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Abstract. We establish two new estimates for a transport-diffusion
equation. As an application we treat the problem of global persistence of

the Besov regularity B
2
p
+1

p,1 , p ∈]2, +∞], for the two-dimensional Navier-
Stokes equations with uniform bounds on the viscosity. We provide also
an inviscid global result.

1. Introduction

In this paper we are concerned with the incompressible Navier-Stokes equa-
tions governing a viscous fluid evolving in the whole space Rd,

(NSν)


∂tvν + vν · ∇vν − ν∆vν = −∇πν

div vν = 0
vν |t=0 = v0.

Here, the vector field vν(t, x) = (v1
ν , ..., v

d
ν)(t, x) stands for the velocity of

the fluid, the scalar πν denotes the pressure and the parameter ν > 0 is the
kinematic viscosity. We will also consider the Euler equations which are the
inviscid case of the system (NSν),

(E)


∂tv + v · ∇v = −∇π
div v = 0
v|t=0 = v0.

The Cauchy problem for Navier-Stokes system has been intensively investi-
gated since the pioneering work of Leray [12] who proved the existence of
global weak solutions in the energy space. Nevertheless, the uniqueness of
such solutions is only known in space dimension two and is still a widely
open problem for higher dimension (d ≥ 3). For strong solutions, Fujita
and Kato [7] proved a local well-posedness result when the initial data are
lying in the homogeneous Sobolev space Ḣ

d
2
−1, which is invariant under the

scaling of the equations. It is worth pointing out that the same result holds
true when the initial data belong to the inhomogeneous Sobolev space Hs,
with s ≥ d

2 − 1. However the problem of whether these solutions blow up
in finite time or not is still unsolved and is considered as one of the most
relevant problem of the nonlinear PDE’s. We emphasize that the global
existence is only known in some restrictive cases as for example in space
dimension two or when the initial data are small in some function spaces
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which are invariant under the scaling .
For Euler system the theory is widely developed and we restrict our at-
tention to some significant results. In [11] Kato and Ponce proved a local
well-posedness result in Hs with s > d

2 + 1. In space dimension two such so-
lutions are global since the vorticity does not concentrate in finite time, see
for instance [2]. It seems very hard to obtain a local well-posedness result
when initial data belong to the critical space H1+ d

2 because we lack the em-
bedding in Lipschitz functions. Nevertheless local results are given when we

work with Besov spaces B
1+ d

p

p,1 , with p ∈]1,∞[, see [3]. Recently, Vishik has
proved in [15] that these solutions are global in dimension two. His proof
relies on a subtle logarithmic estimate based on the explicit formula of the
vorticity in dimension two. We mention that we have extended in [10] the
global existence in the limiting case p = +∞.
The inviscid limit was performed by several authors and is well under-
stood. For example, it is proven in [13] that under the assumption v0 ∈ Hs

with s > d
2 + 2, the solutions (vν)ν>0 converge in L2 norm as ν → 0 to the

unique solution v of (E) and the convergence rate is of order νt. We point
out that in dimension two these results are global in time.
This paper is the sequel to [9] in which we continue to study essentially two
problems. The first one is the uniform persistence with respect to vanishing
viscosity of viscous solutions in critical Besov spaces B2/p+1

p,1 (R2), whereas
the second one deals with the inviscid limit and the rate convergence. In [9]
we have given an affirmative answer when p ∈]1, 2] and the crucial fact of
the proof is a new regularization effect of the vorticity equation:

∂tων + vν · ∇ων − ν∆ων = 0 with ων = ∂1v
2
ν − ∂2v

1
ν .

We recall the following identity:

(1.1) vν = ∆−1∇⊥ων with ∇⊥ = (−∂2, ∂1).

We have established in [9] the following linear estimate on the Lipschitz
norm of the velocity

ν
∥∥∥∫ t

0
ων(τ)dτ

∥∥∥
B2
∞,∞

≤ C‖ω0‖L∞

(
1 +

∫ t

0
‖∇vν(τ)‖L∞dτ

)
,

which is essential to bound uniformly on ν the quantity ‖∇vν‖L1
t L∞ (for the

definition of Besov spaces we refer the reader to the next section). This
method fails for p > 2 and we are led to use an other approach based on a
new logarithmic estimate. Our main result reads as follows.

Theorem 1. Let p ∈]2,∞] and v0 be a divergence free vector field belonging

to B
2
p
+1

p,1 (R2). Then Navier-Stokes system (NSν) has a unique global solution

in C(R+;B
2
p
+1

p,1 ) satisfying, in addition, the following uniform estimate

‖vν(t)‖
B

2
p +1

p,1

≤ C0e
exp C0t.
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Moreover, the family (vν)ν>0 converges to Euler solution v with the following
rate

‖vν(t)− v(t)‖Lp ≤ C0e
exp C0t(νt)

1
2
+ 1

p , ∀ ν ∈]0, 1].
Here, C0 is a constant depending only on the initial data but not on the
viscosity.

Remark 1. In the above theorem the existence and uniqueness of global
solutions is well-known and the novelty of this result is the uniform estimates
and inviscid limit.

The proof of Theorem1 relies on some new estimates for the transport-
diffusion equation :

(TDν)
{
∂ta+ v · ∇a− ν∆a = f
a|t=0 = a0.

The first estimate is a new logarithmic estimate for the solution of the system
(TDν) which is an extension of Vishik’s one [15] obtained for the inviscid
case (ν = 0).

Theorem 2. Let p ∈ [1,+∞], v be a divergence free vector field belonging
to the space L1

loc(R+; Lip(Rd)) and f ∈ L1
loc(R+;B0

p,1). Then any smooth
scalar solution a to the problem (TDν) satisfies for all t ∈ R+

‖a(t)‖B0
p,1
≤ C

(
‖a0‖B0

p,1
+ ‖f‖L1

t B0
p,1

)(
1 +

∫ t

0
‖∇v(τ)‖L∞dτ

)
,

where C is a constant depending only on d but not on the viscosity.

Remark 2. Let us note that the logarithmic estimate allows us to bound
uniformly with respect to ν the Lipschitz norm of the Navier-Stokes velocity,
and this fact is crucial for the global persistence of the initial regularity.

Remark 3. Vishik’s proof is widely dependent on the structure of the equa-
tion. Indeed it uses the fact that the solution for transport equation is
explicitly expressed through the initial data and the flow, and clearly this
fails for the system (TDν). However, as in the proof of Vishik [15], we take
account in a crucial way of the incompressibility of the flow.

Our second estimate is some smoothing effect for (TDν). It will be useful
to establish a better rate of convergence for the inviscid limit.

Theorem 3. Let s ∈] − 1, 1[, (p1, p2, r) ∈ [1,+∞]3 and v be a divergence
free vector field belonging to L1

loc(R+; Lip(Rd)). Then, there exists a constant
C = C(d, s) such that the following holds true: let a to be a smooth solution
for (TDν), then

ν
1
r ‖a‖fLr

t B
s+2

r
p1,p2

≤ CeCV (t)
(
1 + νt

) 1
r

(
‖a0‖Bs

p1,p2
+ ‖f‖L1

t Bs
p1,p2

)
, ∀t ∈ R+,

with V (t) =
∫ t

0
‖∇v(τ)‖L∞dτ .
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Here our estimates are described through a coupled space L̃r
tB

s
p1,p2

which is
slightly different from the usual space Lr

tB
s
p1,p2

. For more precise details, we
refer the reader to the next section.

Remark 4. In the above theorem both cases r = +∞ and p1 < +∞ are well-
known. The first one can be proven by standard method but the second
is more subtle and was established by R. Danchin [6] with a blowing-up
constant C as p1 goes to +∞. Thus the critical situation p1 = ∞ seems
to be not reached by these methods. In [8] the first author gave a positive
answer for the Hölderian spaces ( p1 = p2 = ∞) by using another approach
based on Lagrangian coordinates. Here we improve this result by obtaining
a better control on the right-hand side of the estimate of Theorem 3.

The rest of this paper is organized as follows. We collect in section 2 some
basic results of Littlewood-Paley theory and we provide some useful lemmas.
In section 3, we prove the logarithmic estimate and the section 4 is reserved
to the proof of Theorem 3. We discuss in section 5 our Theorem 1 and
finally we conclude this paper by an Appendix.

2. Notation and Preliminaries

Throughout this paper we use the notation X . Y to denote the estimate
X ≤ CY for some constant 0 < C < ∞ which depends only on the dimen-
sion. The notation C0 stands for a real positive constant depending on the
initial data.
To define the Besov space we shall need the dyadic decomposition. We recall
that there exists two radially functions χ ∈ D(Rd) and ϕ ∈ D(Rd\{0}) such
that

χ(ξ) +
∑
q≥0

ϕ(2−qξ) = 1.

For every tempered distribution v ∈ S ′ we set

∆−1v = χ(D)v ; ∀q ∈ N, ∆qv = ϕ(2−qD)v and Sq =
q−1∑

j=−1

∆j .

We will need also the homogeneous operators:

∆̇qv = ϕ(2−qD)v, ∀ q ∈ Z.

The paradifferential calculus introduced by J.-M. Bony [1] is based on the
following decomposition (called Bony’s decomposition) which split the prod-
uct uv into three parts:

uv = Tuv + Tvu+R(u, v),

with
Tuv =

∑
q

Sq−1u∆qv and R(u, v) =
∑

|q′−q|≤1

∆qu∆q′v.
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Let us now recall the definition of Besov spaces through dyadic decomposi-
tion. Let (p1, p2) ∈ [1,+∞]2 and s ∈ R, then the space Bs

p1,p2
is the set of

tempered distribution u such that

‖u‖Bs
p1,p2

:=
(
2qs‖∆qu‖Lp1

)
`p2

< +∞.

We define also the homogeneous norm:

‖u‖Ḃs
p1,p2

:=
(
2qs‖∆̇qu‖Lp1

)
`p2
.

The definition of Besov spaces does not depend on the choice of the dyadic
decomposition. One can further remark that Sobolev space Hs coincide
with Bs

2,2.
Our study will require the use of the following coupled spaces. Let T > 0
and r ≥ 1, we denote by Lr

TB
s
p1,p2

the space of all function u satisfying

‖u‖Lr
T Bs

p1,p2
:=

∥∥∥(
2qs‖∆qu‖Lp1

)
`p2

∥∥∥
Lr

T

<∞.

We say that a function u is an element of the space L̃r
TB

s
p1,p2

if

‖u‖fLr
T Bs

p1,p2

:=
(
2qs‖∆qu‖Lr

T Lp1

)
`p2

< +∞.

The relationships between these spaces are described as follows and they are
a direct consequence of Minkowski inequalities:

Lr
TB

s
p1,p2

↪→ L̃r
TB

s
p1,p2

, if r ≤ p2;(2.1)

L̃r
TB

s
p1,p2

↪→ Lr
TB

s
p1,p2

, if r ≥ p2.

We have also the following real interpolation result that will be used in the
proof of the inviscid limit. Let T > 0 and s1 < s < s2 and θ ∈]0, 1[ such
that s = θs1 + (1− θ)s2. Then we have

(2.2) ‖u‖fLr
T Bs

p1,p2

≤ C‖u‖θfLr
T B

s1
p1,∞

‖u‖1−θfLr
T B

s2
p1,∞

,

for some absolute constant C.
In our proofs we will make an intensive use of the following well-known
inequalities.

Lemma 4 (Bernstein). There exists C > 0 such that for every q ∈ Z and
for a ≥ b we have

C−k2qk‖∆̇qu‖La ≤ sup
|α|=k

‖∂α∆̇qu‖La ≤ Ck 2q(k+d( 1
b
− 1

a
))‖∆̇qu‖Lb .

Now, we recall the following commutator lemma (see [4] and the references
therein).

Lemma 5. Let v be a Lipschitz divergence free vector field of Rd and
(s, p1, p2) ∈] − 1, 1 [×[1, +∞]2. Then, there exists a constant C depending
only on s and d, such that∥∥∥2qs

∥∥[∆q, v · ∇]a
∥∥

Lp1

∥∥∥
`p2

≤ C‖∇v‖L∞‖a‖Bs
p1,p2

.
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To finish this paragraph we state the following result which can be found
in [4, 6].

Proposition 1. Let s ∈ (−1, 1), (p1, p2, r) ∈ [1,∞]3 and v be a divergence
free vector field belonging to L1

loc(R+; Lip(Rd)). Let a be a solution of

∂ta+ v · ∇a− ν∆a = f.

Then the following estimate holds true

‖a(t)‖Bs
p1,p2

≤ CeCV (t)
(
‖a(0)‖Bs

p1,p2
+

∫ t

0
e−CV (τ)‖f(τ)‖Bs

p1,p2
dτ

)
,

with V (t) =
∫ t

0
‖∇v(τ)‖L∞dτ and C a constant depending only on s and d.

3. Proof of Theorem 2

For every q ∈ N ∪ {−1} we will denote by ãq the unique global solution of
the initial value problem

(3.1)
{
∂tãq + v · ∇ãq − ν∆ãq = fq := ∆qf
ãq(0, ·) = ∆qa

0.

According to Proposition 1 we have

‖ãq(t)‖B±ε
p,∞

≤ Cε

(
‖∆qa

0‖B±ε
p,∞

+ ‖fq‖L1
t B±ε

p,∞

)
eCV (t), ∀ 0 ≤ ε < 1.

Here and throughout this paper we use the notation

V (t) := ‖∇v‖L1
t L∞ .

Combined with the definition of Besov spaces this yields for j, q ≥ −1

(3.2) ‖∆j ãq(t)‖Lp ≤ Cε2−ε|j−q|(‖∆qa
0‖Lp + ‖fq‖L1

t Lp

)
eCV (t).

By linearity1 and the definition of Besov spaces we have

‖a(t)‖B0
p,1
≤

∑
|j−q|≥N

‖∆j ãq(t)‖Lp +
∑

|j−q|<N

‖∆j ãq(t)‖Lp ,(3.3)

where N ∈ N is to be chosen later. To deal with the first sum we use (3.2)
with ε = 1/2∑

|j−q|≥N

‖∆j ãq(t)‖Lp . 2−N/2
∑

q

(
‖∆qa

0‖Lp + ‖fq‖L1
t Lp

)
eCV (t)

. 2−N/2
(
‖a0‖B0

p,1
+ ‖f‖L1

t B0
p,1

)
eCV (t).(3.4)

We now turn to the second sum in the right-hand side of (3.3).
On the one hand, since the operator ∆j maps Lp into itself uniformly with
respect to j, one has∑

|j−q|<N

‖∆j ãq(t)‖Lp .
∑

|j−q|<N

‖ãq(t)‖Lp .

1It is obvious that a =
P∞

q=−1 ãq.
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On the other hand, a standard Lp energy estimate of the system (3.1) yields

‖ãq(t)‖Lp ≤ ‖aq(0)‖Lp + ‖fq‖L1
t Lp .

So, it holds that∑
|j−q|<N

‖∆j ãq(t)‖Lp . N
(
‖a0‖B0

p,1
+ ‖f‖L1

t B0
p,1

)
.

The outcome is the following

‖a(t)‖B0
p,1

.
(
‖a0‖B0

p,1
+ ‖f‖L1

t B0
p,1

)(
2−N/2eCV (t) +N

)
.

Choosing

N =
[2CV (t)

log 2
+ 1

]
,

we get the desired result.

Remark 5. We deduce from (3.2) (ν = 0) that for any a0 ∈ Lp and for any
flow ψ corresponding to a time-dependent smooth velocity,

∀j, q ≥ −1, ‖∆j

(
∆q(a0) ◦ ψ(t)

)
‖Lp ≤ C2−ε|j−q|‖∆qa

0‖LpeCV (t),

for every ε ∈ [0, 1[ and C depends on ε. This estimate was proved by
Vishik [15] with ε = 1 :

(3.5) ‖∆j

(
∆q(a0) ◦ ψ(t)

)
‖Lp ≤ C2−|j−q|‖∆qa

0‖LpeCV (t).

4. Proof of Theorem 3

We give the proof only for r = +∞ and r = 1. The general case is obtained
by an easy argument of interpolation.
The Fourier localized function aq := ∆qa satisfies

(4.1) ∂taq + v · ∇aq − ν∆aq = −[∆q, v · ∇]a+ fq.

A standard Lp1 estimate gives

‖aq(t)‖L∞t Lp1 ≤ ‖aq(0)‖Lp1 +
∫ t

0
‖[∆q, v · ∇]a(τ)‖Lp1dτ +

∫ t

0
‖fq(τ)‖Lp1dτ.

Multiplying by 2qs and taking the `p2 norm we obtain, via Minkowski in-
equality and Lemma 5,

‖a‖gL∞t Bs
p1,p2

. ‖a0‖Bs
p1,p2

+ ‖f‖L1
t Bs

p1,p2
+

∫ t

0
‖∇v(τ)‖L∞‖a(τ)‖Bs

p1,p2
dτ.

The required estimate follows from Gronwall’s lemma.

We now turn to the case r = 1. We start by rewriting (4.1) as

(4.2) ∂taq +Sq−1v ·∇aq−ν∆aq = (Sq−1−Id)v ·∇aq− [∆q, v ·∇]a+fq := gq.

Let ψq denote the flow of the regularized velocity Sq−1v:

ψq(t, x) = x+
∫ t

0
Sq−1v

(
τ, ψq(τ, x)

)
dτ.
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We set

āq(t, x) = aq(t, ψq(t, x)) and ḡq(t, x) = gq(t, ψq(t, x)).

From Leibnitz formula we deduce the following identity

∆āq(t, x) =
d∑

i=1

〈
Hq ·(∂iψq)(t, x), (∂iψq)(t, x)

〉
+(∇aq)(t, ψq(t, x))·∆ψq(t, x),

where Hq(t, x) := (∇2aq)(t, ψq(t, x)) is the Hessian matrix.
Straightforward computations based on the definition of the flow and Gron-
wall’s inequality yield

∂iψq(t, x) = ei + hi
q(t, x),

where (ei)d
i=1 is the canonical basis of Rd and the function hi

q is estimated
as follows

(4.3) ‖hi
q(t)‖L∞ . V (t)eCV (t), with V (t) :=

∫ t

0
‖∇v(τ)‖L∞dτ.

Applying Leibnitz formula and Bernstein inequality we find

(4.4) ‖∆ψq(t)‖L∞ . 2qV (t)eCV (t).

The outcome is

(4.5) ∆āq(t, x) = (∆aq)(t, ψq(t, x))−Rq(t, x),

with

‖Rq(t)‖Lp1 . ‖∇aq(t)‖Lp1‖∆ψq(t)‖L∞

+ ‖∇2aq(t)‖Lp1 sup
i

(
‖hi

q(t)‖L∞ + ‖hi
q(t)‖2

L∞
)

. 22qV (t)eCV (t)‖aq(t)‖Lp1 .(4.6)

In the last line we have used Bernstein inequality and the fact that the flow
preserves Lebesgue measure.
From (4.2) and (4.5) we see that āq satisfies

(∂t − ν∆)āq(t, x) = νRq(t, x) + ḡq(t, x).

Now, we will again localize in frequency this equation through the operator ∆j . So
we write from Duhamel formula,

∆j āq(t, x) = eνt∆∆jaq(0) + ν

∫ t

0
eν(t−τ)∆∆jRq(τ, x)dτ

+
∫ t

0
eν(t−τ)∆∆j ḡq(τ, x)dτ.(4.7)

At this stage we need the following lemma (see for instance [5]).

Lemma 6. For u ∈ Lp1 and j ∈ N,

(4.8) ‖eνt∆∆ju‖Lp1 ≤ Ce−cνt22j‖∆ju‖Lp1 ,

where the constants C and c depend only on the dimension d.
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Combined with (4.6) this lemma yields, for every j ∈ N,

(4.9) ‖eν(t−τ)∆∆jRq(τ)‖Lp1 . 22qV (τ)eCV (τ)e−cν(t−τ)22j‖aq(τ)‖Lp1 .

Also with the incompressibility of the flow it gives

‖eν(t−τ)∆∆j ḡq(τ)‖Lp1 . e−cν(t−τ)22j
(
‖[∆q, v.∇]a(τ)‖Lp1 + ‖fq(τ)‖Lp1

)
.

Thus, we get from (4.7)

‖∆j āq(t)‖Lp1 . e−cνt22j‖∆ja
0
q‖Lp1 +

∫ t

0
e−cν(t−τ)22j‖fq(τ)‖Lp1dτ

+ V (t)eCV (t)ν22q

∫ t

0
e−cν(t−τ)22j‖aq(τ)‖Lp1dτ

+
∫ t

0
e−cν(t−τ)22j‖[∆q, v.∇]a(τ)‖Lp1dτ.

Integrating in time and using Young inequalities, we obtain for all j ∈ N

‖∆j āq‖L1
t Lp1 . (ν22j)−1

(
‖∆ja

0
q‖Lp1 + ‖fq‖L1

t Lp1 + ‖[∆q, v.∇]a‖L1
t Lp1

)
+ V (t)eCV (t)22(q−j)ν‖aq‖L1

t Lp1 .

LetN to be a large integer to be chosen later. We will estimate ν2q(s+2)‖aq‖L1
t Lp1

for q > N and q ≤ N separately and then take the sum. First let us remark
that since the flow preserves Lebesgue measure, then we have

ν2q(s+2)‖aq‖L1
t Lp1 = ν2q(s+2)‖āq‖L1

t Lp1

≤ ν2q(s+2)
( ∑
|j−q|<N

‖∆j āq‖L1
t Lp1 +

∑
|j−q|≥N

‖∆j āq‖L1
t Lp1

)
.

Hence, for all q > N , on has

ν2q(s+2)‖aq‖L1
t Lp1 . 2qs‖a0

q‖Lp1 + 2N2qs‖fq‖L1
t Lp1

+ V (t)eCV (t)22Nν2q(s+2)‖aq‖L1
t Lp1

+ 22Nν2qs‖[∆q, v.∇]a‖L1
t Lp1 + ν2q(s+2)

∑
|j−q|≥N

‖∆j āq‖L1
t Lp1 .

According to (3.5) we have

‖∆j āq(t)‖Lp . 2−|q−j|eCV (t)‖aq(t)‖Lp .

Thus, we infer

ν2q(s+2)‖aq‖L1
t Lp1 . 2qs‖a0

q‖Lp1 + 2N2qs‖fq‖L1
t Lp1

+ V (t)eCV (t)22Nν2q(s+2)‖aq‖L1
t Lp1

+ 22Nν2qs‖[∆q, v.∇]a‖L1
t Lp1 + 2−NeCV (t)ν2q(s+2)‖aq‖L1

t Lp1 .

For low frequencies, q ≤ N, we write by Hölder inequality

ν2q(s+1)‖aq‖L1
t Lp1 ≤ (νt)2N2qs‖aq‖L∞t Lp1 .
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Now it remains only the take `p2 norm. Before that, let us recall that by
using Lemma 5 and Minkowski inequality, one can estimate easily∥∥∥2qs‖[∆q, v.∇]a‖L1

t Lp1

∥∥∥
`p2

. ‖a‖L1
t Bs

p1,p2
. t‖a‖gL∞t Bs

p1,p2

.

Taking then the `p2 norm we infer

ν‖a‖fL1
t Bs+2

p1,p2

. ‖a0‖Bs
p1,p2

+ 2N‖f‖L1
t Bs

p1,p2
+ 22N

(
V (t) + (νt)

)
‖a‖gL∞t Bs

p1,p2

+
(
V (t)eCV (t)22N + 2−NeCV (t)

)
ν‖a‖fL1

t Bs+2
p1,p2

.

Choosing N and t such that

V (t)eCV (t)22N + eCV (t)2−N .
1
2
.

This is possible for small time t such that

V (t) ≤ C1,

where C1 is a small constant depending on d. Under this assumption, one
obtains

ν‖a‖fL1
t Bs+2

p1,p2

. ‖a0‖Bs
p1,p2

+ C‖f‖L1
t Bs

p1,p2
+

(
1 + νt

)
‖a‖gL∞t Bs

p1,p2

.

From the case r = +∞, already shown, we have

‖a‖gL∞t Bs
p1,p2

. ‖a0‖Bs
p1,p2

+ ‖f‖L1
t Bs

p1,p2
, if V (t) ≤ C1.

Hence, if V (t) ≤ C1 then

ν‖a‖fL1
t Bs+2

p1,p2

.
(
1 + νt

)(
‖a0‖Bs

p1,p2
+ ‖f‖L1

t Bs
p1,p2

)
.

Since this local result depends only on the size of the Lipschitz norm of the
velocity, we can use an iterative argument leading to the required estimate.

5. Proof of Theorem 1

This section is devoted to the proof of Theorem 1 which is divided in two
parts. In the first one we show, thanks to Theorem 2, the uniform persis-
tence of Besov regularity to Navier-Stokes solution with respect to vanishing
viscosity. The second part is dedicated to the proof of the inviscid limit.

5.1. Uniform persistence of the regularity. The key for establishing
the persistence result is a uniform Lipschitz bound on the velocity. The
following proposition gives more, namely

Proposition 2. Let v0 ∈ B
2
p
+1

p,1 , with p ∈]2,+∞], then Navier-Stokes solu-
tion vν corresponding to the initial data v0 satisfies,

(5.1) ‖vν(t)‖B1
∞,1

≤ C0e
C0t,

where C0 depends on the initial data but not on the viscosity.
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Proof. Since B
2
p
+1

p,1 ↪→ B1
∞,1 it is sufficient to prove the above estimate

for p = +∞. Throughout this proof we omit the index ν for brevity.
By using the dyadic decomposition and Bernstein inequality one obtains

‖∇v(t)‖L∞ . ‖∆−1v(t)‖L∞ +
∑
q≥0

‖∆q∇v(t)‖L∞ .

From (1.1) we see that for high frequencies q ∈ N,

‖∆q∇v(t)‖L∞ . ‖∆qω(t)‖L∞ .

Hence, it holds that

‖∇v(t)‖L∞ . ‖∆−1v(t)‖L∞ + ‖ω(t)‖B0
∞,1

.

Now applying Theorem 2, we get

(5.2) ‖∇v(t)‖L∞ . ‖v(t)‖L∞ + ‖ω0‖B0
∞,1

(
1 +

∫ t

0
‖∇v(τ)‖L∞dτ

)
.

Our next step is to prove that the velocity is bounded for every time. For
this purpose we reproduce the idea of [14] used for Euler system. Let N be
a positive integer which will be fixed later and define

∆−N := χ(2N−1D) and v−N := ∆−Nv.

It is obvious that v−N satisfies the equation

∂tv−N − ν∆v−N = −∆−NP(v · ∇v),

where P stands for Leray projector over divergence free vector field.
Hence we obtain in view of parabolic maximum principle and the zero di-
vergence condition

‖v−N (t)‖L∞ ≤ ‖v−N (0)‖L∞ +
∫ t

0
‖∆−NPdiv(v ⊗ v)(τ)‖L∞dτ.

To estimate the integral member we use the embedding Ḃ0
∞,1 ↪→ L∞ and the

fact that the projector P maps continuously Besov space Ḃ0
∞,1 into itself,

‖∆−NP(v · ∇v)(τ)‖L∞ . ‖∆−Ndiv(v ⊗ v)(τ)‖Ḃ0
∞,1

. 2−N‖v(τ)‖2
L∞ .

From the definition of the vorticity and Bernstein inequality we obtain

‖v(t)‖L∞ ≤ ‖∆−Nv(t)‖L∞ + ‖(Id−∆−N )v(t)‖L∞

≤ ‖v−N (t)‖L∞ + ‖(Id−∆−N )∆−1∇⊥ω(t)‖L∞

≤ ‖v−N (t)‖L∞ + C2N‖ω(t)‖L∞

≤ ‖v−N (t)‖L∞ + C2N‖ω0‖L∞ .

In the last estimate we have used the maximum principle:

‖ω(τ)‖L∞ ≤ ‖ω0‖L∞ .
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Putting together the preceding estimates yields

‖v(t)‖L∞ . ‖v0‖L∞ + ‖ω0‖L∞2N + +2−N

∫ t

0
‖v(τ)‖2

L∞dτ.

By choosing N such that

22N ' 1 +

∫ t
0 ‖v(τ)‖

2
L∞dτ

‖ω0‖L∞
·,

we get

‖v(t)‖2
L∞ ≤ C‖v0‖2

L∞ + C‖ω0‖2
L∞ + ‖ω0‖L∞

∫ t

0
‖v(τ)‖2

L∞dτ.

According to Gronwall’s inequality this gives

(5.3) ‖v(t)‖L∞ ≤ C
(
‖v0‖L∞ + ‖ω0‖L∞

)
eC‖ω

0‖L∞ t.

Coming back to (5.2) we obtain

‖∇v(t)‖L∞ ≤ C0e
C0t + C‖ω0‖B0

∞,1

(
1 +

∫ t

0
‖∇v(τ)‖L∞dτ

)
,

and Gronwall’s inequality yields the required estimate. �

Let us now achieve the proof of the persistence of Besov regularity.
Applied to the viscous vorticity ων Theorem 3 gives

‖ων(t)‖
B

2
p
p,1

≤ ‖ων‖gL∞t B
2
p
p,1

≤ C‖ω0‖
B

2
p
p,1

eC
R t
0 ‖∇vν(τ)‖L∞dτ

≤ C0e
exp C0t.(5.4)

In the last line we have used the lipschitz bound (5.1). Finally, to estimate
the velocity we write

‖vν(t)‖
B

2
p +1

p,1

≤ ‖∆−1vν(t)‖Lp + C‖ων(t)‖
B

2
p
p,1

≤ C‖vν(t)‖Lp + C0e
exp C0t.

We are reduced to estimate the Lp norm of the viscous velocity. We have to
consider only the case of p ∈]2,+∞[ (remember (5.3) for p = +∞).The Lp

energy estimate of Navier-Stokes system

‖vν(t)‖Lp ≤ ‖v0
ν‖Lp +

∫ t

0
‖P(vν · ∇vν)(τ)‖Lpdτ.

From the boundedness of Riesz transform we infer

‖P(vν · ∇vν)(t)‖Lp ≤ ‖P(vν · ∇vν)(t)‖Ḃ0
p,1

. ‖vν · ∇vν(t)‖Ḃ0
p,1
.

In view of Lemma 7 of the appendix and (5.1)

‖vν · ∇vν(t)‖Ḃ0
p,1

. ‖vν(t)‖Lp‖vν(t)‖B1
∞,1

. C0e
C0t‖vν(t)‖Lp .

Combining both last estimates and using Gronwall’s inequality we get

‖vν(t)‖Lp ≤ C0e
exp C0t.
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Therefore, we obtain for all t ∈ R+,

‖vν(t)‖
B

2
p +1

p,1

≤ C0e
exp C0t.

It is easy to check that the same proof works for the Eulerian velocity and
we have

(5.5) ‖v(t)‖B1
∞,1

≤ C0e
C0t.

5.2. Convergence rate. In this subsection we give the proof of the inviscid
limit. The following proposition gives more than Theorem 1, namely we can
replace Lebesgue space Lp by the subspace B0

p,1.

Proposition 3. Let p ∈]2,+∞] and v0 be a divergence free vector field be-

longing to B
2
p
+1

p,1 . Then Navier-Stokes solution and Euler one satisfy, globally
in time,

‖(vν − v)(t)‖B0
p,1
≤ C0e

exp C0t(νt)
1
2
+ 1

p (1 + νt)
1
2
− 1

p .

Proof. We set
wν = vν − v and π̄ν = πν − π.

Obviously (wν , π̄ν) is solution of

(ÑSν)
{
∂twν + vν · ∇wν = ν∆vν − wν · ∇v −∇π̄ν

wν(0) = 0.

According to Theorem 2 we have
(5.6)

‖wν(t)‖B0
p,1

. (1 + Vν(t))
∫ t

0

(
ν‖∆vν‖B0

p,1
+ ‖wν · ∇v‖B0

p,1
+ ‖∇π̄ν‖B0

p,1

)
dτ.

To estimate the first integral term of the right-hand side we write from (1.1)
and (2.2)

‖∆vν‖L1
t B0

p,1
≤ C‖ων‖fL1

t B1
p,1

≤ C‖ων‖
1
2
+ 1

pfL1
t B

2
p
p,∞

‖ων‖
1
2
− 1

pfL1
t B

2+ 2
p

p,∞

.

Applying Hölder inequality and estimate (5.4) yields

‖ων‖
1
2
+ 1

pfL1
t B

2
p
p,∞

≤ t
1
2
+ 1

p ‖ων‖
1
2
+ 1

pgL∞t B
2
p
p,1

≤ C0t
1
2
+ 1

p eexp C0t.

On the other hand Theorem 3 gives

‖ων‖fL1
t B

2+ 2
p

p,∞
≤ ν−1eCVν(t)(1 + νt)‖ω0‖

B
2
p
p,1

≤ C0e
exp C0tν−1(1 + νt).

Thus, we infer

(5.7) ν‖∆vν‖L1
t B0

p,1
≤ C0e

exp C0t(νt)
1
2
+ 1

p (1 + νt)
1
2
− 1

p .



14 T. HMIDI AND S. KERAANI

To bound the second term of the right-hand side of (5.6), we use Lemma 7.

‖wν · ∇v(t)‖B0
p,1
≤ C‖wν(t)‖B0

p,1
‖v(t)‖B1

∞,1
.

So the inequality (5.5) yields

(5.8) ‖wν · ∇v(t)‖B0
p,1
≤ C0e

C0t‖wν(t)‖B0
p,1
.

For the pressure we use the following identity based on div v = div wν = 0

div
(
v · ∇wν

)
= div

(
wν · ∇v

)
.

Applying the divergence operator to the system (̃NSν), we find that

∆π̄ν = div(wν · ∇vν + v · ∇wν).

Thus, we infer
−∆π̄ν = div

(
wν · ∇(vν + v)

)
.

This yields in view of the embedding Ḃ0
p,1 ↪→ B0

p,1 and the boundedness of
Riesz transform

‖∇π̄ν‖B0
p,1
≤ C‖wν · ∇(vν + v)‖Ḃ0

p,1
.

Now we use successively Lemma 7 and estimates (5.1) and (5.5)

‖∇π̄ν‖B0
p,1

≤ C‖wν‖B0
p,1
‖vν + v‖B1

∞,1

≤ C0e
C0t‖wν‖B0

p,1
.(5.9)

Plugging (5.9), (5.8) and (5.7) into (5.6), yield

‖wν(t)‖B0
p,1
≤ C0e

exp C0t(νt)
1
2
+ 1

p (1 + νt)
1
2
− 1

p + C0e
C0t

∫ t

0
‖wν(τ)‖B0

p,1
dτ.

To complete the proof we use Gronwall’s inequality. �

Appendix A

The aim of this section is to prove the following

Lemma 7. Let v be a divergence free vector field belonging to B0
p,1 and f a

function of the space B1
∞,1. Then the following estimate occurs

‖v · ∇f‖B0
p,1
≤ C‖v‖B0

p,1
‖f‖B1

∞,1
.

We have, in addition, the following precise result

‖v · ∇f‖Ḃ0
p,1
≤ C‖v‖B0

p,1
‖f‖B1

∞,1
.

Besides if f = v then we have

‖v · ∇v‖Ḃ0
p,1
≤ C‖v‖Lp‖v‖B1

∞,1
.
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Proof. We shall now give the proof of Lemma 7 which is based on Bony’s
decomposition. We write

v · ∇f = Tv · ∇f + T∇f · v +R(v,∇f).

By definition of the paraproduct, we have

‖Tv · ∇f‖B0
p,1

≤ C
∑
q∈N

‖Sq−1v‖Lp‖∆q∇f‖L∞

≤ C‖v‖B0
p,1

∑
q∈N

2q‖∆qf‖L∞

≤ C‖v‖B0
p,1
‖f‖B1

∞,1
.

By the same way, we show that

‖T∇f · v‖B0
p,1
≤ C‖v‖B0

p,1
‖f‖B1

∞,1
.

To estimate the last term, we use the incompressibility hypothesis

R(v,∇f) = div R(v, f).

So we have by definition of the remainder R

‖divR(v, f)‖B0
p,1
≤

∑
q≥−1

∥∥div∆q

∑
j≥−1i∈{0,1}

∆jv∆j∓if
∥∥

Lp .

Using the fact that the Fourier transform of ∆jv∆j∓if is supported in a
ball of radius 2j , so we get, in view of Bernstein lemma

‖divR(v, f)‖B0
p,1

≤ C
∑

q≥−1

2q
∑

j≥q−M ;i∈{0,1}

‖∆jv‖Lp‖∆j∓if‖L∞

≤ C‖f‖B1
∞,1

∑
q≥−1

2q
∑

j≥q−M

2−j‖∆jv‖Lp .

Since `1 is an algebra space under the convolution law then the wanted result
is proved.
Let us now prove the second estimate. We separate low an high frequencies.
For low frequencies we use Bernstein inequality however for high frequencies
we make appeal to the first result of Lemma 7:

‖v · ∇f‖Ḃ0
p,1

≤
∑

j≤−1

‖∆̇j

(
v · ∇f

)
‖Lp + C‖v · ∇f‖B0

p,1

≤ C‖v‖Lp‖f‖L∞ + C‖v‖B0
p,1
‖f‖B1

∞,1

≤ C‖v‖B0
p,1
‖f‖B1

∞,1
.

The reader can verify that the preceding arguments can be adapted without
difficulties to show the last estimate of Lemma 7. �
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