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Abstract

We consider solutions of the Boltzmann equation, in a d-dimensional torus, d - 2,3,

(*) af(r, v, r) + v .vf= Q(f, f),

for macroscopic times T - t/E
N, e . 1, t a 0, when the space variations are on a macroscopic scale

x eN - r, A 2, x in the unit torus. Let u(x, i) be, for i S to, a smooth solution of the
incompressible Navier Stokes equations (INS) for N - 2 and of the Incompressible Euler equation
(IE) for N > 2.

We prove that (*) has solutions for t to which are close, to 0(e2) in a suitable norm, to the
local Maxwellian [/(2 rff)d/2lexp{- [v - eu(x, t)12/2T) with constant density 0 and temperature
T. This is a particular case, defined by the choice of initial values of the macroscopic variables, of a
class of such solutions in which the macroscopic variables satisfy more general hydrodynamical
equations. For N a 3 these equations correspond to variable density IE while for N - 2 they involve
higher-order derivatives of the density.

1. Introduction

The Boltzmann Equation (BE) describes the time evolution of the positional
and velocity density f(r,-'rai-of a gas. An old question is the relation of the
Boltzmann equation to the Euler and Navier-Stokes equations of fluid dynamics. .'

(For an historical background see Chapman and Cowling [1].) In particular,
under what conditions does the BE lead to closed hydrodynamical type equations
for the locally conserved quantities (collision invariants) which depend only on r
and r. These are the five moments of f corresponding to mass, momentum and

Communications on Pure and Applied Mathematics, Vol. XLII 1189-1214 (1989)
0 1989 John Wiley & Sons, Inc. CCC 0010-3640/89/081189-26$04.00

I!I
p7



a r
J.

1190 A. DE MASI, R. ESPOSITO, AND J. L. LEBOWITZ

energy densities,

p (r, T) f Jf(r, v, Tr) dv, pou(r, i.) =f vf(r, v, i) dv,
(1.1)d

pT(r, T) u(r, T)) 2 f(r, V, T)dv.

The possijilityef,,such a "contracted description" is due to the big disparity

k (in many .situatidns)etween the microscopic scale of the BE, represented by the
mean free path.,nd mean free time and the macroscopic scales on which the
(conseted) hyd.dykAkical variables change. This can be expected to lead to a
state .se to loi&d" equilibrium, i.e., f(r, V, T) should be close to a local
Maxv/Yeian,

(1.2) M(p, u, T; v) = p/(21tT)d/2 exp{-(v - u)2/2T),

with the hydrodynamical variables changing "slowly" in space and time. M is
singled out by the fact that it is the only function for which Q(M, M) = 0 (see
[1J-I3]).

The disparity between microscopic and macroscopic scales is the central
ingredient in the derivation of a variety of macroscopic laws from microscopic
model systems (see [4]). In all these cases one follows the path initiated by
Hilbert [51 and Enskog [6] who introduced the ratio of microscopic to macro-
scopic length scales, the Knudsen number e, as an explicit parameter in the BE
changing (*) to

(1.3) 8,j(r, T; v) + v " V,.f, = -'Q(f, f,),

where we have changed the order of the variables in f, to emphasize that v is to
be thought of as a parameter.

It is now possible to make various formal expansions of f, in powers of e
about some local or global Maxwellian. In particular the well-known Hilbert-
Chapman-Enskog method [1] leads to a sequence of equations for the hydrody-
namical variables corresponding, respectively, to the (non-dissipative) Euler
equations, the Navier-Stokes equations, etc. From now on we always consider a
collision operator Q corresponding, a la Grad [2], to cut-off hard potentials.

-A iimportant step in the mathematical development of the theory was taken
by Caflisch (7] (and by Caflisch and Papanicolau [81 for a discrete velocities
model) who proved the following: let p, u, T be smooth solutions of Euler
equations in a torus for t E [0, to]. Then there exists a solution f,(r, T; v) of the
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BE (1.3) such that, for T" < to, we have, in a suitable norm,

(1.4) IlL - M(p, u, T; v)JI < CE.

This result has been extended by Lachowicz [9] to more general initial data
f,(r, 0; v) and more general domains, see also Bardos [10] and Bardos and Golse
[11].

We now observe that equation (1.3) is a special case of scaled equations which
can be obtained directly from (*) by looking explicitly at solutions which vary on
different macroscopic space-time scales. More precisely we let e- be the macro-
scopic scale, i.e., the size of the domain (torus) in which the system is confined
and we let r = E- 1x, i" = E-t. The time evolution of F1I)(x, t; V)
f(e-x, v, E - t) will satisfy the (BE). equation

(1.5)-7 + 8(1-0)v " VXF.) = E-*Q(F,), F c.)),F

with some initial condition F1,)(x, 0; v). Equation (1.5) is nothing more than a
rewriting of (*) in terms of the new variables x and t. Any new results valid for
"e small" must therefore follow form (*) and the assumptions, if any, on the
initial state F)o(x,0; v). This will be discussed further in Section 5; see also [121.

Equation (1.3) thus corresponds to a = 1, i.e., space and time are scaled in
the same way. That this is the right choice for the Euler equations is clearly
related to the fact that these equations are invariant under this scaling. The
reduction to Euler type equations under uniform space-time scaling can also be
proven for some simple microscopic models (see [13]) and shown to occur, under
the assumption of local equilibrium, for real particle systems evolving according
to Hamiltonain equations of motion (see [41).

A natural question to ask then is whether there is any different micro-macro
scaling of space-time which produces the Navier-Stokes equations. An inspection
of those equations shows that they are not invariant under any rescaling of
space-time. This implies that there are no space-time scalings which produce the
full Navier-Stokes equations as a well-defined limit. They have to be thought of
instead as a correction to the Euler equations. On the other hand, if one also
scales the macroscopic velocity u, i.e., one considers u's very small compared to
microscopic velocities (or the Mach number), then there is a scaling which leaves
a "subset" of the Navier Stokes equations, and in particular the INS equations,
invariant; c.f. 114]. Similarly there are scalings of u which make the dissipative
term in the INS vanish but leave a "subset" of the Euler equations, including the
IE, invariant; see [15]. This suggests a derivation of these equations directly from
the BE with proper scaling of the initial u's. We carry out this program for the
INS and IE in Sections 2,3,4. We leave for Section 5 the discussion of the larger 3
class of hydrodynamical evolutions, obtained by imposing some constraint on the 0
d + 2 variables occurring in the compressible hydrodynamic equations, which
can be obtained from the BE by choosing suitable initial conditions.
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2. Statement of Results

Let u(x, t) be the solution of the INS or IE in a unit d-dimensional torus l,
i.e., u satisfies the equations

(2.1a) Au + u • Vxu = -VTXp + -INAU,

(2.1b) div u = 0,

(2.1c) u(x,0) = Uo(X ) ,

where 0 is the constant mass density and TIN is the viscosity coefficient for N = 2
(INS), while qN = 0 if N > 2 (IE). The vector field vp which corresponds
physically to the pressure gradient is not specified a priori but is to be considered
formally as an unknown function also determined from (2.1). The parameter N
will be defined later. It is known (see for example [16]) that if uo is sufficiently
smooth there is a to depending on uo such that equation (2.1) has a unique
smooth solution (u(x, t), p(x, t)) for t 9 t0. In two dimensions, t o can be taken
arbitrarily large.

In order to define precisely the smoothness we require, we introduce the
Sobolev space H,(I) of order s with scalar product

(2.2) (h, g), J dxv'h(x). Vg(x).
j-0 r

Furthermore, we denote by Bj, the space of the measurable functions on
1 x R a, such that

(2.3) IlhIjIj = sup (1 + v2)J/2 1h(., v)Is, th12 = (h, h) 3,
vERd

is finite.
We wish to prove now that any smooth velocity and pressure field satisfying

(2.1) can in fact be obtained from the solution to the (BE). equation (1.5) for
suitable initial distribution and choices of the scaling a. The case a = 1 is
covered by the Caflisch theorem, equ ,-.. (1.4). We shall now consider the case
1 < a 2, and observe that by letting E .we can rewrite equation (1.5) as
follows:

(2.4) k + e-'v • -aFJ, = e-NQ(Fk, F~e),

with N = a/(a - 1), so that N a 2. We assume that N is an integer: our proofs
presumably work also for any rational number N, but we did not treat that case.

9 . -. -

Ii'
0~ -. .
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We prove the following f
THEOREM 1. Given a divergence-free field uo r H(fl), s > 4, > 0, T > 0,

N 2, there are fixed t o > 0 and Eo > 0 such that equation (2.4) has a solution I
F,(x, t; v) e By2 for t : to, j > 4, e < eo, satisfying

(2.5) iFe(X, t; v) - M(#, Eu(x, t), 1; v) IIj2 < CE2.

whenever u(x, t) is a solution to equation_(2.1) in H,(I1) for t 5 t o. In the case
N = 2, the viscosity coefficient q1 = (, T) is given by the equation (3.32) below.

Remarks. (i) The bounds in the above statement are not optimal, but they
are sufficient for d = 2,3.

(ii) Note that u in equation (2.5) is not the same as the u in equation (1.1),
U --* EU.

(iii) We actually prove that there is a solution FN(x, t; v) to equation (2.4)
of the following form: we consider for concreteness the case N = 2 and write
F2 = Fe,

(2.6) F'(x. t; v) = M(p,, u,, T,) + e2g(x, v, t) + -3h,(x, t, v),

where

(2.7a) p= + e2p(2)(x, t),

(2.7b) u, = eu(x, t) + e2u(2)(X, t),

(2.7c) , = + e2r 2)(x, t), !

g(x, v, t) is a function orthogonal to the space generated by the collision
invariants (see (3.25)) and all the functions p,, u,, T, g(x, v, t) and h,(x, t, v)
are uniformly (in E) bounded in Bj2.

Finally, u(x, t) in (2.7b) is the solution to the INS and the term proportional
to e2 in pT,, i.e., 7p(2)(x, t) + OT(2)(x, t) is "the pressure" p(x, t) associated to
the solution u(x, t) of equation (2.1) with N = 2.

(iv) Our results involve choosing an initial distribution F~v(x, 0; v) which is
of the "right form". This may in fact not be necessary. As was shown by
Lachowitz [91 for the case a = 1 considered by Caflisch (and by Ellis [17] and
Ellis and Pinsky [12] in some simple linear case), choosing a "slightly wrong"
distribution at t = 0 has the effect of producing an "initial layer" which then has
to be "matched" to the hydrodynamic solution. Presumably this is also the case
for a > 1, at least within a certain class of distributions. We discuss this and
other questions, including extensions of Theorem 1 to the case in which the gas is
subject to a suitably scaled "smooth" external force, in Section 5. We also discuss
there choices of initial conditions which lead to variable density IE and to some
"higher-order" Navier-Stokes equations in which the pressure is constant up to
order e2.
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The idea of the proof of (2.5) is similar to that of Caflisch [71; perform a
truncated (Hilbert) series expansion in e and control the remainder equation. All
the estimates of the terms of the expansion and of the remainder are due to the
good control of the appropriate hydrodynamic equations in the interval [0, to]. In
the next section we develop the expansion, while Section 4 is devoted to the
control of the remainder.

3. The Expansion

We first consider the

Case N = 2. In this case equation (2.1) becomes

(3.1) fFE + e-v * VFe = e- 2 Q(Fe, Fe).

We look for a solution of (3.1) of the form

8
(3.2a) Fe = me + , ef, + e4fR,

n-2

where

(3.2b) m,(x, t, v) = M(Po(X, t), eu(X, t), T(x, t); v),

for some functions u, po, To to be determined. The functions f. will be chosen to
coincide with those obtained from the Hilbert expansion while the remainder
term fR will satisfy the equation below. We note that me is such that Q(me, m)
= 0 and that the first correction to me is O(e 2 ).

We write

k
(3.3) me = m 0 + 1e:t-). + ek+rk+1,

n-i

where

1 a "(3 .4) IN ;F 1,,n 0

and rk+, is a remainder of order k + 1,

(u v 1 (vv - T08,J)

(3.5) T -- moT-, V2 . 0m T 2  u i,j1,...,d.

In (3.5) and below we sum over all repeated indices.
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Substituting (3.2a) and (3.3) in equation (3.1) and equating terms of the same
order in e not containing fR we get

(3.6a) e-: vVm0 =0,

(3.6b) eO: dm o + v . vq1 = Lf2,

(3.6c) el: at I + o. V(f 2 
+ 9)2 ) = Lf3 + L(1 )f2

and, for 2 <k _ 6,

k a,(fk + TO + v. v(fk+l + 9

(3.7) = Lfk+ 2 + L 1)fk+, + E Q(f., f,.).

n+m-k+2

Moreover we have the remainder equation

(3.8) aff + E- v VfR = e-2LjR + L'fR + E2Q(f, fJ) + e3A.

In equations (3.6), (3.7) and (3.8) we have used the following definitions:

(3.9) Lj = 2Q(m,, f),

(3.1Q) Lf = 2Q(m0 , f),

(3.11) L(')f = 2Q(rl, f)

(3.12) ,f= 2Q( E n2f,f)

A = -[U(1 7 + TO + e(fg + r,)] - v - V(f + r.) + L(')f8

(3.13)
+ E I Q(fn'm)f

ka9 n, mg2
n+m-k

f

Now we analyze the consequences of equations (3.6) and put d = 3: equation
(3.6a) implies,

(3.14) VPo - 0, VT = 0.
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Equation (3.6b) implies

(3.15) P(3,mo + v . vp 1) = 0,

(3.16) (1 - P)(a,mo + v. V9) = Lf 2,

where

(3.17)

ffu =f(v') dv' + vJ v'f(0' dv' + (V 2 - 3T )JR (V,2  3 3T0)f v') dv'.

Equation (3.15) thus becomes

(3.18a) f (a,m o + v. vqpl) dv = 0,'R 3

(3.18b) J 3v(dmo + v v4pj) dv 0,

(3.18c) f (v2 - 3T)(am, + v" V9o,) dv = 0.
R 3

Using (3.14) and the relations

(3.19) 3mo dv= po, Jvvjmodv = pOT0
8 ij, jRviql dv =oU ,

(3.18a) and (3.18c) give

(3.20) dp o + divpou = 0,

(3.21) 3p0oTo + 2 div Topou = 0.

Integrating equations (3.20) and (3.21) on the volume 1I it follows by (3.14) that
0,po = 0 and 8,T0 = 0. This, together with (3.14) implies that

(3.22) p0 = 0, T = ,

i.e., m. is a global Maxwellian,

(3.23) M0(x, t; V) = g - M( ,0, T; v).
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Moreover, by (3.22) and (3.20) we must have, for the expansion to be consistent,

(3.24) div u = 0 (incompressibility).

Finally (3.18b) is satisfied by the properties of the Gaussian integrals.
Equation (3.16) yields, for all t < t0 , including the initial distribution at

t = 0,

2 L-(T-,o( vv- .goO j)) 9ju,
(3.25) f

+ gop(2) + p(2)u(2). v + e(2)(V 2 - 3f)],

where p(k), uk), e(k) will denote here and below the components of fk along the
collision invariants. Since they are in the null space of L, they are not fixed by
equation (3.25) and will be fixed later. We find (see for example [3])

(3.26) L-1(go( Viv j - 3v28 1 1 )) = -31I(v2)(vviv- gv28 o,

with , a known positive function. Therefore,

f2 -,(V)(Vi~j - 1V2)o8ij
(3.27) ( 3 ) 4v 8 j u ,

+ go[p(2) + P(2)uv2) . + e(2)(v 2 - 3T)].

The stress tensor and the heat current vector associated to fk are defined by

(3.28) fk)= fvivjfk dv, q k) - J v 2 3T)k do.

To compute the ones associated to f2 we note that

SdvoI*(V2)(ViV - JV28ij)o,go(v)

(3.29)

= A(')(8k8j, + S8,,)(1 - 8,j) + 0()8,aki,

with positive /L(T) and o(T). Moreover,

J 3(2)u(2)VVkVgo(V) dV = 0, f 3P(2)VkVlgo(V) dv = (2) ',,

(3.30)

fe(2)vkv,(v2 - 3T)go(v) du = 2e 2)T 28k- PT)k-
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Hence, using (3.24),

(3.31) 7r2) _ 1(- uj + aju,) + pa,

where the viscosity coefficient and the correction to the pressure are given by

(3.32) -1 T = , P= (2) + 2t e(2))T = (2) + OT(2).

On the other hand, since

(3.33)

f,, dP1*(V2)(V,,j - JV28ij)Vk2gO(V) = 0, f, 3 dvvgo(,)=0,

and

(3.34) fR3(V2 - 3T)vv jgo(v) dv = 2T 28j,

we have

(3.35) q12) = 2T 2 (2)uf2) .

Using the relations

(3.36) 4f3Td -- 0, fJ3T2V(V 2 - 3T) dv = 0,

and

(3.37) f3q, 2vivdv = uiuj ,

we have by (3.6), to order e,

(3.38) divp(2)u (2) = 0,

(3.39) a, uj + ajlrj2) + ajuuj = 0,

f= L'(1 - P)(a,9, + v" Vf2 ) - L)1 2]
(3.40)

+ go[p(3) + p(3)u(3) . v + e(3)(v 2 - 3T)],

with p(3 ), u(3), e(3) to be fixed later. Using the expression (3.31), equation (3.39)
becomes the incompressible Navier-Stokes equation.
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By (3.7), we have, for 2 < k < 6,

(3.41) P(81(f,+ 9k) + v" V(fk+l + Tk+)) = 0,

fk+2 = L-1(1 - P)[8(fk + 9) + V* v(fk+ + 'k+)]

(3.42) -LL('fk+ I- E Q(f, f,)}
n, m;-_2

n+m-k+2

+ g 0 [p(k+2) + p(k+ 2) u(k+ 2). v + e(k+ 2)(v - 32)].

After equation (3.41) is satisfied, equation (3.42) determines fk+:2 up to the
projection on the space of the collision invariants. On the other hand, we can use
the arbitrary functions p(k), u(k), e(k) to satisfy equation (3.41). The analysis of
the conditions for p(k), u(k), e{k) is simple and we omit it: the functions fk can be
determined and will be considered as known functions of x, v, t below. It is a
classical result of Grad [21 that they have the same spatial regularity as u and
satisfy the bounds

(3.43) ilk(x, t, 01l =S gk(x, t; v)oN v),

where the -k(x, t; v) are some polynomials in v with coefficients depending on
x, through u(x, t).

In consequence of the expansion, if u is a solution of the incompressible
Navier-Stokes equation and the fk are chosen as above, equation (3.1) becomes
equivalent to equation (3.8). This equation is much simpler than the original one,
since the nonlinear term is multiplied by a power of e. This fact allows then for
control of the remainder term.

Case N > 2. We use the same procedure as before. We look for a solution of
(2.1) of the form

2N+4

(3.44) = + " V+Nf+N + EN+2f,

n-O

where

(3.45) m,(x, v, t) = M(p,(x, t), u,(x, t), r,(x, t); v).
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We assume that p(x, t) and T,(x, t) have the following expansions:

N-1

pXt) = + E p.(x, 0E
n-2

(3.46)
N-1T(X, 1) - + T(,t:
n-2

and u. = eu for N = 3 having the expansion

N-1

(3.47) u_(x, t) = eu + E u(x, t)e"
n-3

for N > 3.
We could have chosen m, as in (3.45) also in the previous case: this would

have only changed the definitions of the fk in (3.2) for k >__ 2.
We have (see equations (3.4) and (3.5))

N+5

(3.48) m = m o + eq1 + e"(,). + G.) + L.N+ 6 rN+ 6 ,
n-2

where we denote by q&0 + G. the coefficients of the power series of m+, while the
9), still denote the quantities (3.5). We now proceed as in the case N = 2 and
consider the equations coming from the orders - , E and e'. The e -order is
exactly the same, and therefore from it we get the same informations as before.
The e0 -order gives
(3.49) dtm 0 + V* = LfN.

Equation (3.49) is equal to (3.6b) and so as before it gives the incompressibility

condition and the expression for fN as in (3.25). The E-order is

(3.50) 9dqt + V. v(G 2 + 9'2) = LfN+t + L(')fN.

If we multiply by vj both sides of (3.50) and take the v-integral, we get (see
equation (3.37)),

(3.51) odlu + OU" VxU + VxP = 0, P = Tp2 + pT2.

Equation (3.51) is the incompressible Euler equation. The functions fn are
determined as before and the functions pn, T., u., n = 3,.-, N - 1, are deter-
mined in such a way that the solvability conditions for fN+.-i are satisfied,

(3.52) P[d,(q),-_. + G.-I) + v" V(p + G.)] = 0, n = 3,., N - 1.
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Once all the functions appearing in the expansion are determined, we are left
with the following equatioi for the remainder fR.

Let

(3.53) 7,f = 2Q(EE2f" f

and

2N+4 1
A = -[,(+ + GN+5 + 8rN+S + 5FN -

n-N+5 J

2N+4 "(3.54) - V rn=+6 E 8n-N-6f]

n-N+6

+ L('+f2N, 4 + e k-2N-5 E Q(ff)
k>2N+5 n,m>N

n+m-k

Then fR must satisfy

(3.55) - + E-1 v " vxfR = e-NLfR + LfR + e2Q(fR, fR) + L3A,

which is completely analogous to equation (3.8).

4. The Remainder Equation

The study of the remainder equation follows closely the works (7], [9]. There-
fore we only sketch the proofs in the case N = 2. The main diffilculty in the study
of equation (3.8) comes from the negative powers of e. The e 1 in front of
v - vfR may be easily managed, because the free stream operator generates an
isometry in all the spaces we consider below, independently of e. A way to
control the e -2 in front of L, is to use the nonpositivity of L, on
L 2[m- 1(x, t; v) dvi. Following Grad [21, one would consider the equation for

JRq= (m,)- 11 2fR. Since m, depends on x and t, the equation for JR would contain
polynomials in velocity which are unbounded for large velocities. This difficulty
has been solved by Caflisch [7], by means of a decomposition of fR in low and
high velocity parts. The low velocity part is then controlled by the usual Grad
technique, while, to control high velocities, one introduces a global Maxwellian
M*(v) with a temperature T* larger than T, in order to gain from it a
convergence factor in the velocity space.
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More precisely, following Caflisch [7], we look for the solution of equation
(3.8) in the form

(4.1) fR - ym, g + rM-h,

where

(4.2) M*() = M(0,0, 1; ), r*>

and g and h (the low and high velocity parts, respectively) are defined as the

solutions of the following coupled system of equations:

(4.3) (a, + E-v. V)g = e-2. 'g + e2XU-l.**h,

(4) ( , + E-'v.- v )h = La -Io- C2(y, - RX*)h + TLZ(og + h)
(4.4)

+E2p*r*(ag + h, ag + h) + eda,

(4.5) g(x, v,0) = h(x, v,0) - 0,

where, given y > 0,

(4.6) X(u) X,= 1-
0 otherwise.

m,
(4.7) /4 = m -'(d, + E-'v °-V )m ,, a - --

(4.8) P,= f dvoj dn(vl - v) .n m,(x, t, vj),R31 J(vj-v),.kO

(4.9) * = f dlf dn(vl - v) . n M*(v,)

(4.11) Y7*.. (/?j)+L[.fij

(4.13) P*r*(f g) = -

A
(4.14) a = r-A
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The term # in equation (4.4) is unbounded in the velocity, but now it is
controlled by the exponentially decaying factor a.

To study this problem we consider a linear version of the equations (4.3)-(4.5),
i.e., we replace *F*(f, g) + Ea by a given function b. This yields

(4.15) (a, + e- IV V)g = e2-F, g + E- 2 x- '*h,

(a, + -Cv. v)h
(4.16)

= - C 2 (, - .)h +_fl g + h) + E2b,

(4.17) g(x, v,0) =h(x, v,0) = 0,

Now we have a system quite similar to (6.1)-(6.3) of [7]. The main difference is
that the factor e- in the right-hand sides of (6.1) and (6.3) of [71 is replaced by
e -2 and that the left-hand sides of (4.15) and (4.16) contain the factor E- 1.

Moreover, the x variable is three-dimensional instead of one-dimensional. This
requires the control of higher derivatives in x, because eventually the nonlinear
term has to be bounded using the algebraic properties of ..Y, for s > -d. The E-2

factor in front of Y, is not relevant because the proof is based on the
nonpositivity of £. Finally the factor e in front of v - v does not make any
problem as already mentioned (see Appendix). We therefore prove the following

LEMMA. There is an co > 0 such that any solution to equations (4.15), (4.16)
and (4.17) satisfies the bounds

(4.18) Ilgll. 6 e114fl b/Pllj+2.,

(4.19)
for j>3 and s -52 if E<e 0

The proof of the lemma is almost a repetition of the proof in [71, [9]; it is
given in the appendix for the sake of completeness.

Now we assume

(4.20) b = *r*(g + h, og + h) + ea.

Since in three dimensions the space A, is an algebra for s > 3, using the Grad
estimate for F*,

(4.21) IIr*(f, g)ij, 6 clifjjlj, lgli, for j > 2, s > 2,



1204 A. DE MASI, R. ESPOSITO, AND J. L. LEBOWITZ

and the bound (3.43) to estimate a, we get, for s > , j >

(4.22) 1b/p, _ + Ilhll 3 + CE),

where we have taken into account the exponentially decaying factor a. Therefore,
by the lemma,

(4.23) Ilhl 1j+2s e5/4(llglj 2, + I0 h I+ 2, + CE)

which implies

(4.24) Ilhllj+ 2s < Ig10s + cE,

for E small enough. Then,

(4.25) Iijgljj _ e1/4(Iigll. + Ih112+ 2 + cE) 3 E/4( 1g112, + CE)

and hence the estimate for g. Using this and (4.24) we get the estimate for h,

(4.26) IGhS 5 - CE, IIgljs < CE,

for some constant C.
A standard iteration procedure gives the existence of the solution once the

a priori estimate (4.26) has been established. This proves the theorem.

5. Generalizations and Discussion

Our main result, Theorem 1, can be restated, see comment (iii) in Section 2, as
follows: Let F,(x, t; v) be the solution of the BE (2.4) for the initial distribution

2N+4

(5.1) Fk (x,0; v) = M( , eUo(X), T; v) + E Enh.(x, v),
n=N

(5.2) div u0 = 0,

where the h,(x, v), p(x,O), u(x,0), T,(x,O) are determined from the initial
values of the hydrodynamical variables satisfying (2.1). (E.g., for N = 2, h2(x, v)
is given by the right side of (3.27) for t = 0 and p, u, T, are given by initial
values of (2.7) for N = 2 and by (3.46),(3.47) for N > 2.) Then Fy(x, t; v)
satisfies (2.5) for t _ to. General theory assures (or ought to) that this solution is
unique.
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A natural question then is, what happens if we replace (5.1) by

F e(x,0; v) = M(p 0(X), eUo(X), T0(X); V)

(5.3) 2N+4

+ eh,(x, v) + E e"h.(xv),
n-2

and drop (5.2b)? The answer turns out to be rather complicated and more
dependent on N in (2.4) than before. Let us first state the result for the case
N ;: 4. We assume, instead of (3.44), a solution of the form

2N+4

(5.4) Fv = m, + E enfn + eN+ 2fR.
n-1

In view of (3.46) and (3.47) there is no loss of generality in assuming that the f.
are orthogonal to the collision invariants for n = 1,-- , N - 1. The method of
Section 3 then allows us to prove that F' is a solution to the (2.4) if f, = 0 for
n = 1,..-, N - 2, and fN-i satisfies the equation

(5.5) V *in o ff LfN_1.

The compatibility condition for (5.5) implies that p0 and To may depend on x,
but the pressure Po = poTo has to be spatially constant. Therefore one can prove
that Theorem I is still true, but (2.5) is replaced by

(5.6) IIF; - M(po(X, t), eu(x, t), T(x, t); V)I 5 Ce2,

with po and u satisfying

a'p0 + U ° VP0 = 0,

(5.7) div u = 0,

pO(au + u • vu) = -Vp,

which is the IE with nonconstant density. Moreover, T is given by poTo = Po forsome Po > 0.

It is clear from (5.5) that fN-I depends on Vp0 . In particular, for N = 3, f2
does not vanish and (3.5) has to be modified accordingly. However, it turns out
that f2 is an odd function of v and the stress tensor f (2) vanishes. Therefore, the
hydrodynamical equations are the IE with nonconstant density, also in this case.
Considering now the case N = 2, we find that f, does not vanish and (3.21),
(3.27) and (3.39) have to be modified. The hydrodynamical equations which can
be obtained along the same lines as in Section 3 become more complicated and
involve additional terms, containing higher derivatives of p0, which depend on
extra transport coefficients. We do not go into details here but simply write them
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down and then make some remarks:

(5.8a) " a,po + divpou = 0,

(5.8b) dvd + jKj0O8T)
ci d PTu)-a

adpou, + ai[P ,i + poUUj

(5.8c) = aj(p(ro)(ajuj + aju,) + v(T0)81jdiv u)

+ aj(C'ijk,(TO)akaT + Jkj,( To)UkaTo + lijkakTAITO),

(5.8d) T - A
P0

with K, v, p, a, , 7 functions of To which depend on the intermolecular interac-
tions, while Po does not depend on x or t.

Remarks. (a) If the density and temperature of the initial distribution are
constant up to terms of order e, then we get the situation discussed in Section 3.
The same is true if we consider isothermal or isoentropic flows.

(b) The scaling considered in this paper, for N = 2, leaves the new equa-
tions invariant. This means that the extra terms cannot be removed by scaling.
On the other hand, if one assumes that K vanishes, then (5.8b) implies

divu = 0.

If we assume that a, does not depend on T and that a, P, and y vanish, we have

div u = 0,

a,p0 + U • VP0 = 0,

p0 3,U + pou•u = -VP2 + PAu,

which represent the INS with nonconstant density.
There are various directions in which the present paper can or ought to be

extended. We discuss some of them here.

5.1. Initial and asymptotic distributions. It would be desirable to prove a
theorem of the following type. Given a "smooth" initial distribution f(r, v, 0),
the BE (*) will bring f, in times short compared to e -, to a local equilibrium
state with parameters p, u, T satisfying the compressible Euler equations for
times e - < r < e- *, a > 1, the IE equations for times r- ea- 0, 1 < a < 2, and
finally the INS for times r - e-2 leading eventually as r - co to the global
Maxwellian distribution in which p, T, and u are constants determined by the
initial state (u can be taken to be zero by a Galileian transformation).
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As already mentioned, a first step in that direction was taken by Lachowitz [9]
who extended the Caflisch theorem to the case when the initial distribution is not
"too far" from a local Maxwellian. His result for the BE (1.5) with a = 1 can be
stated as follows:

THEOREM 2 (Caflisch-Lachowitz). Let

IIF(i)(x,0; v) - M(p o , uo, T; v)I < 8,

for some 8 sufficiently small. Then there is a eo > 0 s.t. for any 8' > 0

IFiJ1)(x, t; v) - M(p, u, T; v)fl _ Ce forall e <E o ,

for all t G (8', to], where p(x, t), u(x, t) and T(x, t) are the smooth solutions of
the compressible Euler equations up to time to with initial values po(x), uo(x), T(x).

We hope that the work in progress by Bardos, Golse and Levermore [18]
which utilizes the recent work of di Perna and Lions [191 proving the global
existence of weak solutions of the BE will in fact lead to results along the lines
described above. For the moment however, it should be emphasized, we have no
uniform bound for arbitrary times t even for the restricted class of initial
distributions considered here. We expect however and, in cases where the
deviation from a global Maxwellian is small, can prove that as t - 0 the
solution of the INS (2.1) and of the BE (2.4) are u(x, t) -* 0 and F'(x, t; v) --

M( , 0, T; v) as t -- oo. Here

T T+ _j=(fxfdv[F'(x,0; v) - M(O, euo(x), T; v)] + 02u~x]

is determined by the conservation of energy, j and T being the initial density
and temperature.

5.2. Fluid subject to external forces. The systems considered so far, ap-
proach, as t -* oo, the state of global equilibrium with uniform p, u and T. We
wish now to consider the more interesting situation in which the hydrodynamical
flow is subject to an external force, i.e., when (2.1a) is replaced by

(5.9a) Odu + u, Vu = -Vp + TINIAu + pb(x),

where b(x) is smooth and periodic. (We consider for simplicity only the case
N = 2, corresponding to the INS.) This corresponds to changing (2.4) to

(5.9b) d- + eIv - VF' + eb . 7,F' = e- 2Q(Fe, Fe).at
Note that in the original Boltzmann equation (*) the force term would be

e3b(er) • Vjf(r,v, t), i.e., the force varies on a macroscopic scale and is very
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small compared to the interparticle forces in the gas which give rise to the
collision term. It is now straightforward to extend Theorem 1 to this case.
Equations (3.2a) to (3.2b) are unchanged, while (3.6c), (3.1) and (3.8) are
modified in obvious ways. The only difference is in the proof of the lemma (see
Section 4) given in the appendix. We need to replace the free motion (x, v) -

(x + vt, v) by the evolution in the force field

(x, v) - ( + vt + jfojs f"dsb ( x( s', v + jotdsb(x(s)),

which of course changes also the various constants in the bounds.
There are two simple special cases which are worth considering:

(a) The conservative case. We take b = - V. U(x). In this case the energy
of a gas particle v2 + e2U(x) is conserved and the equilibrium state of the gas is
M(p,(x), 0, T; v) with the density p,(x) given by

(5.10) p,(x) = exp{ -E2U()/2T}.

We could therefore replace j by pe(x) in (2.5) and state the theorem in terms of
this local Maxwellian.

(b) The uniform case. We take b b independent of x and consider an
initial distribution Ft (x,0; v) = M(fi, eii, T; v), where ii is a constant (which as
already noted can be set equal to zero by a Galileian transformation). The
solutions of the INS and of the BE (5.8) and (5.9) are then

(5.11a) u(x, t) = 5i + bt,

(5.11b) F'(x, t; v) = M(j, e[ii + bt], T; v),

which are seen to satisfy (2.5) with C = 0.
The interesting case is of course when b v -VU but fnb dx = 0. We expect

then that (5.8) will have a stationary solution u,(x) which will be approached
asymptotically as t -- oo starting with any u0.The gas distribution F'(x, t; v) on
the other hand does not approach a stationary state in this case. The reason for
this is that the external force continues to do work on the system even in the
stationary state which, since the system is finite for e 0 0, leads to an ever
increasing temperature. This however does not appear at the level of the INS
(5.8a) which only describes the organized flow field.

To see this explicitly we consider the case where uo(x) = u,(x). Multiplying
(5.8a) by u,(x), integrating over the torus II using (5.8b), we get

(5.12) f(us b) dx= fY (T-- dx
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On the other hand, if we multiply (5.9) by v2 and integrate over both v and x
we find

(5.13)

d Jdx fdv -v2F'(x, t; v) = p(V)2 + PpT] = EJp(v) "bdx,

so that for <v) = eu, the rate of heat production in the system is proportional to
e2 times the right-hand side of (5.12).

It appears therefore that in order to get a stationary distribution for the
positions and velocities of the gas particle in the presence of a stationary
macroscopic flow one needs either (i) provide contact with external heat reser-
voirs, e.g. through contact with walls at fixed temperatures, which will absorb the
energy or (ii) consider an infinite system in which any finite heat generation can
"dissipate to infinity". An example of case (i) is the study by Bardos, Caffisch
and Nicolaenko [20] of the stationary distribution of a gas between two plates
kept at different fixed temperatures. An example of the case (ii) is the study by
Asano and Ukai [21] of the flow past an obstacle. They prove the existence of
stationary distributions which are actually attracting for a certain class of initial
distributions.

5.3 Linear Boltzmann and incompressible Stokes equations. Many of the
questions raised in the last sections become easier to answer if instead of starting
with (*) one starts with the linearized BE for f,

(5.14) 6fJ + v* VJ = Lf,

where

(5.15) Lf = 2Q[mo, f],

T o = M(O, 0, T; v) being the global Maxwellian with density and temperature
T. Scaling variables like in Section 2 and assuming N = 2 we get, instead of (2.4),
the equation

(5.16) aFe + s 1v* V F' = e-2LP

In this case, using the arguments of Section 3, it is quite easy to prove the
following

THEOREM 3. Given a divergence-free field uo E H,(fl), s ; 2, 0 > 0, T > 0,
equation (5.16) has a unique solution F'(x, t; v) e L 2[mo 1(V) dv dx] satisfying,
for any finite t,

(5.17) IIF'(x, t; v) - M( , eu(x, t), T; v)I < Ce2,
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whenever u(x, t) is a solution in .Y(rl) of the Stokes equation:

(5.18a) au = -Vp + ,iAu,

(5.18b) div u = 0,

(5.18c) u(x,0) = uo(X),

and 71 is determined as in Theorem 1.

To prove Theorem 3 it is enough to realize that following the lines of Section
2, equations (3.6) are modified as follows:

(5.19a) E-: v.Vm o =0,

(5.19b) eo: am 0 + v- Vqi = L(f 2 + q)2),

(5.19c) e': dAf + v V(f2 + T2 ) = L(f 3 
+ q)3 )-

From (5.19b) we get that f 2 = f2 - T 2, where f2 is equal to the right-hand side of
(3.27). Therefore, (5.19c) becomes

(5.20) 841 + v - V 2 = L(f 3 + TO)

From (5.20), equations (5.18) easily follow. The equation for the remainder is
linear and this allows us to control it by the nonpositivity of the operator L on
L21m0'(v) dvdx1.

Appendix

We use the following estimates proved in [21, [71 and [91:

(A.1) II.fIlj, cIIflIj_,, IIX*f/II, - cIfIj-x, for j 1, s 0,

(A.2) I[*fI/o_ cl flll, IIX*flIoo clIIIflll,

0 < V0 v,(x, v, t) < PA(J + Ivl)",0 < Vo : P*(v) : v(1 + 10) ,
(A.3)

0< 0<1,

(A4 11 ! a - 11 6 w ~ Ili,
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In (A.2) the denotes L2-norm in velocities and positions. Estimate (A.4)
follows from the bounds (3.43) and (A.5) follow from a direct computation using
the fact that the temperature is constant.

We denote by x + vt the translation on the torus H with velocity v in time t.
Of course the Lebesgue measure is invariant under this translation. We write
(4.15)-(4.17) in integral form:

h (x, v, t) ds(exp( -'dVT(S)E2

(A.6)

-,ag + E2i-T*h + 7a(g + h) + E2b]}

g(x v, ,) = ds exp( - dsPj(s')e-2

(A.7)

2X + e-2xo-'T*h1}

where the symbol { } means that the functions in braces have to be computed at
(x - (t - s)v - , v, s). Since we compute integral norms in x, the presence of
e 1 makes no difference for the invariance of the Lebesgue measure on the torus.
Perform the time integral which gives a factor E

2
/e. Using (A.1) (A.4) and

choosing -y large enough we get, by (A.6),

(A.8) IIhIIj 0 ; E211gII00 + EUabl1, o.

Differentiating (4.16) and writing it in integral form we have

Vh(x, v, t) = xpds {e e-

(A.9) .- v(Peg) + E-2(v,)h + E-2 5V( X*h)

+ V (ag + h)) + E2 vbl}*

Using (A.8) and (A.1), (A.2), (A.4), (A.5) we get, for y large enough,

(A.10) IIvhIIj 0 6 e2-s gIo 1 1 + b11 I,.
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By the same argument higher derivatives may be estimated and we get

(A .11) Ijhijj, < e211g1jo0  + E 4 1-b Lj

Now we estimate g. Following [2] we take advantage of the bound (A.1) to
reduce the estimate of I1gllj to an L2 estimate which follows by the nonpositiv-
ity of the operator ., Namely, denoting by C(-y) a constant diverging with y, we
have

Ug1 0 _ hIjgj 0 + UjXo- Y*hjjo !S hIJgjoj0 + C(y)Y*hlljo

(A.12) < Ugh,- 1 °+ C(y)llhlljIl Uglhj- 1 0 + C(-Y)( 211gloo + E4 b L 0)
= gj- + 7/211 b j-_ ,

for E small enough. In the same way, using (A.2) we get

(A.13) g1 00 < 111g111 + E7/2 I b-- 00"

A recursive argument (Grad hierarchy) then gives

(A.14) ilgljo _ lllgll, + E7/2 I blLl O"

The L 2 estimate is obtained using integration by part to cancel the streaming
operator e - • v, and the nonpositivity of .Y to get

d,111gill - C-2111X G- '"*hlll _ C ( -Y)E-2111 CY*hlll S C ( y ) e-2111hjjj C ( Y) E-211h1120

COOl~h jj0 +~Ixl*hh E2 C(yy[IIX gi + E21 1(A.15) 1 e e 1 201

Therefore, by the Gronwall inequality we have

(A.16) hI1gli _ exp(C(y)o}1E21 bl < E 3/2 1 b Lo
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if e is small enough. Therefore,

(A.17) lgl :.E12j 3.

The equation for the derivatives of g can be studied in the same way. Higher
norms of b appear in consequence of (A.5).
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