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abstract: Foragers that feed on hidden prey are uncertain about

the intake rate they can achieve as they enter a patch. However,

foraging success can inform them, especially if they have prior knowl-

edge about the patch quality distribution in their environment. We

experimentally tested whether and how red knots (Calidris canutus)

use such information and whether their patch-leaving decisions max-

imized their long-term net energy intake rate. The results suggest

that the birds combined patch sample information with prior knowl-

edge by making use of the potential value assessment rule. We reject

five alternative leaving rules. The potential encounter rate that the

birds choose as their critical departure threshold maximized their

foraging gain ratio (a modified form of efficiency) while foraging.

The high experimental intake rates were constrained by rate of di-

gestion. Under such conditions, maximization of the foraging gain

ratio during foraging maximizes net intake rate during total time

(foraging time plus digestive breaks). We conclude that molluscivore

red knots, in the face of a digestive constraint, are able to combine

prior environmental knowledge about patch quality with patch sam-

ple information to obtain the highest possible net intake over total

time.
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density, optimal foraging, marginal value theorem, currency.
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To model the interactions between foragers and their prey,

ecologists have made a number of simplifying assump-

tions. Prey items are generally supposed to be distributed

in clusters, the so-called patches, and are located at random

positions in such patches. The area between patches is

taken to be devoid of prey. Foragers are expected to max-

imize their rate of energy intake. In the simplest model,

the ideal free distribution model (Fretwell and Lucas

1970), foragers do not spend time and energy traveling

between patches, and they know the energy intake rate

that can be achieved in each patch. They should and can

always select the patch where they obtain the highest intake

rates. Feeding in a patch where energy is gained at a lower

rate than can be achieved elsewhere is a form of lost op-

portunity (Stephens and Krebs 1986). More realism is

added in the model using the marginal value theorem

(MVT; Charnov 1976), where it is acknowledged that it

takes time to travel between patches and that foragers do

not know the intake rates in all patches beforehand. They

only know the intake rate in the current patch and the

long-term intake rate achievable in their environment (a

rate that also takes travel time into account). Search within

patches is random, and because of prey depletion, foragers

experience diminishing returns. If foragers aim to maxi-

mize their long-term energy intake, they should skip (or

leave) a patch when the instantaneous intake rate is lower

than the achievable long-term intake rate.

The idea of using an instantaneous intake rate as a

currency to decide on patch departure is only applicable

when energy intake comes as a continuous flow, for ex-

ample, in birds feeding on nectar (Gass and Roberts 1992).

In contrast, if prey are discrete items found at irregular,

stochastic moments (fig. 1), the instantaneous intake rate

between prey encounters is 0, and a strict interpretation

of MVT predicts that all patches will be left immediately

on arrival. Thus, foraging models for discrete prey situ-

ations have been developed, which we review.
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Figure 1: Possible feeding scenario in a patch. Between arrival and departure, a forager encounters four prey at stochastic moments in time. Before

each prey capture (filled circle; width of circle denotes handling time), a forager has to spend some time searching (open bar). After a number of

prey have been found (in this case, three), the forager cannot ingest more prey since its stomach is full. It needs to pause in order to process and

digest these prey items (filled bar). Intercapture interval is the search time it takes to find a single prey (solid lines). Search time between the last

encounter and departure is called giving-up time (GUT). Several of these foraging parameters (GUT, total number of prey found in relation to

invested search time) could inform the forager about prey density in this patch.

Departure Rules When Foraging on

Discrete Prey Items

Prescient

The problem of immediate departure was circumvented

by assuming that foragers are prescient; that is, they can

instantly recognize in what type of patch they are feeding

by using sensory cues (e.g., vision, olfaction; Valone and

Brown 1989). On arrival, such foragers instantly know how

many prey a patch contains, and they thus know how many

prey to take from each patch type in order to leave all

patches at similar instantaneous encounter rates. As a re-

sult, all patches are left at similar giving-up densities

(GUD; Brown 1988).

The problem for foragers that feed on hidden discrete

prey items is the instant recognition of a patch type (i.e.,

initial prey density). However, as foraging success contains

information about a patch (so-called patch sample infor-

mation; Valone 1991), foragers can try to estimate the

instantaneous intake rate (Oaten 1977). Discrete prey

items require some handling time before they can be in-

gested. If we assume that the expected handling time of

discrete prey items is known to the forager, estimates of

instantaneous intake rate transform into estimates of in-

stantaneous encounter rate (Holling 1959). We review how

incompletely informed foragers could estimate encounter

rates in depleting patches.

GUT

Giving-up time (GUT) is defined as the length of the

search interval between the last encountered prey item and

patch departure (fig. 1). The GUT rule predicts that a

forager leaves a patch when the search time for the next

prey item takes longer than a critical time interval, the

GUT. The reciprocal of GUT is a measure of encounter

rate, and some authors thought that a fixed GUT was

predicted by MVT (e.g., Krebs et al. 1974). McNair (1982)

corrected this mistake. He showed that animals that in-

stantly recognize patch quality should use longer GUTs in

initially richer patches so that they would effectively leave

patches at a constant instantaneous encounter rate. Thus,

although GUT might be an easy measure of instantaneous

encounter rates (it only demands keeping track of time

since the latest prey encounter), the estimate obtained is

biased.

Current Value Assessment with Prior Knowledge

Foragers are able to obtain unbiased estimates of instan-

taneous encounter rates when they know the frequency

distribution of initial prey densities in their environment,

that is, when they know what to expect. Updating this

prior expectation with patch sample information on the

elapsed total search time and the number of prey found

leads to an unbiased estimate of instantaneous encounter

rate (Iwasa et al. 1981; see app. A for technical details).
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Figure 2: Unbiased estimation of instantaneous rate of prey encounter

by current value assessment rule, assuming prior knowledge. Solid thin

lines indicate how the estimate declines with cumulative search time (z)

and increases with the number of prey found (n). When a forager enters

a patch ( , ), it expects the environmental average instanta-z p 0 n p 0

neous encounter rate. In this particular example (thick gray line), the

forager finds two prey items and leaves at a critical estimate of instan-

taneous encounter of 0.15 s�1 (open circles; dashed line is plotted just to

make clear that all circles are at 0.15 s�1). A forager using the potential

value rule uses these current estimates on instantaneous encounter rates

in a more conservative way. This makes such a forager slightly more

successful than a current value forager, since it reduces the chance of

leaving a good patch too early. It takes into account the chance that

current estimate rises again in the near future, which occurs when a prey

is found. Since potential rise in the estimate is largest in the initial phase

of patch exploitation (i.e., most can be learned when not much is yet

known), it is here where the difference between current estimate and

potential estimate is largest. If the forager in this example aims to leave

at a potential encounter rate of 0.15 s�1, it should stay about half a second

longer than the current value forager (solid circles indicate, for different

values of n, a potential encounter rate of 0.15 s�1).

Updating prior knowledge with newly obtained infor-

mation is generally called Bayesian updating. Foragers that

leave depleting patches at constant estimates of instanta-

neous or current encounter rates make use of the so-called

current value assessment rule (Olsson and Holmgren

1998). In contrast, prescient foragers leave their patches

at constant true instantaneous encounter rates.

Here we will consider environments where the variance

in prey densities exceeds the mean (i.e., contagious dis-

tributions), which is how they are most commonly found

in nature (Pielou 1977). In such environments, the char-

acteristics of the current value assessment rule are a decline

in the estimate when searching proceeds without success

(suggesting that the patch contains few or no prey and

thus yields a low instantaneous encounter rate) and an

increase in the estimate with every new prey found (sug-

gesting that the patch contains additional prey; fig. 2).

Potential Value Assessment with Prior Knowledge

Intuitively, one would expect that the aforementioned rule

offers uncertain foragers the highest possible intake rates,

since it enables unbiased estimates of instantaneous prey

encounter rates. However, McNamara (1982), Green

(1988), and Olsson and Holmgren (2000) showed that an

even better rule exists for uncertain foragers in contagious

environments. Because of the potential increase in the es-

timated instantaneous encounter rate when a prey is en-

countered, Bayesian foragers striving for maximum long-

term intake rates should not base their departure decision

on estimates of such current encounter rates. Instead, they

should initially be somewhat reluctant to leave a patch and

accept low estimates on instantaneous encounter rates (fig.

2; app. B). In this way, foragers await new information in

the form of prey encounters and thus take into account

the chance that the estimated instantaneous encounter rate

will rise in the near future. Foragers that make use of this

so-called potential value assessment rule (Olsson and

Holmgren 1998) leave their patches at constant estimates

of potential encounter rates, that is, the encounter rate

over the remainder of the patch visit. As estimates become

more reliable when search time proceeds (because more

information is gathered), the potential rise in estimated

encounter rate becomes smaller over time; new infor-

mation no longer changes the estimate much. Therefore,

with time, the potential value of the patch approaches the

current value (fig. 2).

Current and Potential Value Assessment

without Prior Knowledge

As simple alternatives to the latter two assessment rules,

we introduce current and potential value foragers that ig-

nore prior knowledge. Such foragers estimate current or

potential encounter rate by simply keeping track of elapsed

search time and number of prey found in a patch as de-

scribed but have no expected frequency distribution on

prey density with which to compare this information (app.

C).

Uncertain foragers pay missed opportunity costs when

collecting information; they cannot obtain the maximum

intake rates that prescient foragers achieve. Among in-

complete information models, potential value foragers that

make use of prior knowledge achieve highest long-term

intake rates. Since current value foragers that make use of

prior knowledge ignore the chances of potential future

information, they obtain somewhat lower intake rates

(Olsson and Holmgren 2000). Since GUT foragers base

their decisions on the least amount of information (only
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a little part of the entire search period, no prior knowl-

edge), their long-term intake rates are even lower (Green

1987). Current and potential value foragers that ignore

prior knowledge achieve lowest long-term intake rates

(mainly because they underestimate the likelihood of being

in a poor patch, which is high in contagious environ-

ments). Given that prior information on the frequency of

prey densities can be collected effectively and quickly

(Rodrı́guez-Gironés and Vásquez 1997) and that updating

with patch sample information requires little neuronal ca-

pacity (Holmgren and Olsson 2000), we expect that net

rate–maximizing foragers that feed on hidden prey make

use of the potential value assessment rule that takes prior

knowledge into account.

We will asses the departure rule used by foragers by

calculating what the perceived encounter rates at departure

would be if they were estimated by foragers that made use

of the considered rule (e.g., reciprocal of GUT as perceived

encounter rate for GUT foragers). When we do this for

the rule that is being used, we should empirically find that

the encounter rates at which patches are left are constant

for all initial prey densities. For rules that are not used,

we should find significant variation among patches with

different initial prey densities. Thus, we reject that a rule

is used if we find that estimated encounter rate at departure

varies with initial prey density. This approach of inference

should allow for solid refutation of competing models

(Brown 1993).

What Critical Encounter Rate Should Be

Applied across All Patches?

No matter which of the aforementioned departure rules

is used by a forager, a forager should decide on the critical

departure encounter rate below which it leaves its patches.

We shall refer to the continuous range of critical departure

encounter rates as options. As will be explained, the op-

timal critical departure encounter rate with respect to en-

ergy intake depends on environmental and physiological

constraints acting on the forager.

Each option i is characterized by an average number ni

of prey found per patch and an average amount of search

time zi invested per patch. If we assume the energy content

of the prey to be unity and handling time h and travel

time t between patches to be constant, long-term gross

energy intake rate bi for option i is given by

ni
b p . (1)i

z � n h � ti i

We expect foragers to select the option that yields highest

long-term energy intake rate. When different foraging ac-

tivities (searching, handling, and traveling) vary in their

associated metabolic rate (cz, ch, and ct, respectively), each

option is associated with a different long-term metabolic

rate ci given by

c z � c n h � c tz i h i t
c p . (2)i

z � n h � ti i

Here we expect foragers to select the option that yields

the highest long-term net energy intake rate .g p b � ci i i

In many situations, foragers cannot sustain maximum

net energy intake rates over long periods of time because

of digestive constraints (Jeschke et al. 2002). McNamara

and Houston (1997) graphically showed that such con-

strained optimal foragers should select a different option

than do unconstrained optimal foragers. They plotted g

as a function of c (fig. 3) so that lines with a slope of �1

represent lines of equal gross energy intake rates b, the

value being given by the intercept. If is the maximumˆb

long-term gross energy intake rate set by the digestive

constraint, depending on the value of , three scenariosˆb

are possible. First, when , a forager faces no di-ˆb ≥ bnet

gestive constraint since intake rates will never exceed bnet

(which is gross intake rate at option Onet; fig. 3). Thus, it

should choose option Onet, which maximizes net intake

for unconstrained foragers. Second, when ,ˆb ≤ b ! bmin net

a forager should choose an option between Omin and Onet,

such that (bmin is gross intake rate at option Omin;ˆb p bi

fig. 3). If searching for prey in patches is cheaper than

traveling between patches ( ), constrained net ratec ! cz t

maximizers should give up patches at lower (estimated)

encounter rates than do unconstrained net rate maximiz-

ers. Third, when , the forager should rest part ofˆb ! bmin

the time (Orest) and forage at Omin otherwise, such that

. So, as long as the forager compensates by restingˆb p bi

part of the time, short-term intake rates can exceed . Ifˆb

we define ri as average time spent resting, then

niˆb p b p , (3)i
z � n h � t � ri i i

and if we define cr as metabolic rate while resting, then

c z � c n h � c t � c rz i h i t r i
c p . (4)i

z � n h � t � ri i i

Thus, in the third scenario, while foraging at option Omin,

animals maximize the foraging gain ratio duringb/(c � c )r
foraging in order to maximize net energy intake rate over

total time (Hedenström and Alerstam 1995; Houston 1995;

Ydenberg and Hurd 1998; Nolet 2002). They should give

up patches at lower (estimated) encounter rates than in

the second scenario (again, if ). However, unlike thec ! cz t

second scenario, this encounter rate does not vary with
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Figure 3: McNamara and Houston’s (1997) solution for a forager max-

imizing its long-term net energy intake rate g while digestively con-

strained. When we plot g as a function of long-term metabolic rate c,

lines with a slope of �1 represent lines of similar gross energy intake

rates b, with the intercept representing the level of b (as ).g p b � c

Digestive constraints are constraints on gross energy intake rates andˆb

are thus represented by such lines. Shaded area denotes continuous option

space available while foraging; solid square denotes resting option. Note

that any shape of foraging option space is conceivable; we chose a hump-

shaped space (as did McNamara and Houston 1997). When a digestive

constraint only delimits long-term gross energy intake rates larger than

bnet (above line 1), the forager actually faces no constraint and should

always feed at option Onet. Somewhat lower, when (betweenˆb ≤ b ! bmin net

lines 1 and 2), the forager should feed slower at an option between Omin

and Onet, such that . When a digestive constraint delimits grossˆb p b

energy intake rates that are below bmin (between lines 2 and 3), the forager

should rest part of the time (Orest) and feed at Omin otherwise, such that

. The Omin is found by constructing a tangent from Orest to theˆb p b

shaded area (dashed line). In that case, average long-term net intake rate

is maximal at the intersection of the tangent line and the digestive con-

straint line (triangle for an example ).ˆb

but is constant. Instead, depending on , foragers shouldˆ ˆb b

vary their time spent resting in order to arrive at .ˆb p bi

In this article, we experimentally tested what rule a

medium-sized shorebird, the red knot (Calidris canutus),

uses when exploiting patches. We tested for prescient,

GUT, current value assessment excluding and including

prior knowledge, and potential value assessment excluding

and including prior knowledge. We offered hidden prey

to assure uncertainty about prey densities, and we there-

fore predict that red knots make use of the rule that offers

highest intake rates to uncertain foragers, the potential

value assessment rule including prior knowledge. In ad-

dition, we tested what option red knots select, given the

rule they use (i.e., which threshold encounter rate). We

offered high prey densities to ensure that intake rate would

actually be constrained by rate of digestion, and we con-

sequently predict that the birds maximized the foraging

gain ratio while feeding. Finally, to see whether our ex-

perimental conclusions were consistent with the prey con-

sumption patterns in the field, we measured initial and

giving-up densities in patches that were fed on by flocks

of free-living red knots.

The Study Species and Its Prey

Red knots are an ideal species for studying patch use de-

cisions. Their total and available prey stocks are readily

quantified (Zwarts et al. 1992; Piersma et al. 1993a, 1993b,

1994), individual patch residence times can be measured

in the field by radiotelemetry techniques (van Gils and

Piersma 1999; van Gils et al. 2000), they can easily be

trained to forage in experimental aviary settings (Piersma

et al. 1995a), and we have considerable knowledge on rates

of energy expenditure (Piersma 2002). Red knots feed on

hard-shelled bivalve prey, which they ingest whole. The

internal processing of the bulky, useless shell material

causes the birds’ rate of ingestion to be constrained by

their rate of digestion when feeding at high prey density

patches (Zwarts and Blomert 1992; J. A. van Gils, T.

Piersma, A. Dekinga, and M. W. Dietz, unpublished

manuscript).

Bivalves live buried in intertidal mudflats, and their den-

sities obey a contagious distribution (Piersma et al. 1993b).

In the absence of correlated surface features (J. A. van Gils,

personal observation), it would appear impossible for red

knots to instantly recognize patch quality. Instead, we ex-

pect red knots to make use of patch sample information

to update existing prior knowledge.

Material and Methods

The Experimental Birds and Housing Conditions

Four red knots of the islandica subspecies (Piersma and

Davidson 1992), captured with mist nets on February 19

and 20, 1999, near Texel, were used during the experiment.

Three of them were in their second calendar year, and one

was at least in its third. Their bill lengths varied between

32.8 and 35.6 mm and their average body mass between

119 and 126 g. We housed them in a large outdoor aviary.

On April 30, 1999, 3 wk before the experiment, we moved

them to the experimental outdoor aviary (7 m # 7 m

surface area and 3 m high), where they became used to

feeding on mussels (Mytilus edulis) buried in the experi-

mental patches.

Patches consisted of large buckets (65 cm high, 30 cm

diameter) that were filled with sediment collected in the

western Wadden Sea (Mokbaai, Texel). Since we wanted
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Table 1: Listing of model parameters needed to predict optimal departure encounter rates for the six considered leaving

rules

Parameter Definition Value SI unit Obtained

a a parameter negative binomial distribution

(overdispersion coefficient)

.6 … Experimentally offered

b b parameter negative binomial distribution .12 … Experimentally offered

ax Searching efficiency (as a function of initial

prey density x)

10�0.21x�0.84 patch s�1 Measured

t Travel time between patches .47 s Measured

h Handling time 1.69 s Measured

f Flesh mass prey (AFDM) 9.8 mg Measured

� Energy density prey flesh mass 22 J mg�1 AFDM J. Samuels and T. Piersma,

unpublished data

d Digestion efficiency .725 … Piersma 1994

p Prey acceptance probability .79 … Measured

î Long-term maximum rate of ingestion .033 s�1 J. A. van Gils, T. Piersma,

A. Dekinga, and M. W.

Dietz, unpublished

manuscript

cr Metabolic rate during resting 2.5 W Wiersma and Piersma 1994

cz Metabolic rate during searching 3 W Piersma 2002

ch Metabolic rate during handling 3 W Piersma 2002

ct Metabolic rate during traveling 13 W Kvist et al. 2001

Note: -free dry mass. The 13 h of daily feeding time that we allowed is just sufficient to balance energy income with outcomeAFDM p ash

as maximum long-term gross intake rate during daily foraging W, and long-term metabolic rate W. Noteˆ ˆperiod p b p ifd� p 5.2 c p 2.7i

that ci is based on time allocation to different behaviors (fig. 6C) and is in agreement with unpublished data (2.9 W) of M. Poot and T. Piersma

(see Piersma 2002).

the patches to be depleted quickly, we reduced the actual

surface area of the patches to 83 cm2 by covering the top

of each bucket with a plastic disk that was open in the

middle. This also minimized disturbance to the induced

pressure prey detection system of red knots (Piersma et

al. 1998) by edge effects and treading. Although these

patches may seem small, we know that red knots in the

field probe in similarly sized surfaces for a considerable

time, in spite of the large scale over which their daily

feeding trips take place (Piersma et al. 1993b). In addition,

the prey we offered were tiny relative to the size of the

patch (covering about 0.1% of the total surface area when

buried). The patches were placed on the floor of a basin

filled with seawater to a level just below the top of the

buckets. During the day (from 0800 hours to 2100 hours),

the birds had access to a smaller aviary with a sand-covered

floor (4 m # 1 m surface area and 2 m high). Here the

birds could drink freshwater. During the night, we locked

the birds in this high-tide roost cage. They received no

food until the experimental arena was opened the next

morning. Total available feeding time per day (13 h) was

selected such that the birds’ energy budget would be in

balance (given the parameters listed in table 1).

The Prey

Small mussels were scraped from North Sea basalt piers

at Texel. After washing off most of the attached organic

material, we sieved them through a set of sieves with dif-

ferent mesh sizes. For the experiment, we selected

medium-sized mussels (mean length � SE p 10.8 � 0.2

mm, ). Mussels were stored in clean seawater ba-N p 54

sins at temperatures between 5� and 12�C. We collected a

fresh batch of mussels twice a week. To obtain energetic

values of the prey, we measured ash-free dry mass by in-

cinerating the dried fleshy part of the mussels at 550�C

(for details of methods, see Piersma et al. 1993b).

The Experiment

The number of mussels issued per patch followed a neg-

ative binomial distribution (a specific form of contagious

distributions; app. A) that was kept constant throughout

the experiment ( , , –19). Av-a p 0.6 b p 0.12 range p 0

erage prey density was selected such that the birds’ intake

rate would be constrained by their rate of digestion (on

the basis of Piersma et al. 1995a and J. A. van Gils, T.

Piersma, A. Dekinga, and M. W. Dietz, unpublished man-
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Figure 4: We offered prey densities per patch that followed a negative

binomial distribution, with an average of five prey per patch and an

overdispersion coefficient a of 0.6 (which makes ). This meantb p 0.12

that the bulk of the 48 experimental patches contained zero or only a

few prey and that only a few patches contained many prey (gray bars).

For comparison, we plotted the frequency distribution of patch qualities

in the field (solid circles connected with a line). From 12,165 core samples

collected in 1996–2000 in the field (western Dutch Wadden Sea), we

selected ingestible size classes of the three most abundant prey species

(Macoma balthica, Cerastoderma edule, and Mytilus edulis). These prey

were distributed slightly more contagious ( ) than in thea p 0.3

experiment.

uscript). From this distribution, we drew 48 prey densities

(fig. 4). Each of the 48 patches was randomly assigned one

of these densities. To prevent the birds from learning the

position of profitable patches, we made new density as-

signments before each trial. Before each trial, we filled the

patches to the assigned density. We buried the mussels at

a fixed depth of 2 cm by pushing them with a little rod

into the sediment. All trials ran with solitary individuals;

in the meantime, the other three birds were locked in the

high-tide roost cage. We performed one trial per bird per

day. Over the total period, each trial was repeated six times

per bird, which led to 24 trials in total. A trial ended when

the focal bird had visited all 48 patches at least once. To

avoid any effect of the bird’s possible anticipation to the

end of a trial, we only analyzed the first 20 patch visits.

Revisits were excluded from analysis, since the bird might

memorize the number of prey remaining when it left the

patch.

Trials were recorded by a Hi-8 video camera from a

blind. We time coded copies of the tapes, which enabled

us to analyze the behavior of the birds to the nearest 0.04

s in slow motion with the Observer package (Noldus In-

formation Technology 1997). We scored the patch where

the focal bird was located, the moments of prey encounter,

search time between prey encounters, flight time between

patches, prey handling time, and time spent doing other

things (mainly resting).

To keep the experimental environment as constant as

possible (a and b of the negative binomial distribution of

initial prey densities), we kept the birds in a closed econ-

omy (Hursh 1980). This meant that the birds had to obtain

their entire daily food ration in the experimental setup

(see also note in table 1). To keep a stable patch quality

distribution when we were not doing trials, we regularly

refilled patches to their initial prey density. To acquaint

the birds to the a and b of the prey density distribution,

we “trained” them on this distribution for 2 wk before

the experiment.

Testing for Random Search

Essential for the model we wanted to test is the principle

of diminishing returns: the decline in encounter rate when

a patch gets depleted. This principle holds for foragers that

search a patch randomly. Random search implies that the

inverse of intercapture interval Ts (s) is a linear function

of current number of prey in the patch (patch�1), with

the slope defined as instantaneous area of discovery a

(patch s�1), also called the searching efficiency (Hassell

1982):

1
p a(x � n). (5)

Ts

The current number of prey in the patch equals x (the

initial number of prey) minus n (the number of prey al-

ready found). If search is random, the encounter process

has Markov property, in which case should beT (x � n)s

exponentially distributed (Marschall et al. 1989). However,

in an experiment such as ours where foragers are allowed

to leave patches, there is a good chance that such a dis-

tribution will be biased toward short intercapture intervals,

since the birds are likely to give up patches after a long

interval of not finding a prey item. This makes the last,

unsuccessful search interval (i.e., giving-up time) a cen-

sored observation; true intercapture intervals are uncen-

sored observations. Thus, censoring occurs when data on

the duration of a certain activity (such as searching for a

prey) are interrupted (e.g., by flying off the patch; Haccou

and Hemerik 1985). Since we wanted to quantify the un-

biased distribution of intercapture intervals, we took these

censored giving-up times into account. Such data can be

handled by survival analysis, where giving-up times get a

censor value of 0 and true intercapture intervals get a

censor value of 1 (Haccou and Meelis 1992). For each

patch visit, we tested whether the distribution of T (x �s

(including censored data) deviated from exponentialityn)
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Table 2: ANOVA in searching efficiency a (log10 transformed,

nested GLM)

Variable SS df

Bird 1.07* 3

Trial (bird) 2.70* 20

log10(x) 14.27* 1

Visit number .20 1

Error 13.55 222

Note: Bird and trial are treated as category variables, and log10-

transformed initial prey density x and visit number as continuous var-

iables. of squares, of freedom. The relationshipSS p sum df p degrees

with initial prey density is given by .log (a) p �0.21 � 0.84 log (x)

* .P ! .05

by using the adjusted Kolmogorov-Smirnov test for ex-

ponentiality with an unknown mean (Haccou and Meelis

1992). For each patch, we obtained the maximum likeli-

hood estimator of the mean , the reciprocal ofT (x � n)s

a, the searching efficiency. To obtain normally distributed

data, we log transformed searching efficiencies and tested

for significant variance among birds, trials, and patches

using nested general linear models (GLM) in SYSTAT 10

(Systat Software).

Testing between Patch Departure Rules

For each of the six patch departure rules, we tested whether

encounter rates at patch departure estimated by each rule

varied between initial prey densities x. Thus, we calculated

encounter rates that would be perceived by red knots if

they were using the considered rule. A significant depen-

dence on x would refute the possibility that the birds made

use of the considered rule, since each rule predicts a con-

stant threshold encounter rate at patch departure.

Since prescient foragers know their true instantaneous

encounter rate while foraging, the “estimated” departure

encounter rate for prescient foragers was calculated as the

observed giving-up density (GUD) times the initial prey

density specific searching efficiency ax. Departure encoun-

ter rates as estimated by GUT foragers were calculated as

the reciprocal of the observed giving-up time. We calcu-

lated the departure encounter rate estimated by current

value foragers by combining the offered frequency distri-

bution on initial prey density with the observed cumulative

number of prey found (n) and cumulative search time (z)

at departure, as explained in appendix A. Future estimates

of current encounter rate (i.e., after a patch was left) were

used as inputs to calculate potential encounter rate at de-

parture (app. B). Encounter rates as perceived by current

and potential value foragers that ignore prior knowledge

were calculated only from observed cumulative number

of prey found (n) and cumulative search time (z) at de-

parture (app. C). We square root transformed all six ex-

pressions of estimated encounter rates to meet normality

requirements of ANOVAs. The analyses were performed

using nested GLM.

Testing for Net Intake Rate Maximization

To predict the optimal departure encounter rate (i.e., the

option) for the rule that was observed, we needed param-

eters of the birds’ time and energy budget. These param-

eters were either measured in the experiment or obtained

from other studies (table 1). We obtained values for h

(handling time per encountered prey), t (travel time be-

tween two patches), and p (proportion of encountered

prey ingested) by nested GLM analyses of log-transformed

(h and t) and arcsine–square root–transformed (p) av-

erages per trial (following Krebs 1999). We used the pa-

rameters to simulate 30,000 patch visits (in True BASIC).

We ran these simulations for each rule and a range of

realistic departure encounter rates to relate long-term net

intake rate to departure encounter rate (by using eqq. [3]

and [4]).

Patch Exploitation in the Field

From October 5 to 12, 1996, we measured reductions in

prey densities caused by flocks of red knots feeding in our

study area, the western Dutch Wadden Sea (53�15�N,

5�19�E). By using exclosures, we compared initial prey

densities with giving-up densities at nine different sites.

At each site, we put up a fence of sticks and ropes around

an area of 100 m2 to locally exclude flocks of foraging red

knots. If flocks of knots had fed just next to these exclo-

sures (within 10 m; checked by presence of footprints and

fecal droppings) during the next low-tide period, we com-

pared prey densities in the exclosures (initial prey density)

and just next to the exclosure where the birds had fed

(GUD) at the end of that low-tide period. We chose such

short exploitation periods of 2–5 h to avoid possible effects

of prey emigration. We only compared densities of har-

vestable Mya arenaria (depth !4 cm, shell length 3–20

mm), a bivalve species that was fed on most in that year

at those sites. One sample comprised 50 subsamples taken

with a core of 1/56 m2 surface area (such subsample sizes

guarantee standard errors that are �10% of the mean;

Piersma et al. 1993b).

Results

Testing for Random Search

Out of the 480 patch visits (4 birds # 6 trials bird�1
# 20

visits trial�1), 248 visits yielded at least two intercapture

intervals (either censored or not), which were minimally
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Table 3: Sum of squares of estimated encounter rate at patch departure for the six proposed rules (square root transformed;

nested GLM)

Variable df Prescient GUT

Current Potential

No prior

knowledge

Including prior

knowledge

No prior

knowledge

Including prior

knowledge

Bird 3 .19 .18 .86* .27* .73* .30*

Trial (bird) 20 1.97 3.91* 4.31* 1.36* 2.89* 1.50*

x 1 12.03* .71* 2.69* .29* 2.22* .07

Error 455 34.96 31.33 31.16 12.46 20.80 12.56

Note: Bird and trial are treated as category variables, initial prey density x as a continuous variable; of freedom,df p degrees GUT p

-up time.giving

* .P ! .05

required to test for exponentiality of the distribution of

. With the adjusted Kolmogorov-Smirnov test,T (x � n)S

only four distributions (2%) deviated from exponentiality

at the level. We combined significance probabilitiesP p .05

of each separate test by a method proposed by Sokal and

Rohlf (1995) to show that overall these 248 distributions

did not deviate from exponentiality (i.e., we compared test

statistic with ).2
�2S ln P p 236.8 x2#248

Each distribution yielded a maximum likelihood esti-

mator of searching efficiency a. A nested GLM revealed

significant variation among birds and trials (table 2). How-

ever, these differences were small and only due to one out

of six between-bird comparisons and five out of 276

between-trial comparisons (Bonferroni’s pairwise com-

parison). Most variation in searching efficiency could be

explained by the negative effect of initial prey density,

. No effect was detected oflog (a) p �0.21 � 0.84 log (x)

the rank number within a trial of the successive patch

visits.

Testing between Patch Departure Rules

When taking away effects of bird and trial, “perceived”

encounter rates at departure varied significantly with initial

prey density when assuming prescient knowledge (table

3). These presciently estimated and thus true instanta-

neous encounter rates went up with initial prey density

(fig. 5A). Poor patches were visited for longer than pre-

dicted and were thus left at lower prescient encounter rates

(most extreme: empty patches, which were predicted to

be skipped by prescient foragers, were visited shortly by

the birds). We can thus reject the hypothesis that red knots

are prescient foragers. Nor did the birds make use of the

GUT rule, since reciprocals of GUT (perceived encounter

rate if they were GUT foragers) went down with initial

prey density (table 3; fig. 5B). Red knots did not behave

as current value foragers, since perceived departure en-

counter rate went down (without prior knowledge; fig.

5C) or up (with prior knowledge; fig. 5D) with initial prey

density (table 3). Nor did the birds estimate potential en-

counter rate while ignoring prior knowledge; this expres-

sion for encounter rate at departure related negatively to

initial prey density (table 3; fig. 5E). Only when encounter

rate was expressed for potential value foragers that do

make use of prior knowledge did we find encounter rates

at departure to be independent of initial prey density (table

3; fig. 5F).

Testing for Net Intake Rate Maximization

Given that the knots made use of the potential value as-

sessment rule with prior knowledge, and given the param-

eter values listed in table 1, the birds’ long-term net intake

rate would have been maximized by application of a de-

parture potential encounter rate of 0.17 prey s�1. The ob-

served potential encounter rate at departure (0.167; 95%

confidence interval [CI] 0.151–0.184; intercept from anal-

ysis presented in table 3) did not differ from this predicted

value ( ; fig. 6; note that , which is1/2P 1 .7 [0.167] p 0.41

plotted on the Y-axis).

As a check of whether the rate of digestion that we im-

plemented into the model (an estimate of which was ob-

tained elsewhere; J. A. van Gils, T. Piersma, A. Dekinga, and

M. W. Dietz, unpublished manuscript) matched the ob-

served rate of digestion in this experiment, we compared

predicted percentage of time that could be spent foraging

(searching, handling, and traveling) with the data (fig. 7).

The observed average (18.8%; 95% CI 16.8–20.8, calculated

per trial) did not differ from predicted 20.4% (GLM analysis

with arcsine–square root–transformed percentages).

Patch Exploitation in the Field

At all nine sites, we found higher prey densities in exclosed

areas (x, initial prey densities) than in neighboring open

areas where flocks of knots had fed (GUD; fig. 8). Absolute

number of prey consumed went up with initial prey den-

sity, but the proportion of prey consumed was indepen-
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Figure 5: Relating observed six expressions of (square rooted) encounter rate at patch departure to initial prey density. For each graph, we have

plotted linear regression line through observed encounter rates (thin solid line) and predicted optimal departure encounter rate (gray horizontal line)

on the basis of the experimental environment and the level of the knots’ digestive constraint. A, Prescient encounter rates went up with initial prey

density. All patches except for empty ones (open square) should be visited according to the prescient model; gray square in origin of graph indicates

that the birds visited even empty patches (where, of course, prescient encounter rates were 0). B, Reciprocals of giving-up times (GUT) go down

with initial prey density; that is, the birds persisted longer after last prey encounter in initially rich patches. The few square rooted encounter rates

on the upper horizontal axis were actually 11.2 (1.3–2.9) but were given a value of 1.2 for reasons of presentational clarity. C, Current value foragers

that ignore prior knowledge would perceive departure encounter rates that declined with initial prey density. D, Current value foragers that consider

prior knowledge would perceive only a slight increase in departure encounter rates with initial prey density. E, Potential value foragers that ignore

prior knowledge would perceive departure encounter rates that declined with initial prey density. F, Departure encounter rate as perceived by

potential value foragers that consider prior knowledge is constant across initial prey density. Observed mean potential encounter rate (thin solid

horizontal line) does not differ from optimal value (gray horizontal line).

dent of initial prey density, as indicated by a slope not

different from one in the relation between log-transformed

GUD and log-transformed x (log [GUD] p �0.13 �

; ; ; ; 95% CI of slope21.01 log [x] N p 9 R p 0.87 P ! .0005

0.66–1.36).

Discussion

Departure Rules

In the aviary experiment, red knots updated prior knowl-

edge with patch sample information by making use of the

potential value assessment rule: patches were left at con-

stant potential encounter rates, independent of initial prey

density (fig. 5F; table 3). The other five expressions for

departure encounter rate varied with initial prey density

and were therefore rejected (fig. 5A–5E; table 3). In ad-

dition, for each of the five rejected rules, the relationship

with initial prey density was consistent with the assump-

tion that red knots updated prior knowledge with the po-

tential value assessment rule.

It is clear why the birds were not behaving as prescient

foragers, since this requires patches to be instantly rec-

ognized. With hidden buried prey, the knots had to collect

patch sample information about patch quality to get to

know a patch. This is most obvious in poor patches (!5

prey patch�1); prescient foraging predicts those patches to

be skipped (0 prey patch�1) or exploited for only a short

while (1–4 prey patch�1). However, in those patches, the

birds stayed longer than the prescient model predicted,

such that true instantaneous encounter rate at departure

fell below the prescient optimum (dashed horizontal line

in fig. 5A). Only for rich patches (15 prey patch�1) were

observed departure encounter rates close to the prescient

optimum. This can be interpreted as a bird getting to know

the patch after having spent some time foraging in it.

At the other extreme, the GUT rule leads to suboptimal

intake rates in uncertain environments. Giving-up times

comprise only a little part of the entire search process, and

because of the stochastic nature of prey encounters, even

in rich patches long intercapture intervals can occur, which

makes it a suboptimal rule. The observed decline in the

reciprocal of GUT with initial prey density (fig. 5B), which

allowed us to reject the GUT rule, has been observed by

others (Wildhaber et al. 1994) and was predicted by the

prescient, discrete-prey version of MVT (McNair 1982) and

by Bayesian models (R. F. Green, personal communication).

Since the proposed current and potential value assess-

ment rules make use of information collected during the

entire search process, chances for over- and underestimates

are reduced by these rules (fig. 5C–5F), especially when

making use of prior knowledge on the frequency distri-

bution of initial prey densities (fig. 5D, 5F). Ignorance of

such prior knowledge makes foragers unaware of the fact

that most patches in contagious environments are poor.

Thus, if prior knowledge was ignored but poor patches

were left as quickly as the experimental birds actually did,

this would be perceived as leaving too soon (i.e., at too

high encounter rates; fig. 5C, 5E).

Using prior knowledge makes the birds aware of high

chances for being in a poor patch. Using the potential

value rule instead of the current value rule reduces the

likelihood of too rapid “conclusions” about the state of

the patch. Exactly as the data show (fig. 5D), potential

value foragers that take prior knowledge into account on

average would be predicted to leave bad patches at lower

estimated instantaneous encounter rates than good

patches. This provides additional evidence that the birds

coped with uncertainty in the best possible way.

Discrete Patches

In nature, the bivalve prey of knots live in continuous,

nondiscrete patches in extensive mudflat systems (Piersma

et al. 1993b). It is therefore surprising that the birds in

the experiment were able to make use of a departure rule

that is thought to be valid for discrete patches only, that

is, for situations where no prey occur between patches.

The potential value assessment rule has been verified only

for woodpeckers that feed in more or less discrete patches,
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Figure 6: To see why red knots selected the optimal encounter rate to depart from patches, we constructed a link to their energy budget. A, Potential

encounter rate that the birds selected as their critical measure to leave depleting patches (this graph is essentially the same as fig. 5F). Width of

gray bar denotes 95% confidence interval (CI) around the mean. The departure encounter rate relates directly to the percentage of foraging time

that is spent traveling (horizontal axis in B). This is because the selected departure encounter rate is a measure of the minimal quality that a forager

“demands” of its patches. High demands (high departure encounter rates) lead to short patch residence times (cf. fig. 2), and since travel times are

fixed, this leads to the forager spending much of its time traveling. There is an optimal departure encounter rate that leads to highest long-term

net intake rates g (vertical axis in C), since the forager could devote too much or too little time to traveling. Since traveling is more expensive than

spending time in patches, we can linearly translate relative time spent traveling into a long-term metabolic rate (horizontal axis in C), which allows

us to plot the available options in a dimension proposed by McNamara and Houston (1997). Now the effect of the digestive constraint on the

optimal option is clearly visible. Since g cannot exceed the experimentally determined constraint line (J. A. van Gils, T. Piersma, A. Dekinga, and

M. W. Dietz, unpublished manuscript), alternating between feeding in option Omin and spending time in rest Orest leads to highest possible g (triangle).

As gray 95% CI bar shows, the birds selected this option.

the branches of trees (Lima 1984; Olsson et al. 1999). Our

study demonstrates that discrete patch rules could function

in nondiscrete patch situations as well and that red knots

possess the cognitive architecture to make use of the po-

tential value assessment rule. In fact, in a theoretical article,

Arditi and Dacorogna (1988) show that any arbitrary prey

distribution should be exploited like prey in discrete

patches: harvest until (estimated) encounter rate has

dropped below a critical level. As pointed out by Kacelnik

and Bernstein (1988, p. 253), “When patches do not exist,

optimal foragers should invent them.” The scale over

which a forager should and can base its estimate remains

unclear. Schmidt and Brown (1996) showed that the finer

the scale of perception, the higher the intake rates. How-

ever, a forager will always be perceptually constrained be-

low some finer scale, a threshold that Kotliar and Wiens
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Figure 7: Observed percentages of total time the birds spent foraging

(searching, handling, and traveling). This distribution does not differ

from the predicted value for constrained net rate maximizers (solid vertical

line), which is calculated from a priori determined level of the digestive

constraint.

Figure 8: Giving-up densities (GUD) as a function of a patch initial prey

density. Both in the experiment and in the field, more prey was harvested

from rich patches than from poor ones. However, the proportion taken

did not differ across initial prey densities; slopes of linear regressions

(solid lines) on log-log scale do not differ from 1.

(1990) called “grain.” We consider unraveling the decision

making in nondiscrete patches as one of the challenges of

contemporary optimal foraging theory.

Variation in Searching Efficiency

Olsson and Holmgren (2000) showed that the proportion

of prey consumed by potential value foragers increases

with initial prey density. Although the experimental red

knots behaved as potential value foragers, they consumed

a fixed proportion of the available prey (fig. 8). This un-

expected result is due to the negative relationship between

searching efficiency and initial prey density (table 2). This

makes the rate of prey encounter at a given prey density

lower in rich patches than in poor patches. Consequently,

rich patches should be left at higher giving-up densities

(GUD) than poor patches, leading to the proportion of

prey taken away from rich patches being lower than pre-

dicted by a constant searching efficiency (such as modeled

by Olsson and Holmgren 2000) and approaching the pro-

portion taken from poor patches. A similar pattern of prey

consumption was found in the field (fig. 8), which is prob-

ably due to the same mechanism.

Negative effects of initial prey density on searching ef-

ficiency were also found in an experimental study on star-

lings (Olsson et al. 2001) and two other studies on red

knots (W. K. Vahl, unpublished manuscript; J. A. van Gils,

T. Piersma, and J. van der Meer, unpublished manuscript).

We propose that the reduction in searching efficiencies in

richer patches is due to the longer residence times in such

patches. Disturbance of the structure of the sediment (e.g.,

holes made by probing, footprints) could make prey harder

to detect. Especially in red knots that rely on prey detection

based on pore water pressure gradients built up by probing

(Piersma et al. 1998), probe holes or footprints might block

these gradients. This hypothesis predicts that searching

efficiencies decline with increasing search time; reciprocals

of searching efficiencies (for a given initial prey density)

should deviate from exponentiality. Since we did not find

these deviations, the use of a single searching efficiency

for a given initial prey density appears justified. It is clear

that further investigation needs to be carried out to de-

termine the phenomena causing searching efficiencies to

differ between patches and possibly within patches with

time and how this should be included in prey density

assessment models.

Decisions on Departure Encounter Rate

Given the birds’ digestive constraint, their functional re-

sponse, and the features of the experimental environment

(mean travel time, mean and contagiousness in prey den-

sities per patch), the potential encounter rate at departure

they chose maximized their net energy intake over total

time. In view of the design of the experiment, it is perhaps

not surprising that they were maximizing this currency.

The birds had to collect all their daily energy in the ex-
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perimental food patches that were accessible for only 13

h d�1. In addition, the experiment was executed in May

when, even in captivity (Piersma et al. 1995b), red knots

are preparing for their long-distance migration by putting

on a large fuel store. Because the daily available foraging

time in the experiment was kept relatively short, we pre-

vented the birds from putting on these stores (see calcu-

lation in note of table 1), which kept them eager to feed

at the highest possible net gain rates. In view of this fact

and the close match between the observed percentage of

time spent feeding (18.8%) and the prediction based on

a constraint level measured in another experiment (J. A.

van Gils, T. Piersma, A. Dekinga, and M. W. Dietz, un-

published manuscript), we can be certain that in this ex-

periment intake rate was constrained by digestion. As Mc-

Namara and Houston’s (1997) graphical approach shows,

in such a case the best option for maximum net energy

gain is to maximize the foraging gain ratio while foraging

(Omin in fig. 3) and to spend an amount of time resting

(Orest) such that long-term gross intake rate equals . Thisˆb

is what our experimental birds did (figs. 6, 7).

Although numerous studies have shown that animals

maximize their net rate of energy gain (for review, see

Stephens and Krebs 1986), to the best of our knowledge,

this study is the first to show that energetically constrained

foragers maximize the foraging gain ratio while foraging

in order to maximize net energy gained over total time.

Earlier studies considered maximization of net rate over

the foraging period and ignored other activities (e.g., Ro-

vero et al. 2000). Studies that included other activities

failed to explain behavior over total time from an energy

maximization perspective. For example, Bautista et al.

(1998, 2001) found that starlings (Sturnus vulgaris) were

maximizing net intake rate while foraging but could not

explain why the birds spent about 80%–90% of their time

resting. We suggest that McNamara and Houston’s (1997)

graphical approach (which allows also for constraints on

sustainable rates of expenditure instead of intake; see, e.g.,

Piersma 2002) may explain the resting behavior in the

starlings studied by Bautista et al. (1998, 2001).
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APPENDIX A

Current Value Assessment with Prior Knowledge

When a forager searches randomly through a patch, the

prey encounter process has Markov property: the proba-

bility to capture a given prey individual in a certain time

window depends only on the length of that time window

and not on the length of previously unsuccessful search

time (Karlin 1966). This leads to exponentially distributed

search times between prey encounters. In such a case, the

probability that n prey have been found, given z time units

of search in an initial prey density x, equals (Olsson and

Holmgren 1998)

x
�a xz a z nx xp (x, z) p e (e � 1) , (A1)n ( )n

where ax denotes the forager’s initial prey density–specific

searching efficiency (patch s�1). We consider prey densities

per patch to be contagiously distributed of the negative

binomial type (Pielou 1977). Its essence is captured by just

two parameters: overdispersion coefficient a, a measure

of the contagiousness of the distribution (the lower a is,

the more contagious the distribution), and b (a mean�1).

The probability that a patch initially contains x prey in a

negative binomial distribution is given by

a x

b 1a � x � 1
p (a, b) p , (A2)( )x ( ) ( )x 1 � b 1 � b

where

…a(a � 1)(a � 2) (a � x � 1)a � x � 1
p ,( )

x x!

that is, the combinatorial coefficient (Green 1987). Using

Bayes’ theorem, we can estimate the probability I that the

patch initially contained x prey items (or contains x � n

prey now), given n and z :

p (a, b)p (x, z)x n
I (n, z) p . (A3)xx max

� p (a, b)p (x, z)x n
x≥0

As calculations become increasingly time consuming with

x, we set xmax to 170. Since such rich patches are extremely
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rare in negative binomial distributions, our distribution

approaches the untruncated version.

After multiplying equation (A3) by concurrent encoun-

ter rate, , we sum up these products acrossa (x � n) x ≥x

to obtain expected instantaneous encounter rate at time0

z after n prey have been found:

xmax

r(n, z) p I (n, z)a (x � n). (A4)� x x
x≥0

APPENDIX B

Potential Value Assessment with Prior Knowledge

Although the potential value assessment rule can be mod-

eled in continuous time (Green 1988), we have chosen the

somewhat simpler approach of small discrete time steps

(sensu Green 1980; Olsson and Holmgren 1998). We se-

lected steps of 0.05 s and adjusted ax accordingly.

Given the number of prey remaining in a patch, x �

, the probability to find k items during next time unitn

equals

x � n
�a (x�n) a kx xp (x, n) p e (e � 1) . (B1)k ( )k

Note the similarity to equation (A1), which considers the

same probability over z time units. The probability of en-

countering k prey items during next time unit, given n

and z, is the probability of encountering k prey items

during next time unit, given x and n (eq. [B1]), times the

probability the patch initially contained x prey, given n

and z (eq. [A3]), summed across all possible initial prey

densities (n to xmax):

xmax

s (n, z) p p (x, n)I (n, z). (B2)�k k x
xpn

By using backward iteration (Clark and Mangel 2000), we

can now calculate the expected number of prey to be found

during the expected remaining search time in the patch:

x�n

EG(n, z) p s (n, z)[k � EG(n � k, z � 1)]. (B3)� k
kp0

Likewise, the expected remaining search time in the patch

equals

x�n

ET(n, z) p s (n, z)[1 � ET(n � k, z � 1)]. (B4)� k
kp0

A potential value forager should leave a patch whenever

potential encounter rate is below or at its critical potential

encounter c, so when

EG(n, z)
≤ c. (B5)

ET(n, z)

APPENDIX C

Current and Potential Value Assessment

without Prior Knowledge

Calculations of current and potential encounter rates es-

timated by foragers that ignore prior knowledge are similar

as in appendixes A and B, respectively, with the subtle

difference that equation (A2) is left out of subsequent

calculations.
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