
D. mccartyi lacks a gene homolog of MeTr (acsE), the methyl
transfer reaction from CFeSP to CH3-THF is actually active. It is
possible that the methyl transferase is encoded by a gene dis-
similar to known acsE genes or is catalyzed by a multienzyme
complex containing ACS and CFeSP if the D. mccartyi ACS is
an analog to archaeal acetyl-CoA decarbonylase/synthase (43,
44). The uniqueness of the ACS in D. mccartyi calls for the fur-
ther characterization of this interesting enzyme, which may lead
us to a better understanding of the evolution of the Wood–
Ljungdahl pathway.
In summary, we demonstrated the crucial metabolic roles of

the incomplete Wood–Ljungdahl pathway in central metabo-
lism of the obligately organohalide-respiring D. mccartyi. The
knowledge of metabolic functionalities gained in this study
improves our understanding of the central metabolism of envi-
ronmentally important bacteria, and will better equip us to study
the ecological distribution and impact of incomplete Wood–
Ljungdahl pathways in other environmental microorganisms.

Materials and Methods
Bacterial Strain and Culture Conditions. Strain 195 was grown aseptically in

batch cultures at 34 °C with a defined mineral salt medium and a H2/CO2

headspace (80/20 vol/vol), as described previously (16). The medium was

amended with 2 mM sodium acetate, liquid TCE (∼77 μmol per bottle), and

a modified Wolin vitamin solution containing 37 nM B12. To analyze the

incorporation of exogenous unlabeled carbons, 2 mM of each organic acid

(i.e., formate, pyruvate, citrate, succinate, fumarate, and malate) or 2 mM

of each C1 compound (i.e., dimethyl sulfate, trimethyl amine, methyl chlo-

ride, methyl iodide, and methyl thiol) or 0.5 mM CH3-THF or 5 μM CO was

amended together with 2 mM 13C-labeled sodium acetate into the culture

medium. To minimize unlabeled carbon introduced from inoculation, strain

195 biomass was subcultured with 2% (vol/vol) inoculum in labeled medium

three times before being harvested for isotopomer analysis. A coculture of

strain 195 and DvH was grown in the same medium with the substitutions of

5 mM lactate and N2/CO2 (90/10 vol/vol) headspace for acetate and H2/CO2

headspace (21).

Analytical Methods. Approximately 1.5 L of liquid culture (∼7.7 × 107 cells/mL)

was aseptically harvested by centrifugation at 22,000 × g for 15 min at 4 °C.

The cell pellet was washed three times and stored at –80 °C before use. The

preparation and isotopomeric analysis of proteogenic amino acids were

performed as previously described (45). Details of biomass hydrolysis, de-

rivatization of amino acids and GC-MS analysis are present in SI Materials

and Methods. Isotopomer data correction and analysis were conducted as

described by Wahl et al. (46). The isotopic labeling data were shown as mass

fractions (i.e., M0, M1, M2. . .) representing amino acids containing unlabeled,

singly 13C-labeled, and doubly 13C-labeled isotopomers, respectively (24).

Ethenes in culture headspace were measured using a GC (Hewlett-Packard

model 5890; Agilent Technologies) with a GC-GasPro capillary column (30m ×

0.32 mm, particle-free PLOT phase; J&W Scientific) and a flame ionization

detector, as described previously (16). CO concentrations and CO isotopic

compositions were measured using a gas chromatograph isotope ratio mass

spectrometer (Thermo Fisher Scientific). Briefly, 300–1,000 μL of headspace

sample was taken from sample vials and injected to 25- to 250-μL volume

stainless steel loops mounted on a six-port valve (Valco Instruments). Sam-

ples were transferred into the gas chromatograph by switching the six-port

valve. CO was separated chromatographically on a HP-Molsieve fused silica

capillary column (30 m × 0.32 mm, 12-μm film thickness; Agilent Technolo-

gies). The stable isotope abundance is reported in atom percent 13C. CO

concentrations were determined using peaks area of mass 28, 29, and 30.
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Cell numbers of the cultures were determined by quantitative real-time PCR

with primers specific to the strain 195 tceA or 16S rRNA gene, using a

StepOnePlus real-time PCR system (Applied Biosystems) as previously de-

scribed (21, 25). Relative cell numbers are reported as multiples of the av-

erage levels observed in cultures after one dose of TCE.

Bioinformatics Analyses of Genes Coding MTHFR, ACS, and Betaine-Homocysteine

Methyltransferase. A bioinformatic analysis was performed to evaluate the

prevalence of MTHFR genes in sequenced microbial genomes and to identify

organisms lacking this gene. The search was performed using all bacterial and

archaeal genomes in the NCBI genomes database, downloaded in February of

2013. Detailed bioinformatics analyses of MTHFR genes are present in SI

Materials and Methods. In the genomes that lack of MTHFR genes, the

presence of ACS (EC 2.3.1.169) genes was searched to assess the distribution

of the incomplete Wood–Ljungdahl pathway in other prokaryotes (47). Fi-

nally, all D. mccartyi strains were searched for the homologs of betaine-

homocysteine methyltransferase (EC 2.1.1.5) using the bacterial protein

sequences found in BRENDA (in August of 2013) and reported elsewhere (31).
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