Incompressibility through Colors and IDs

Michael Dom ${ }^{1}$ Daniel Lokshtanov ${ }^{2}$ Saket Saurabh ${ }^{2}$

${ }^{1}$ Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

${ }^{2}$ Department of Informatics, University of Bergen, Norway

ICALP 2009

Problem Kernels

Polynomial-time preprocessing for NP-hard problems. Idea: Use data reduction rules to decrease the instance size.

Example:

Vertex Cover

Input: $\quad A$ graph $G=(V, E)$ and a positive integer k.
Question: Is there a vertex set $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \leq k$ that covers all edges?

Problem Kernels

Polynomial-time preprocessing for NP-hard problems. Idea: Use data reduction rules to decrease the instance size.

Example:

Vertex Cover

Input: $\quad A$ graph $G=(V, E)$ and a positive integer k.
Question: Is there a vertex set $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \leq k$ that covers all edges?

Problem Kernels

Polynomial-time preprocessing for NP-hard problems. Idea: Use data reduction rules to decrease the instance size.

- If there is a vertex with degree $>k$, delete it and decrease k.

Problem Kernels

Polynomial-time preprocessing for NP-hard problems. Idea: Use data reduction rules to decrease the instance size.

- If there is a vertex with degree $>k$, delete it and decrease k.
- If there is an isolated vertex, delete it.

Problem Kernels

Polynomial-time preprocessing for NP-hard problems. Idea: Use data reduction rules to decrease the instance size.

- If there is a vertex with degree $>k$, delete it and decrease k.
- If there is an isolated vertex, delete it.

Finally: $O\left(k^{2}\right)$ edges and vertices.

Problem Kernels

We deal with parameterized problems: Instances of the form (x, k).

- Polynomial-time data reduction leads to a small problem instance (the kernel):

$$
(x, k) \rightsquigarrow\left(x^{\prime}, k^{\prime}\right)
$$

- (x, k) is yes-instance $\Leftrightarrow\left(x^{\prime}, k^{\prime}\right)$ is yes-instance
- $\left|x^{\prime}\right| \leq f_{1}(k)$
- $k^{\prime} \leq f_{2}(k)$

A problem is in FPT \Leftrightarrow it has a problem kernel.
But: Is the kernel of polynomial size?

Problem Kernels

- Vertex Cover has a polynomial kernel (kernels with $2 k$ vertices are known).
- Open problem [e. g. Guo et al., Theory Comput. Syst., 2007]: Does Connected Vertex Cover has a polynomial kernel?

Non-Existence of Poly. Kernels

Theorem ([Bodlaender et al., ICALP '08; Fortnow, Santhanam, STOC '08])
Let L be a parameterized problem whose unparameterized version is NP-complete.
If L has a composition algorithm, then there is no polynomial kernel for L unless $\mathrm{PH}=\Sigma_{p}^{3}$.

Non-Existence of Poly. Kernels

Theorem ([Bodlaender et al., ICALP '08; Fortnow, Santhanam, STOC '08])
Let L be a parameterized problem whose unparameterized version is NP-complete.
If L has a composition algorithm, then there is no polynomial kernel for L unless $\mathrm{PH}=\Sigma_{p}^{3}$.

Definition ([Bodlaender et al., ICALP '08])

A composition algorithm combines problem instances:

- $\left(x_{1}, k\right),\left(x_{2}, k\right), \ldots,\left(x_{t}, k\right) \rightsquigarrow\left(x^{\prime}, k^{\prime}\right)$
- $\left(x^{\prime}, k^{\prime}\right)$ is yes-instance \Leftrightarrow at least one $\left(x_{i}, k\right)$ is yes-instance
- $k^{\prime} \leq \operatorname{poly}(k)$
- $\left(x^{\prime}, k^{\prime}\right)$ can be computed in $\operatorname{poly}\left(\sum_{i=1}^{t}\left|x_{i}\right|+k\right)$ time

Non-Existence of Poly. Kernels

Example: Composition algorithm for Longest Path

Non-Existence of Poly. Kernels

Theorem ([Bodlaender et al., technical report, Utrecht University, 2008]) Let P and Q be parameterized problems such that Q 's unparameterized version is in NP and P's unparameterized version is NP-hard.
If there is a polynomial parameter transformation from P to Q and if P has no polynomial kernel, then Q also has no polynomial kernel.

Non-Existence of Poly. Kernels

Theorem ([Bodlaender et al., technical report, Utrecht University, 2008])

 Let P and Q be parameterized problems such that Q 's unparameterized version is in NP and P 's unparameterized version is NP-hard.If there is a polynomial parameter transformation from P to Q and if P has no polynomial kernel, then Q also has no polynomial kernel.

Definition ([Bodlaender et al., technical report, Utrecht University, 2008])

A polynomial parameter transformation is a special kind of polynomial-time many-one reduction:

- instance (x, k) of $P \rightsquigarrow$ instance $\left(y, k^{\prime}\right)$ of Q
- (x, k) is yes-instance $\Leftrightarrow\left(y, k^{\prime}\right)$ is yes-instance
- $k^{\prime} \leq \operatorname{poly}(k)$

Our Results

- A general framework for showing "No Polynomial Kernel"
- Non-existence of polynomial kernels for natural parameterizations of
- Connected Vertex Cover
- Capacitated Vertex Cover
- Steiner Tree
- Red-Blue Dominating Set (=Set Cover/Hitting Set)
- Dominating Set
- Unique Coverage
- Small Subset Sum

Structure of the Talk

- Introduction
- No Polynomial Kernel for Red-Blue Dominating Set, Parameterization I
- A General Framework for Showing "No Polynomial Kernel"
- Consequences for Some Other Problems
- No Polynomial Kernel for Red-Blue Dominating Set, Parameterization II

No Poly. Kernel for RBDS with Parameter $(|T|, k)$ Red-Blue Dominating Set (RBDS)
Input: \quad A bipartite graph $G=(T \cup N, E)$ and a positive integer k.
Question: Is there a set $N^{\prime} \subseteq N$ with $\left|N^{\prime}\right| \leq k$ such that every vertex from T has at least one neighbor in N^{\prime} ?

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$ Red-Blue Dominating Set (RBDS)
Input: \quad A bipartite graph $G=(T \cup N, E)$ and a positive integer k.
Question: Is there a set $N^{\prime} \subseteq N$ with $\left|N^{\prime}\right| \leq k$ such that every vertex from T has at least one neighbor in N^{\prime} ?

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

Red-Blue Dominating Set (RBDS)

Input: \quad A bipartite graph $G=(T \cup N, E)$ and a positive integer k.
Question: Is there a set $N^{\prime} \subseteq N$ with $\left|N^{\prime}\right| \leq k$ such that every vertex from T has at least one neighbor in N^{\prime} ?

Red-Blue Dominating Set is

- W[2]-complete for the parameter k,
- in FPT for the parameter $|N|$,
- in FPT for the parameter $|T|$.

We show:
No polynomial kernel for the parameters $(|T|, k)$ and $(|N|, k)$.

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

$$
k=3 \quad k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

Colored Version of RBDS
Input: A bipartite graph $G=(T \cup N, E)$ and a k-coloring for N.
Question: Is there a set $N^{\prime} \subseteq N$ containing exactly one vertex of each color such that every vertex from T has at least one neighbor in N^{\prime} ?

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

Colored Version of RBDS
Input: A bipartite graph $G=(T \cup N, E)$ and a k-coloring for N.
Question: Is there a set $N^{\prime} \subseteq N$ containing exactly one vertex of each color such that every vertex from T has at least one neighbor in N^{\prime} ?

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

correspondg. bit $=1$ \Rightarrow conn. to red vertices.
correspondg. bit $=0$
\Rightarrow conn. to blue vertices.

$|T|+k$ bits.

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

correspondg. bit $=1$ \Rightarrow conn. to red vertices.
correspondg. bit $=0$
\Rightarrow conn. to blue vertices.

$|T|+k$ bits.

No Poly. Kernel for RBDS with Parameter $(|T|, k)$

correspondg. bit $=1$ \Rightarrow conn. to red vertices. correspondg. bit $=0$ \Rightarrow conn. to blue vertices. $\operatorname{ID}\left(G_{1}\right)=0 \wedge \operatorname{ID}\left(G_{2}\right)=1$ is undominated!

$|T|+k$ bits.

General Framework for Showing "No Polynomial Kernel"

0 . Find a suitable parameterization.

1. Define a colored version of the problem.
2. Use IDs to show that the colored version has a composition algorithm.
3. Show that the colored version is solvable in time $2^{k^{c}} \cdot n^{O(1)}$.
4. Show that the unparameterized colored version is NP-hard (and that the unparameterized uncolored version is in NP).
5. Give a polynomial parameter transformation from the colored to the uncolored version.

No Poly. Kernel for RBDS with Parameter $(|T|, k)$ The unparameterized colored version of RBDS is NP-complete: Reduction from RBDS.

$$
k=3
$$

No Poly. Kernel for RBDS with Parameter $(|T|, k)$ Polynomial parameter transformation from the colored to the uncolored version of RBDS:

$$
k=3
$$

Structure of the Talk

- Introduction
- No Polynomial Kernel for Red-Blue Dominating Set, Parameterization I
- A General Framework for Showing "No Polynomial Kernel"
- Consequences for Some Other Problems
- No Polynomial Kernel for Red-Blue Dominating Set, Parameterization II

No Poly. Kernel for Steiner Tree with Parameter $(|T|, k)$ Steiner Tree
Input: A bipartite graph $G=(T \cup N, E)$ and a positive integer k.
Question: Is there a set $N^{\prime} \subseteq N$ with $\left|N^{\prime}\right| \leq k$ such that $G\left[T \cup N^{\prime}\right]$ is connected?

Polynomial parameter transformation from RBDS:

$$
k=3
$$

No Poly. Kernel for Connected Vertex Cover w. Param. k Connected Vertex Cover (ConVC)
Input: $\quad A$ graph $G=(V, E)$ and a positive integer k.
Question: Is there a connected vertex cover $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \leq k$?

Polynomial parameter transformation from Steiner Tree:

$$
k^{\prime}=k+|T|=9
$$

No Poly. Kernel for Capacitated Vertex Cover w. Param. k Capacitated Vertex Cover (CapVC)
Input: A graph $G=(V, E)$ with vertex capacities, and a positive integer k.
Question: Is there a capacitated vertex cover $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \leq k ?$

Polynomial parameter transformation from RBDS:

$$
k=3
$$

Structure of the Talk

- Introduction
- No Polynomial Kernel for Red-Blue Dominating Set, Parameterization I
- A General Framework for Showing "No Polynomial Kernel"
- Consequences for Some Other Problems
- No Polynomial Kernel for Red-Blue Dominating Set, Parameterization II

No Poly. Kernel for RBDS with Parameter $(|N|, k)$

No Poly. Kernel for RBDS with Parameter $(|N|, k)$

No Poly. Kernel for RBDS with Parameter $(|N|, k)$

No Poly. Kernel for RBDS with Parameter $(|N|, k)$

No Poly. Kernel for RBDS with Parameter $(|N|, k)$

Further Results / Open Questions

There is no polynomial kernel for...

- Dominating Set with parameter ($k, \mathrm{VC}(G)$),
- Dominating Set in H -Minor Free Graphs with parameter $(k,|H|)$,
- Unique Coverage (task: cover $\geq k$ elements from a universe U uniquely) with parameter k,
- Small Subset Sum (task: select $\leq k d$-bit numbers whose sum is t) with parameter (k, d).
Open:
- RBDS has kernels of size $k^{\operatorname{deg}(G[T])}$ and $k^{\operatorname{deg}(G[N])}$. What about kernels of size $f(\operatorname{deg}(\ldots)) \cdot k^{O(1)}$?
- Dominating Set in H -Minor Free Graphs has a kernel of size $k^{f(|H|)}$.
What about a kernel of size $f(|H|) \cdot k^{O(1)}$?
- Which problems without a polynomial kernel admit a kernelization to more than one polynomial kernel ("Turing Kernelization")?

Further Results / Open Questions

There is no polynomial kernel for...

- Dominating Set with parameter ($k, \mathrm{VC}(G)$),
- Dominating Set in H -Minor Free Graphs with parameter $(k,|H|)$,
- Unique Coverage (task: cover $\geq k$ elements from a universe U uniquely) with parameter k,
- Small Subset Sum (task: select $\leq k d$-bit numbers whose sum is t) with parameter (k, d).
Open:
- RBDS has kernels of size $k^{\operatorname{deg}(G[T])}$ and $k^{\operatorname{deg}(G[N])}$. What about kernels of size $f(\operatorname{deg}(\ldots)) \cdot k^{O(1)}$?
- Dominating Set in H -Minor Free Graphs has a kernel of size $k^{f(|H|)}$.
What about a kernel of size $f(|H|) \cdot k^{O(1)}$?
- Which problems without a polynomial kernel admit a kernelization to more than one polynomial kernel ("Turing Kernelization")?

