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Abstract. This article is concerned with the limiting behavior of incompressible flow

past a small obstacle. Previous work on this problem has dealt with flows with vanishing

velocity at infinity. We examine this limit for flows that are constant at infinity in the

simplest case, that of two-dimensional, ideal flow past an obstacle. This extends the

work in Iftimie, Lopes Filho, and Lopes (2003).

1. Introduction. This note is concerned with the limiting behavior of incompressible

flows past a small obstacle. This problem has seen much recent activity, beginning with

the case of a single obstacle in two-dimensional ideal flow; see [7]. Further work has

included the viscous case (see [6, 8]), bounded domains with several holes (see [14]),

thin obstacles (see [11,12]), moving obstacles (see [4]), and the interaction between small

obstacles and small viscosity (see [9]). In all the cases where the exterior domain problem

was considered, the flow was assumed to vanish at infinity. The purpose of the present

note is to consider flows with constant velocity at infinity, in the simplest case of ideal

flows past a smooth obstacle in the plane. This is a natural extension of the work in [7].

The main technical issue in this extension is the description of potential flows with

constant velocity at infinity in the exterior of a smooth obstacle, a classical problem

in fluid mechanics. We will see that, beyond this description, the analysis follows very

closely that of [7]. The final conclusion is also the same, namely, that the limiting flow
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satisfies a modified Euler equation in the plane, where the limiting circulation around

the obstacle manifests in the limit as background flow generated by a point vortex.

We begin with a precise formulation of our problem. Let Ω be a smooth, bounded,

connected and simply connected domain in the plane, with boundary Γ, and consider

Ωε ≡ εΩ with boundary Γε for each ε > 0. Denote Πε ≡ R
2 \ Ωε.

Fix u∞ ∈ R
2, γ ∈ R and ω0 ∈ C∞

c (R2 \ {0}). For each ε > 0 sufficiently small, we

consider an initial divergence-free velocity u0
ε in Πε, tangent to Γε, with circulation γ

around Γε, with curl u0
ε = ω0, such that lim|x|→∞ u0

ε (x) = u∞. We will see later that,

given γ, u∞ and ω0, there exists a unique such u0
ε . We consider the solution uε of the

initial boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut + u · ∇u = −∇p, in Πε,

div u = 0,

u(x, 0) = u0
ε ,

u · n̂ = 0 on Γε,

u(x, t) → u∞ as |x| → ∞.

(1)

Existence of such flows is due to K. Kikuchi; see [5]. Our main result is the existence of

a subsequence of uε that converges to a flow u = u(x, t) such that its vorticity ω = curl u

satisfies: ⎧⎪⎪⎨
⎪⎪⎩
ωt + u · ∇ω = 0, in R2

u = KR2 [ω] + γH + u∞

ω(x, 0) = ω0,

(2)

where H = H(x) = x⊥/2π|x|2 is the velocity field induced by a unit strength point

vortex in the plane and KR2 [ω] = H ∗ ω is the Biot-Savart law in the plane. We denote

(x1, x2)
⊥ = (−x2, x1). As a consequence of our main result we obtain the existence of a

weak solution for problem (2).

The remainder of this paper is organized as follows. In the next section, we introduce

some information on classical potential theory for the Laplacian in an exterior domain.

We will use the conformal mappings between Ωε and the exterior of the unit disk to allow

us to write explicit formulas for the harmonic fields and the Biot-Savart law. In Section

3, we present a precise formulation of our problem and we collect a priori estimates. In

the last section we discuss the passage to the limit, and draw concluding remarks.

2. The Laplacian in an exterior domain. The purpose of this section is to study

harmonic vector fields in an exterior domain which are constant at infinity. Let Ω be a

smooth, bounded, connected and simply connected domain in the plane with boundary

Γ, and let Π = R
2 \Ω. We denote the exterior of the unit closed disk in the plane by U .

We begin with a result from [7].

Lemma 2.1. There exists a smooth biholomorphism T : Π −→ U , extending smoothly

up to the boundary, mapping Γ to S = { | z | = 1 }. Furthermore, there exists a nonzero

real number β and a bounded holomorphic function h : Π −→ C such that

T (z) = βz + h(z).
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Additionally,

h′(z) = O
(

1

z2

)
as |z| → ∞.

Remark. Given any complex number θ with |θ| = 1, we can replace T above by θT

and still obtain a biholomorphism between Π and U with the same properties, except

that now T (z) = βz + h(z), with β = |β|θ.
We denote the Green’s function of the Dirichlet Laplacian in Π by GΠ = GΠ(x, y).

The kernel of the Biot-Savart law on Π is KΠ(x, y) = ∇⊥
x GΠ(x, y). We use the same

notation for the associated integral operator f �→ KΠ[f ] =
∫
KΠ(·, y)f(y)dy. Also, we

denote by HΠ the unique harmonic vector field in Π (i.e. divergence-free and curl-free),

tangent to Γ, vanishing at infinity, with unit circulation around Γ. For y ∈ R2 \ {0} we

denote y∗ ≡ y/|y|2. We can use the conformal map T above to obtain explicit formulas

for KΠ and HΠ, namely:

KΠ(x, y) =
((T (x)− T (y))DT (x))⊥

2π|T (x)− T (y)|2 − ((T (x)− (T (y))∗)DT (x))⊥

2π|T (x)− (T (y))∗|2

and

HΠ(x) =
1

2π

DT t(x)(T (x))⊥

|T (x)|2 .

We are interested in harmonic vector fields that are tangent to Γ and tend to a constant

vector at infinity.

Proposition 2.2. For each ξ ∈ R2 there exists a unique harmonic vector field VΠ,ξ in

Π which is tangent to Γ, has circulation zero around Γ and tends to ξ as |x| → ∞.

Proof. The case ξ = 0 is Proposition 2.1 in [7]. We assume ξ 	= 0.

We begin the proof by explicitly constructing VD,(λ,0) where D is the exterior of the

unit disk and λ > 0. If we denote VD,(λ,0) = (V1, V2), it is well known that

V1 − iV2 = λ

(
1− 1

z2

)
, z ∈ C.

If z = x1 + ix2, then:

V1 = λ
x4
1 + 2x2

1x
2
2 − x2

1 + x4
2 + x2

2

x4
1 + 2x2

1x
2
2 + x4

2

, V2 =
−2λx1x2

x4
1 + 2x2

1x
2
2 + x4

2

.

To verify that this flow satisfies all the requirements, first we note that the complex

form of (V1, V2) easily implies that the limit at infinity is (λ, 0). The Cauchy-Riemann

equations imply that VD,(λ,0) is indeed divergence-free and curl-free. Restricting to |x| =
1 and taking the scalar product with x = (x1, x2), it can be easily verified that VD,(λ,0)

is tangent to |x| = 1. Finally, once again restricting to the unit circle, we find that

(V1, V2) · (−x2, x1) = −2λx2, which integrates to zero on the unit circle.

Next we use the conformal mapping T from Lemma 2.1 to define, for each unimodular

complex number θ = θ1 + iθ2,

VΠ,ξ,θ(x1, x2) = D(θT )tVD,(λ,0)(θT (x1, x2)). (3)
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The limit of VΠ,ξ,θ at infinity is λβ(θ1, θ2). We choose λ = |ξ|/β and (θ1, θ2) = ξ/|ξ| to
guarantee that limx→∞ VΠ,ξ,θ(x) = ξ. We denote the vector field obtained with these

choices of λ and θ by VΠ,ξ.

By a straightforward calculation, using the Cauchy-Riemann equations for T , we have

that both the divergence and the curl of VΠ,ξ vanish. The fact that a biholomorphism

is also a diffeomorphism implies that VΠ,ξ is tangent to Γ, since VD,(λ,0) is tangent to

the unit circle. Furthermore, the circulation of VΠ,ξ around Γ is equal to the circulation

of VD,(λ,0) around the unit circle, which vanishes. This can be seen by expressing the

circulation of VΠ,ξ around Γ as a line integral and performing a change of variables using

the restriction of T to Γ, which is a diffeomorphism between Γ and {|z| = 1}. We have

established the existence of VΠ,ξ.

Uniqueness is a consequence of Proposition 2.1 in [7]. �
Remark. Recall the initial velocity field u0

ε introduced in Section 1. Proposition

2.2 implies that, together, the circulation γ, the initial vorticity ω0 and the velocity at

infinity u∞ determine u0
ε in a unique manner.

3. Flow in an exterior domain and a priori estimates. Our objective in this

section is both to formulate a precise statement of the small obstacle problem and to

obtain the required a priori estimates. Let ω0 ∈ C∞
c (R2 \ {0}), and fix γ ∈ R and

u∞ ∈ R
2. We fix Ω to be a smooth, bounded, connected and simply connected domain

in the plane with boundary Γ, and we define Πε ≡ R2 \ εΩ and Γε = εΓ. By Proposition

2.2, for each sufficiently small ε > 0, there exists a unique smooth, divergence-free velocity

field u0
ε in Πε with vorticity ω0, circulation γ around Γε, tangent to Γε, and such that

its limit, as |x| → ∞, is u∞. By Kikuchi’s Theorem, there exists a unique velocity field

uε = uε(x, t) which is a classical solution of (1) with initial velocity u0
ε . Let ωε = curl uε

be the vorticity corresponding to uε. It is easy to prove that the total mass of vorticity

is conserved; by Kelvin’s Circulations Theorem, it follows that the circulation of uε(·, t)
around Γε is conserved as well, hence equal to γ. Let Uε = uε − VΠε,u∞ . First observe

that, for each fixed time t, Uε(·, t) is divergence-free, curl Uε = ωε, tangent to Γε and

vanishes at infinity. In was shown in [7], as a consequence of Lemma 2.2 and Proposition

2.1, that for such a vector field there exists a unique α ∈ R such that

Uε = KΠε
[ωε] + αHΠε

.

In the proof of Lemma 3.1 in [7] it was shown that∫
Γε

(KΠε
[ωε] + αHΠε

) · ds = α−
∫
Πε

ωεdx = α−
∫
R2

ω0 dx ≡ α−m,

where we used the conservation of mass of vorticity. Hence,

γ =

∫
Γε

u · ds =
∫
Γε

Uε · ds = α−
∫
Πε

ωε dx.

We obtain that α = γ +m and, therefore, it is independent of ε and time. Therefore we

have

uε = KΠε
[ωε] + αHΠε

+ VΠε,u∞ . (4)
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The vorticity formulation of the exterior domain problem becomes:⎧⎪⎪⎨
⎪⎪⎩
∂tωε + uε · ∇ωε = 0,

uε = KΠε
[ωε] + αHΠε

+ VΠε,u∞ ,

ω(x, 0) = ω0.

(5)

The argument used in [7], which we will follow here, involves passing to the limit

ε → 0 in the weak formulation of (5). Since vorticity is transported by a divergence-free

vector field, we have the a priori estimate: ‖ωε(x, t)‖Lp ≤ ‖ω0‖Lp , for any 1 ≤ p ≤ ∞.

By Alaoglu’s Theorem, we may consider a subsequence, which we still call {ωε}, which
converges weak-∗ in L∞([0, T ) × R2) to a limit ω (we have extended each ωε(·, t) to R2

by setting it to vanish inside Ωε).

The key ingredients for the convergence theorem we wish to prove are velocity esti-

mates. Once again following [7], we decompose the velocity as

uε = vε + (α−m)HΠε
+ VΠε,u∞ ,

where

vε = KΠε
[ωε] +mHΠε

.

Most of our work is already done. By Theorem 4.1 in [7], we have that there exists a

constant C > 0, independent of ε, such that:

‖vε‖L∞(Πε) ≤ C‖ω0‖1/2L1 ‖ω0‖1/2L∞ .

Also, in [7] an adapted cut-off function φε was introduced, such that φεHΠε
is diver-

gence-free and converges strongly in L1
loc(R

2) to x⊥/2π|x|2; see Lemma 4.2.

We are missing estimates on the behavior of VΠε,u∞ when ε → 0. This is the subject

of the next result.

Lemma 3.1. We have the following:

(1) There exists a constant C > 0 depending only on Ω, such that

‖VΠε,u∞‖L∞(Πε) ≤ C|u∞|.

(2) Let φε be the adapted cut-off introduced in [7]. We have:

φεVΠε,u∞ → u∞,

strongly in L2(R2).

Proof. Let T : Π1 → U be the conformal mapping as obtained in Lemma 2.1. Taking

θ = (u1
∞ + iu2

∞)/|u∞|, we define a new conformal mapping S = θT , which still maps Π1

to U . Using (3), we can write an explicit formula for VΠε,u∞ as follows:

VΠε,u∞(x) = DSt
(x
ε

)
VD,(λ,0)

(
S
(x
ε

))
,

where, in complex notation, S(z) = θβz + h(z), with β ∈ R, h bounded and h′(z) =

O(1/z2) at infinity, λ = |u∞|/β, and VD,(λ,0)(z) = λ(1 − 1/z2). Clearly, for all z ∈ Πε,

DSt(z) is bounded by |θβ| + sup |h′| and |VD,(λ,0)(z)| is bounded by 2|u∞|/|β|, so that

the first statement in the lemma follows.
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For the second statement, we split R2 into three parts, writing:

‖φεVΠε,u∞ − u∞‖2L2(R2) =

∫
|x|≤√

ε

|φεVΠε,u∞ − u∞|2dx

+

∫
√
ε≤|x|≤1

|φεVΠε,u∞ − u∞|2dx+

∫
|x|≥1

|φεVΠε,u∞ − u∞|2dx ≡ I1 + I2 + I3.

For I1 we use the uniform boundedness of φεVΠε,u∞ from the first part of the lemma,

together with the fact that the measure of the domain of integration goes to zero as ε → 0.

To analyze I2 and I3, we will use the fact that φε ≡ 1 in the domain of integration. For

each |x| > 0 we have:

DSt
(x
ε

)
→ β

[
θ1 −θ2
θ2 −θ1

]
as ε → 0,

and

VD,(λ,0)

(
S
(x
ε

))
→

(
|u∞|
β

, 0

)
.

We conclude, in particular, that VΠε,u∞(x) → u∞ pointwise in {x ∈ R
2 |

√
ε < |x| < 1}.

Once again using the uniform boundedness of VΠε,u∞(x), the fact that the domain has

finite measure, and the Dominated Convergence Theorem, it follows that I2 → 0 and

ε → 0.

Finally, we estimate I3. Note that, in complex notation:

|VΠε,u∞ − u∞| =
∣∣∣∣(θβ + h′(z/ε))

|u∞|
β

(
1− 1

S2(z/ε)

)
− u∞

∣∣∣∣
≤

∣∣∣∣ u∞
S2(z/ε)

∣∣∣∣+
∣∣∣∣h′(z/ε)

|u∞|
β

(
1− 1

S2(z/ε)

)∣∣∣∣ ≤ C
ε2

|z|2 ,

which implies that I3 = O(ε2). This concludes our proof. �
The final ingredients needed to pass to the limit ε → 0 are temporal estimates. The

proofs in Section 4.3 of [7] apply without change, as the only difference (in the velocity)

is the time-independent potential field VΠε,u∞ . We conclude that ∂tω
ε is bounded in

L∞((0, T );W−1,1
loc (R2)) and that ∂t(φεv

ε) is bounded in L∞((0, T );H−3
loc (R

2)).

4. Passing to the limit. This last section is devoted to our main theorem. We

return to the argument in [7], which uses a parametrized Div-Curl Lemma and the

Aubin-Lions Lemma, to find v ∈ L2
loc((0, T ) × R2) and a subsequence of {φεvε} (which

we do not relabel) converging strongly in L2
loc((0, T )× R

2) to v. The proof presented in

[7] works in our case without modification. In addition, passing to a further subsequence

if needed, we obtain that there exists ω ∈ L∞((0, T )× R2) such that φεωε ⇀ ω, weak-∗
in L∞((0, T )×R2). The limiting flow velocity will be u = v+(α−m)H +u∞. The final

step in our work is to show that the pair u, ω thus obtained is a weak solution of system

(2), in a suitable sense. Let us first define precisely this notion of weak solution.

Definition 4.1. Let ω0 ∈ L∞
c (R2). Fix γ ∈ R and u∞ ∈ R2. Let u ∈

L∞([0,∞);L1
loc(R

2)) and ω ∈ L∞([0,∞);L∞(R2)). We say that the pair (u, ω) is a

weak solution of system (2), with initial vorticity ω0 and velocity u∞ at infinity, if:
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(1) for any test function ϕ ∈ C∞
c ([0,∞)× R2) we have∫ ∞

0

∫
R2

ϕt ω dx dt+

∫ ∞

0

∫
R2

∇ϕ. uω dx dt+

∫
R2

ϕ(x, 0)ω0(x) dx = 0,

(2) we have div u = 0 and curlu = ω + γδ in the sense of distributions, where δ

denotes the Dirac delta distribution, and

(3) lim
|x|→∞

u = u∞.

We are now ready to state and prove the main result of this note.

Theorem 4.2. Let ω0 ∈ C∞
c (R2 − {0}). Fix γ ∈ R, u∞ ∈ R

2, and T > 0. Then there

exists a velocity field u ∈ L2
loc((0, T )×R2) with curl u = ω ∈ L∞((0, T )×R2) such that

the pair (u, ω) is a weak solution of system (2), with initial vorticity ω0 and velocity u∞
at infinity. Moreover, the velocity u is obtained as a strong limit in L2

loc((0, T )× R2) of

a subsequence of solutions of the exterior domain problem (1) having, as initial velocity,

u0,ε = KΠε
[ω0] + αHΠε

+ VΠε,u∞ .

Proof. Again, the proof is almost the same as Theorem 5.2 in [7]. We outline it briefly

in order to highlight the adaptation required. Define the sequence of solutions uε of

system (1), having u0,ε as initial data and with vorticity ωε = curl uε. We introduce a

family of functionals Iε, which, for any fixed test function ϕ ∈ C∞
c ([0,∞)×R2), is given

by:

Iε[ϕ] ≡
∫ ∞

0

∫
R2

ϕt(φε)
2ωεdxdt+

∫ ∞

0

∫
R2

∇ϕ · (φεu
ε)(φεω

ε)dxdt,

where φε is the adapted cutoff from [7]. The proof is reduced to two steps: (i) prove that

Iε[ϕ] +

∫
ϕ(·, 0)ω0dx → 0,

and (ii) show that

Iε[ϕ] →
∫

ϕtω +∇ϕ · uωdxdt

as ε → 0. To establish the first limit, we use the fact that uε and ωε satisfy the vorticity

equation in Πε, so that, after integration by parts, we have:∫ ∞

0

∫
R2

ϕt(φε)
2ωεdxdt = −

∫ ∞

0

∫
R2

∇(ϕ(φε)
2) · uεωεdxdt−

∫
R2

ϕ(·, 0)(φε)
2ω0dx.

Thus,

Iε[ϕ] +

∫
ϕ(·, 0)ω0dx = −2

∫
ϕ∇φε · (φεu

ε)ωεdxdt

= −2

∫
ϕ∇φε · (φεv

ε)ωεdxdt− 2

∫
ϕ∇φε · (φεVΠε,u∞ )ωεdxdt ≡ −2J1

ε − 2J2
ε .

The term J2
ε is actually the only new feature in this proof, when compared to the proof of

Theorem 5.2 in [7]. The term J1
ε is estimated by ‖ωε‖L∞‖φεv

ε‖L∞‖ϕφε‖L1 . The analysis

of J1
ε is concluded by noticing that the first two factors are uniformly bounded, while

the last factor tends to zero as ε → 0. We estimate J2
ε by ‖ωε‖L∞‖φεVΠε,u∞‖L∞‖ϕφε‖L1

and conclude the analysis in a manner similar to J1
ε , given that the middle factor is also

bounded; see Lemma 3.1. This concludes the first step. For the second step, we note
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that ∇ϕ · φεu
ε still converges strongly in L1((0,∞)×R2) to ∇ϕ · u, despite the presence

of VΠε,u∞ , whereas everything else in the argument in [7] stays the same. �
A few concluding remarks are in order. First, we note that we assumed ω0 ∈ C∞

c (R2−
{0}) for the sake of convenience. It would be easy to adapt Theorem 4.2 for ω0 ∈ Lp

c(R
2),

for any p > 2.

Next, as in [7], Theorem 4.2 comprises a new existence result, along with compactness

of a natural approximating sequence. Convergence of the approximating sequence, which

depends on uniqueness of solutions of the limit system, is desirable, as it would open the

possibility of describing the error in greater detail.

When [7] was written, and in the case u∞ = 0, uniqueness was known only for γ = 0,

both for smooth initial vorticity (see [2]) and for bounded initial vorticity (see [16]). For

γ = 0, ω0 ∈ L∞
c and u∞ 	= 0, uniqueness is a result of P. Serfati in [15]. In the case γ 	= 0

while u∞ = 0, uniqueness was recently proved by C. Lacave and E. Miot in [13], with

the hypothesis that ω0 vanishes near the origin. This raises several natural problems:

(i) to extend Lacave and Miot’s result to velocities that do not vanish at infinity, (ii)

to relax the hypothesis that ω0 vanishes near the origin, and (iii) to study asymptotic

error terms whenever uniqueness of the limit problem and, therefore, convergence of the

approximating sequence, is known.

Finally, another relevant open problem is to consider a viscous version of this work,

extending the results in [8] and [6] to the case where velocity is constant at infinity.
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