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ABSTRACT 
 

New Low-K dielectric constant materials development is underway. Introducing porosity 
is one of the ways to lower the dielectric constant. Those are typically spin coated organic filled 
glasses. The pore size is on the order of a several nanometers and pore introduction compromises 
mechanical properties of low-K thin films, especially fracture toughness, as these materials are 
typically brittle.  
 In our previous studies we have evaluated different low-K dielectric constant materials in 
terms of their mechanical properties using nanoindentation. It was interesting to see that for a 
large range of various porous low-K materials the modulus-to-hardness ratio was constant. It was 
also found that the indenter contact is mostly elastic, as the loading and unloading portions of the 
load-displacement curve did not show any hysteresis, following indentation depth to the 3/2 
power load dependence. Based on these results current analysis explains the observed constant 
modulus-to-hardness ratio. 
 The paper also describes the “ incompressible”  pore effect. As a particle gets smaller, the 
yield stress increases due to the Hall-Petch effect, but for the nanometer-size particles there are 
also high surface energy contributions that prevent is from deforming plastically. The same 
approach can be applied for a nanometer size pore elastic deformation, thus we call it an 
“ incompressible”  pore concept. 
 
 
INTRODUCTION 
 

Organo-silicate glass (OSG) is one of the novel low-K (k<4) interlayer dielectrics (ILD) 
to replace SiO2 in modern microelectronic devices. One of the ways to reduce dielectric constant 
is by introducing porosity (Figure 1a). OSG is a nanoporous material with up to 50% porosity, 
and an average pore size on the order of nanometers. While decreasing dielectric constant, 
increasing porosity compromises films mechanical reliability. The four interrelated properties 
responsible for the mechanical reliability are fracture toughness, elastic modulus, hardness, and 
interfacial adhesion. In our previous studies we have evaluated different low-K dielectric 
materials in terms of their mechanical properties using nanoindentation [1-3]. It was observed 
that the elastic modulus correlates with hardness (Figure 1b) [2, 3]. Based on a classical porous 
media behavior [4], it was also proposed that nanoindentation elastic modulus measurements 
could be used for estimating film porosity [2]. This paper attempts to explain the observed 
constant modulus-to-hardness ratio measured by nanoindetation, and also considers the surface 
energy contributions to the nanoporous media elastic deformation during nanoindentation. 
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Figure 1. a) Dielectric constant as a function of low-K density; b) Elastic modulus and hardness 
for a family of low-K films. 

 
 
DISCUSSION 

 
As seen in Figure 2a, there is almost no hysteresis between the loading an unloading 

portions of the load-displacement curve, which indicates an elastic contact, which can be fit with 
a Hertzian-like h1.5 power law load dependence (Figure 2b).  

Figure 2. a) Load-displacement curve for a 1 µm thick OSG film; b) Power law fit to a shallow 
indentation depth data in Figure 2a. 

   
The reduced elastic modulus is determined from the unloading stiffness dP/dh, and the 

knowledge of the indenter tip function, A: 
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The measurement can be performed by either using the Olive and Pharr analysis [5] employing 
the unloading slope, or by using the tip oscillation continuous stiffness method. Hardness is 
simply the maximum indentation load divided by the contact area: 
 

projectedA

P
H max=       (2). 

 
To first order the tip function for projected contact area, A, is related to the indentation depth, h, 
as A=24.5h2, so one can write: 
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This assumes a perfectly sharp tip and for tips with finite radius of curvature, a simple correction 
can be made [6]. It appears that for both loading and unloading portions of the curve load is 
proportional to h3/2 (Figure 2). If the unloading stiffness then can be treated as Sneddon’s for a 
circular punch [7], one would get: 
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Taking hardness as 
h
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2
, we see that the resulting ratio E/H=constant for the 

load-displacement profiles following the elastic P~h3/2 law. This however arrives at the 
unacceptable result that the modulus is a function of the film thickness. Typically there is an 
increase in the measured elastic modulus at the film surface attributed to the difficulty of 
determining the point of contact and the tip function at shallow indentation depth (Figure 3a). At 
greater depth the modulus reaches the minima, and then the tip starts feeling the presence of a 
higher modulus substrate, so the measured modulus increases. It turns out that in addition to the 
surface effects, one would have to consider the modulus decrease with indentation depth as 
depicted by equation 4, and Sneddon’s analysis might not be appropriate for the films exhibiting 
elastic P~h3/2 behavior. Figure 3b shows the shallow indentation depth modulus and hardness 
data from Figure 3a along with the h-0.5 fits, proving the concept. 

When almost elastic contact is observed using a Berkovich tip with materials exhibiting 
little or no plasticity, such as low-K dielectrics in this case, one can use a spherical tip with 
Hertzian analysis [8]. For elastic Hertzian contact indentation load is related to the indentation 
depth as: 
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Now the reduced film modulus can be readily extracted from equation 5 if the spherical tip 
radius, R is known and the loading and unloading curves are elastic as in Figure 2. 
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 We have attempted to measure low-K film density using X-Ray reflectivity (Figure 3b) 
[9]. The best fit was obtained by using a thin intermediate SiO2 layer, and the fitting parameters 
are shown in Figure 3c [10]. The thickness measurement of 820 Å was confirmed with 
spectroscopic ellipsometry, and the 50% density of SiO2 was confirmed with RBS 
measurements. 

Figure 3. a) Elastic modulus and hardness as a function of the indentation depth for a 1 µm thick 
low-K film; c) Shallow depth data from a); c) X-Ray reflectivity data along with a model fit 

obtained from an 80 nm thick low-K film. 

 
 Now we discuss the “ incompressible”  pore concept as applied to the nanoporous low-K 

dielectric films. Extra work is done during the deformation process due to the pore surface 
deformation. The current analysis takes into account the surface energy contributions from the 
pores to the low-K materials deformation during indentation process. Consider a porous periodic 
structure shown in Figure 4a, where λS is an average distance between the pores. The basis for 
such simplification is high resolution TEM work presented in [2, 3]. For the volume fraction of 
the pores, fV, the total number of pores, NS, would be: 
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where rS is the pore radius. With the known surface energy of the low-K materials, γS, we can 
find the surface work contribution: 

Thick. Density Rough.
Å g/cm^3 Å 

SiO2 810 1.19 13.4
SiO2 35 2.53 7.2
Si inf. 2.53 5
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The contribution of the matrix in a porous material would be: 
 

)1(
2

00
Vmatrix f

E
W −= ε

    (8) 

 
Since WMeasured=WMatrix + WPoreSurface, we can write a work balance equation (per unit volume): 
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For a sharp Berkovich indenter the strains induced by indentation can be quite high, on 

the order of 10% [11-13]. Figure 4b shows the surface work contribution to the low-K elastic 
modulus (second term in equation 10). Pore surface deformation contributions can add as much 
as a 100 GPa to the low-K elastic modulus for a several nanometer pore size, and 0.3 J/m2 
surface energy of the pore material. The effect is more pronounced for the smaller pore size and 
larger pore volume fraction (Figure 4b). This model assumes that all pores contribute to the 
effect, and although the increase in low-K elastic modulus over 72 GPa (dense SiO2) does not 
seem physically realistic, the effect of surface work contribution on the elastic modulus should 
not be completely ignored. 

Figure 4. a) Schematic of a porous media; b) Pore surface deformation contribution to the elastic 
modulus (second term in equation 10). 
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CONCLUSIONS 
 
 A constant modulus to hardness ratio measured by nanoindentation is explained for 
elastic contact in low-K dielectric constant materials. Hertzian elastic analysis with a spherical 
tip indentation is proposed instead of sharp Berkovich indentation for measuring elastic modulus 
of low-K dielectrics exhibiting mostly elastic indentation contact. A simple model, 
“ incompressible”  pore effect, that considers surface energy contribution to the elastic 
deformation of nanoporous media is presented. 
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