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Abstract

The amyloid hypothesis has driven drug development strategies for Alzheimer's disease for over 20 years. We

review why accumulation of amyloid-beta (Aβ) oligomers is generally considered causal for synaptic loss and

neurodegeneration in AD. We elaborate on and update arguments for and against the amyloid hypothesis with

new data and interpretations, and consider why the amyloid hypothesis may be failing therapeutically. We note

several unresolved issues in the field including the presence of Aβ deposition in cognitively normal individuals, the

weak correlation between plaque load and cognition, questions regarding the biochemical nature, presence and

role of Aβ oligomeric assemblies in vivo, the bias of pre-clinical AD models toward the amyloid hypothesis and the

poorly explained pathological heterogeneity and comorbidities associated with AD. We also illustrate how

extensive data cited in support of the amyloid hypothesis, including genetic links to disease, can be interpreted

independently of a role for Aβ in AD. We conclude it is essential to expand our view of pathogenesis beyond Aβ

and tau pathology and suggest several future directions for AD research, which we argue will be critical to

understanding AD pathogenesis.
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Introduction

“Whenever a theory appears to you as the only

possible one, take this as a sign that you have neither

understood the theory nor the problem which it was

intended to solve.”

– Karl Popper

A hypothesis that remains unproven yet catches the

collective imagination can become, with the passage of

time, so seductive that it dominates peer review opinion

and arrests the development of alternative ideas. Such is

the case for the amyloid hypothesis of AD. From the

mid-1980s [1,2] this hypothesis began to give focus and

excitement to what had been an unstructured research

field with dozens of complex and unrelated theories [3],

none of which dominated. It became a simple and effect-

ive way to describe AD pathogenesis to funding bodies,

pharmacological companies, and the public at large.

The hypothesis arose through the input of researchers

with a history of observing prion particles [4,5] seeing par-

allels between these entities in brain sections in Creutzfeld-

Jacob disease and the plaques in AD brain, described years

earlier [6]. It warrants recalling that a commentary [7]

notes Alzheimer devoting only two sentences of his 1907

text to these plaques, and there being no reason to sup-

pose that he or indeed anyone until the early 1980s, saw

them as causal.

When Prusiner and Master's interest in these plaques

began, others showed they consisted of a novel amyloid

fibril [1,8] containing highly aggregating small polypep-

tides about 40 amino acids long with a molecular mass of

4kDa, now known as amyloid-beta (Aβ) [9]. The dense

fibre-like tangles Alzheimer noted, now termed neurofi-

brilliary tangles (NFTs), contain bundles of paired helical

filaments of the microtubule associated protein tau [10].

The 1980s ended with a report that the Aβ peptide derived
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from the amyloid precursor protein (APP) was neurotoxic

[11], transforming a histological parallel into the amyloid

theory of disease pathogenesis.

Hence the basis of AD became, in essence, Aβ killing

neurons, and later also Aβ killing synapses, despite the

syndrome clearly being more subtle and complex and

the fact that histopathology lesions have a poor record

of being causal in disease pathogenesis. Although the

amyloid hypothesis has shifted its focus from plaque to

soluble forms of Aβ, it largely remains defined by the

central tenet that accumulation of amyloid, in a variety

of forms, triggers a cascade that harms neurons and

synapses (Figure 1).

The amyloid hypothesis has become difficult to chal-

lenge because it is so often the lens through which peer

reviewers, granting bodies and pharmaceutical com-

panies view, judge and support AD research. Thus

new non-amyloid data tends to be couched in terms

that place it within the amyloid hypothesis and many

authors tacitly ignore valid, but quite different,

interpretations.

We show here however that the central conclusion of

the amyloid hypothesis, that Aβ is the cause of AD is,

at very least, premature. Aβ is one product of amyloid

precursor protein (APP) processing. Current data does

support a conclusion that aberrant expression and pro-

cessing of APP may sometimes cause human familial

AD (FAD), also called early-onset AD (EOAD), and

that Aβ, in excess, can be toxic. However, data does

not support a conclusion that aberrant Aβ expression

is the cause of sporadic AD, also known as late-onset

AD (LOAD). In fact as we show data suggests that ab-

errant Aβ expression may not be the primary cause of

all EOAD. Instead, it may more often play a role, per-

haps secondary, as part of more complex processes in

the CNS. We suggest the field has matured sufficiently,

with a range of alternative interpretations available,

that a strong prospect for a change in direction exists

that could provide a major advance in disease under-

standing and clinical interventions.

The Amyloid Hypothesis
The amyloid hypothesis postulates that amyloid-beta

(Aβ), in a variety of forms, triggers a cascade harming

synapses and ultimately neurons, producing the patho-

logical presentations of Aβ plaques, tau tangles, synapse

loss and neurodegeneration, leading to dementia. Aβ

accumulation is thought to initiate AD pathology by

destroying synapses, causing formation of NFTs, and

subsequently inducing neuron loss (Figure 1). Although

some changes to the hypothesis have occurred since

the original publications, notably a shift toward defining

soluble Aβ oligomers as the toxic agent, rather than

plaques, the theory and the way data is interpreted have

remained largely the same, i.e. Aβ accumulation as olig-

omers or plaques triggers AD. A large, growing litera-

ture espouses the amyloid hypothesis. In this section we

summarise these data and how the dominance of this

hypothesis arose.

Putative evidence in support of the hypothesis

Using the amino acid sequence corresponding to Aβ [9],

the major constituent of amyloid plaques in AD, a precur-

sor gene cDNA to Aβ (the amyloid precursor protein, APP)

was sequenced and mapped to chromosome 21 [12]. This

finding had compelling implications in view of the observa-

tion many individuals with trisomy 21 (Down’s Syndrome)

Figure 1 The Amyloid Hypothesis. The amyloid hypothesis

postulates that Aβ aggregation triggers a cascade of events

ultimately resulting in AD. Familial mutations in PSEN1, PSEN2 or

APP are associated with early-onset AD (EOAD). These genetic risk

factors are postulated to impact the cleavage of Aβ from APP,

leading to oligomerisation and eventual Aβ plaque formation.

Individuals with trisomy 21 (Down’s Syndrome), and therefore a

triple copy of APP, suffer EOAD. The strongest genetic risk factor for

late-onset AD (LOAD) is the presence of at least one APOE4 allele. It

is unclear as to what triggers Aβ accumulation in LOAD, though it

is suggested that there may be a number of contributing factors

such as reduced Aβ clearance due to APOE genotype. Aβ

oligomerisation is proposed to trigger a cascade involving the

formation of neurofibrilliary tangles (NFTs) composed of

hyperphosphorylated tau, synapse loss, neuron death and

widespread neuroinflammation, particularly in brain regions

involved in learning and memory, such as the hippocampus. As the

amyloid burden increases, the ongoing catastrophic loss of

synapses and neurons is thought to lead to progressive dementia.
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reach the neuropathogical criteria for AD by age 40 [13].

Such Down’s individuals would have a triple copy of APP,

and therefore it was reasoned, excess Aβ production. Since

Aβ is the main component of plaques seen in AD, it is pre-

sumed in turn that excess Aβ is the cause of AD in Down’s

syndrome. Surprisingly, the fact that not all people with

Down’s syndrome develop AD, despite plaques and in-

creased Aβ expression, did not receive significant attention

[13]. This observation may have quelled consideration of

Aβ as the sole risk factor for AD.

Next, studies of familial EOAD uncovered genetic

links between the APP gene and AD [14]. APP is proc-

essed into smaller peptide fragments, one of which is

Aβ, via cleavage by α-, β- and γ-secretases (Figure 2).

Importantly, EOAD-linked point mutations were identi-

fied not only in APP itself but also in presenilin-1 (PSEN1)

and presenilin-2 (PSEN2) [15,16] the key catalytic subunits

of γ-secretase, known to cleave APP (Figure 2). No known

AD-causing mutations are present in the gene encoding

the β-secretase gene, beta-site APP cleaving enzyme 1

(BACE1).

The genetic mutations are reasoned to cause AD through

aberrant processing of APP, leading to either increased

levels of Aβ or an increased production of the 42 and

43 amino acid forms of Aβ (Aβ42/Aβ43) over the 40

amino acid form of Aβ (Aβ40). It is argued this triggers

Figure 2 Cleavage of APP and Physiological roles of APP and APP Fragments. Amyloid precursor protein (APP) can be cleaved via two

mutually exclusive pathways. Importantly, various studies have suggested that these various fragments of APP processing, including Aβ, can have

a number of possible roles in normal brain physiology, shown in the boxes. In the so-called amyloidogenic pathway APP is cleaved by β-secretase

(beta-site APP cleaving enzyme 1 (BACE1)) and γ-secretase enzymes (PSEN1 is the catalytic core of the multiprotein γ-secretase complex). The initial

β-secretase cleavage produces a large soluble extracellular domain, secreted amyloid precursor protein-β (sAPPβ). The remaining membrane bound

C99 stud is then cleaved by multiple sequential γ-secretase cleavages. These begin near the inner membrane at a γ-secretase cleavage site epsilion

(the ε-site) to produce the APP intracellular domain (AICD), and then subsequent sequential γ-secretase cleavages trim the remaining membrane

bound component to produce different length Aβ peptides including Aβ43, Aβ42, Aβ40 and Aβ38 [17]. In the so-called non-amyloidogenic pathway

APP is processed consecutively by α- and γ-secretases to produce secreted amyloid precursor protein α (sAPPα), p3 (which is in effect Aβ17-40/42) and

AICD. The major α-secretase enzyme is A Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). Cleavage via amyloidogenic and

non-amyloidogenic pathways depends on the cellular localisation of cleavage enzymes, and of full-length APP, which are expressed and trafficked

in specific sub-cellular locations.
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aggregation of Aβ [17]. The discovery that transgenic

mice expressing familial human APP and PSEN muta-

tions recapitulate many, but not all, of the features of

the human disease [18] further established the link

between aberrant Aβ production and the AD pheno-

type. This latter discovery, perhaps more than any

other, tied the field to the amyloid hypothesis for the

next decades.

The conclusions of the aforementioned studies were

grounded in an unquestioned assumption that Aβ, rather

than altered expression of APP or its products, causes AD

pathology. The assumption arose because Aβ was the key

component of plaques and because Aβ caused neurotox-

icity in healthy cells [19]. Further, hyperphosphorylation of

tau, thought to be downstream of Aβ, was seen as a crit-

ical mediator of the neurotoxic effects of Aβ [20] placing

Aβ at the top of the pathological chain of AD events. A

cycle thus began to develop early whereby studies were

designed and then interpreted on the basis of the hy-

pothesis that Aβ caused AD pathology, rather than be-

ing critically evaluated in the context of a range of

possible interpretations.

Further, given the impact discoveries of mutations in

APP, PSEN1 and PSEN2 have had in driving the amyloid

theory, it is notable that, while these mutations account

for the majority of EOAD cases, EOAD only comprises

less than 5% of all AD cases [21]. In fact, the majority of

AD cases are sporadic, idiopathic LOAD. It seems in

retrospect presumptive to have extrapolated a role for

Aβ in all AD based on the genetic evidence suggesting a

role for altered APP processing in EOAD.

In general, the risk genes identified for LOAD are subtle,

with no direct genetic association to the APP gene or its

processing enzymes. The most well-known genetic link

to LOAD is the apolipoprotein genotype E4 (APOE4)

[22]. Recently another strong risk gene for LOAD was

identified, a variant of the triggering receptor expressed

on myeloid cells 2 gene (TREM2), implicating excessive

innate immunity in Alzheimer’s pathogenesis [23]. Al-

though these two mutations have been the strongest

to date, many more have been associated with LOAD.

Most of these genetic risk factors have been interpreted

through the lens of the amyloid hypothesis, mainly by

considering their modulatory effects on Aβ, though

other interpretations are equally valid, an issue we dis-

cuss further in later sections.

The crucial role of synapse loss in AD

Synapse loss leads to a loss of dendritic mass [24] and,

crucially, may precede, and indeed drive, neuron loss in

a range of conditions [25]. Deficits in synaptic plasticity

are measurable at just one month of age in mouse

models of AD [26] and synapse loss is evident during

early stages of the human disease [27]. Elegant research

has revealed the number of neocortical synapses to be a

better correlate of cognition than both Aβ plaques and

NFTs [28] and a greater loss of synapses than neurons is

evident in human AD brains [29]. These observations

place synapses at the forefront of understanding AD

pathogenesis. It has therefore been suggested that AD is

primarily a synaptic disorder [30,31]. In a mouse model

of AD, synapse loss arises from over-elimination of

synapses, rather than a failure of synapse formation [32].

Putative evidence that Aβ causes synapse dysfunction and

loss in vitro and ex vivo

The obvious caveat of in vitro studies is that they may

not represent actual processes in the brain. Nevertheless,

much work focuses on the impact of Aβ oligomers on

synapses, most of it in in vitro or ex vivo culture

systems.

Key in vitro findings are summarised as follows; Aβ

oligomers bind exclusively and rapidly to synaptic termi-

nals [33], altering both pre- and postsynaptic structures

in cultured neurons and affecting excitatory, but not in-

hibitory nerve terminals [34]. The effects of Aβ on syn-

apse formation, neurite outgrowth and arborisation is

concentration-dependent [35] and rapidly decreases ex-

pression of memory related receptors such as NMDA

and EphB2 [33].

In ex vivo organotypic slices; physiological concentra-

tions of Aβ dimers and trimers, but arguably not mono-

mers, induce loss of hippocampal synapses, which

requires the activation of NMDARs [36]. Sub-lethal levels

of Aβ decrease spine density, increase spine length and

subdue spine motility [37]. Selective expression of APP in

pre- or postsynaptic neurons, resulting in either dendritic

or axonal Aβ overproduction, reduces spine density and

plasticity at nearby dendrites [38]. Some molecular mech-

anisms of Aβ-induced synaptic dysfunction and spine

shrinkage in these in vitro and ex vivo paradigms have

been suggested [39].

Putative evidence that Aβ can lead directly to synapse

dysfunction in vivo

Despite several technical limitations, arguably the most dir-

ect evidence supporting the role of Aβ in synapse destruc-

tion in AD is that Aβ oligomers extracted from human AD

brain inhibit long-term potentiation (LTP), enhance long-

term depression (LTD), reduce dendritic spine density

and disrupt memory and learning in vivo when directly

injected into a mouse hippocampus [40]. Hippocampal

injections of soluble Aβ42 oligomers in vivo, in awake

mice, stimulate AD pathology including neuronal loss,

although this requires a regimen involving multiple in-

jections of highly concentrated Aβ [41]. Finally, trans-

genic mouse lines producing high levels of soluble Aβ
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show age- and genotype dependent reductions in spine

density [42].

Is Aβ the central cause of synapse destruction in AD?

The aforementioned studies of Aβ at synapses are difficult

to interpret. Aβ plaque deposition can occur without

associated synapse loss [43], and conversely synapse and

dendritic tree loss can occur in areas without Aβ depos-

ition, although synapse loss does usually appear exacer-

bated near Aβ plaques [44]. Thus it would be prudent to

treat the suggestion that Aβ plaques have a primary

causative role in synapse destruction in human LOAD

with caution.

As for Aβ oligomers however, while many reports

identifying Aβ oligomers as triggers of synaptic degener-

ation support the amyloid hypothesis, technical restric-

tions limit interpretations of these results, and their

relevance to the human disease is unclear, as we discuss

below. For example, are pathological effects in mice

resulting from injection or over-expression of Aβ rele-

vant to the human condition?

Furthermore, synaptic gene dysregulation in early

AD can occur independently of alterations in the ex-

pression of APP and regulators of APP metabolism

[45]. Finally, genetic studies suggesting a role for APP

and its processing in familial EOAD may have been in-

correctly extrapolated to LOAD. Thus, as with plaques,

it is conceivable that Aβ oligomers play a role, but it

would also be prudent to treat the suggestion Aβ oligo-

mers play a primary or sole causative role in synapse

destruction with a degree of caution.

Later we discuss our view that understanding AD

requires first understanding the complex biology of

the multicellular synapses [46], the role of glia in

synapse removal, and the means by which these cells

can be driven towards excess synapse removal and/

or destruction.

The Amyloid Hypothesis and Recent Drug
Developments
Since the literature on AD has been largely Aβ-centric,

myriad studies provide much reassurance that the amyloid

hypothesis is on solid ground. As a result, the hypothesis

has maintained supremacy in driving drug development

efforts.

Much faith has been placed in AD mouse models,

built on and embedded in the amyloid hypothesis, as

the testing ground for new therapies. Beginning with a

1999 study by Schenk and colleagues [47], many studies

show that amyloid removal relieves AD symptoms in

mouse models of the disease. Since these mice produce

human amyloid, both active and passive immunization

strategies aimed at removing the putative causal Aβ, not

surprisingly, reduce fibrillar amyloid and Aβ plaque

deposition, result in fewer neuritic lesions, and protect

mice from cognitive decline [48]. Furthermore, inhibi-

tors of the enzymes that cleave Aβ from its membrane

bound precursor have been therapeutically investigated

both in mice and human studies (Table 1). Such posi-

tive outcomes rapidly led to Phase 1, 2 and 3 human

trials.

The amyloid hypothesis has so far failed clinically

The Food and Drug Administration (FDA) has over the

years approved five drugs for AD; Donepzil, Galantamine,

Memantine, Rivastigimine and Tacrine. It is notable that

each of these are unrelated to the amyloid hypothesis and

were not tested in transgenic AD mice before being used

in the clinic [66].

Meanwhile, many anti-amyloid treatments that were

tested in mice have completed, or are undergoing, exten-

sive clinical trials in humans. We summarise the most

high profile of these drugs in Table 1. They are divided

into those directly targeting Aβ by active and passive

immunization, those targeting inhibition or modulation

of the γ-secretase APP cleaving enzyme (Figure 2), pre-

senilin, and those targeting the APP β-secretase cleavage

enzyme BACE1.

So far, anti-Aβ treatments have broadly failed to

meet their primary clinical endpoints and some major

phase 3 trials were halted early. None of the tested

treatments have produced a discernible functional re-

covery, or altered the course of disease. In fact alarm-

ingly some, specifically inhibitors of γ-secretase, lead

to an increased decline in cognition (Table 1). With

each successive failure the validity and foundations of

the amyloid hypothesis, on which these drugs have

been based, is called increasingly into question. Haste

to run Phase 3 trials without Phase 2 success, and similar

criticisms, have recently been made of this commercially-

driven enterprise [67].

Why is the hypothesis failing clinically? Some suggest

the disease is not being targeted early enough [68], not-

ing that in animal models anti-Aβ approaches clear

hyperphosphorylated tau aggregates when given to young,

but not old, animals [69] and, also, detailed analysis of re-

cent trials have shown hints of treatment benefit in indi-

viduals treated early in disease [57].

Planned human intervention studies aim to address

this issue in two ways. The DIAN [70] and the API

Colombia study [71] use anti-Aβ antibody treatments

in presymptomatic individuals at risk for familial

EOAD. If these trials succeed, the results will provide

evidence for a degree of Aβ involvement in EOAD.

They will not necessarily prove Aβ causality in all

EOAD, nor will they provide information on the role of

Aβ in LOAD.
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The Anti-Aβ asymptomatic Alzheimer’s disease trial

[72] meanwhile tests the effect of starting anti-Aβ treat-

ment at the pre-symptomatic stage, in individuals pre-

dicted to develop LOAD on the basis of brain amyloid

accumulation as measured by positron emission tomog-

raphy (PET) imaging. This will effectively test the hypoth-

esis that anti-Aβ treatments provide cognitive benefits

when given earlier in sporadic AD.

Another prominent suggested reason for clinical failures

of anti-Aβ drugs in particular are that the agents used ini-

tially were not properly validated and were flawed [68]. A

recent study has shown the monoclonal anti-Aβ anti-

bodies, solanezumab and crenezumab, fail to target hu-

man Aβ as effectively as they target over-expressed

human Aβ in mouse models [73]. The possibility was also

countenanced that only amyloid plaques, potentially func-

tionally inert [74], rather than soluble Aβ oligomers were

targeted in early trials. Furthermore monotherapies may

not be capable of effectively reducing Aβ plaque load. A

double pronged approach to reduce Aβ by both active im-

munisation and inhibition of β-secretase has effectively

cleared plaques in mice [75]. However, as reviewed re-

cently [67], therapeutic approaches targeting plaque and

approaches targeting soluble Aβ have both now been

tested in humans, with equally negative outcomes.

Whilst the latter conclusions suggest that anti-Aβ

treatments may be failing because they poorly target Aβ

in human tissue, the conclusion does not disprove an al-

ternative view for the failure of clinical trials, namely

that Aβ is not responsible for all AD. Indeed for some

Table 1 High profile clinical trials based on the amyloid hypothesis

Mechanism of
action

Drug name Clinical
phase

Key results from each trial Current status
(August 2014)

Reference

Active
immunisation
with Aβ

AN1792 2 Plaque Cleared. NFT reduced in neuronal processes, but not
cell bodies. Very few antibody responders (25/239). Reports of
encephalitis.

Discontinued [49,50]

CAD106 2 Favourable safety profile. Prolonged antibody titre in responders. Ongoing [51]

ACC001 2 Co-administration of adjuvant required for strong antibody response.
Generally safe and well-tolerated, no adverse related event.

Discontinued [52]

AD02 2 Favourable safety and tolerability profile. Did not reach primary or
secondary outcome measures in phase 2.

Ongoing [53]

Passive
immunization
against Aβ

Solanezumab 3 Worsening cognition compared to placebo, multiple adverse events. Terminated [54]

Bapinezmab 3 Engaged target. Reduction in cerebrospinal fluid phospho-tau in APOE4
carriers. Decreased rate of amyloid accumulation in APOE4 carriers. No
improvement in clinical outcomes in carrier or non-carriers of APOE4.
Negative amyloid scans in 36% of non-carriers.

Discontinued [55]

Gantenerumab 2/3 Safe and well-tolerated at phase 1. Focal inflammation in areas with
amyloid reduction a concern. Amyloid reductions compared to
placebo.

Recruiting for
Phase 3 DIAN
trial

[56]

Crenezumab 2 Did not meet co-primary endpoints. Trend of improved cognition in
people with mild disease.

Ongoing [57]

Ponezumab 2 Safe and well-tolerated at phase 1. Plasma Aβ40 increased at phase 2.
No effect on primary endpoints in phase 2.

Recruiting for
further Phase 2
trials

[58]

γ-Secretase
inhibitors

Avagacestat 2 Gastrointestinal and dermatological side effects at Phase 1. Also
dose-dependent pharmacodynamic effects on CSF biomarkers in
some patients. Trend towards worsening cognition at higher doses
compared to placebo. Amyloid related imaging abnormalities.

Discontinued [59]

Semagacestat 3 Dose-dependent reduction in Aβ synthesis at Phase 1. Reduced plasma
Aβ at Phase 2, but no differences in cognition. No improvement in
cognition and worsening cognition at higher doses compared to controls at
Phase 3.

Discontinued [60]

γ-Secretase
modulators

CHF5074 2 Anti-inflammatory at Phase 2. Trend towards improved function in APOE4
carriers.

Ongoing [61]

EVP-0962 2 Does not inhibit cleavage of γ-secretase substrates other than APP. Ongoing [62]

Tarenflurbil 3 Small functional benefit at higher doses in mild AD but no cognitive
benefit at Phase 2. No changes in CSF Aβ42. Failed to meet primary
and secondary endpoints at phase 3.

Discontinued [63]

β-Secretase
modulators

MK-8931 3 Reduced CSF Aβ compared to controls. Safe and tolerable at Phase 2. Recruiting for
Phase 3

[64]

CTS-21166 1 Dose dependent reduction in plasma Aβ. Completed [65]
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the failure of clinical trials was by no means a surprise

[76] and the validation that bapineuzumab does effect-

ively bind Aβ in human tissue [73], but did not provide

recovery in clinical trials, only provides support for this

view. In the following sections we elaborate on the notion

the central focus on Aβ is, on the available evidence,

unwarranted.

Evidence Supporting the Amyloid Hypothesis is
Equivocal
The Aβ deposition paradox

“How wonderful that we have met with a paradox.

Now we have some hope of making progress.”

– Niels Bohr

Aβ deposition occurs in cognitively normal individuals

Up to 40% of non-demented elderly can reach some

level of neuropathological criteria for AD [77]. A positive

correlation also exists between Aβ deposits and in-

creases in phosphorylated tau, the other major cerebral

histological inclusion in AD protein, in cognitively nor-

mal patients [78]. In one study only 17% of cognitively

normal elderly patients had few or no degenerative brain

changes [79], and in neuroimaging amyloid-PET studies

10-30% of cognitively normal individuals have amyloid-

positive scans [80]. Around 50% of people over the age

of 85 have AD [81], rising to 77.5% of centenarians who

meet criteria for mild confusion or severe dementia

based on cognitive testing [82]. This could be inter-

preted to suggest that amyloid deposition is predomin-

antly associated with normal aging and is not a disease

per se.

Not only does this paradox create difficulty for diag-

nosing disease by Aβ plaque deposition, it remains awk-

ward for the amyloid hypothesis. It is suggested that

individuals with high plaque burden, but are cognitively

normal, are in a pre-clinical AD stage [83], since the

progression of mild-cognitive impairment to AD is as-

sociated with the Aβ deposits [84]. However recent

in vivo imaging techniques illustrate that some non-

demented patients can have plaque burdens equivalent

to those seen in demented patients [85], and amyloid

deposition commonly plateaus, despite declining cogni-

tion [86]. In contrast, other markers of advancing AD

pathogenesis such as synaptic loss, NFTs, and microglial

activation correlate with the course of disease [87].

Conversely, neurodegeneration can appear independ-

ently of plaque deposition [88]. Notably too, individuals

with Trisomy 21 (Down’s syndrome), who have a triple

copy of APP universally have elevated Aβ and diffuse

non-fibrillar plaques that begin developing as early as 8

years of age, yet they do not necessarily develop demen-

tia by their 70s [13]. Thus, the link between Aβ deposits

and causality remains uncertain.

In sum, the distribution of amyloid deposits in the brain

does not correlate well with neuropathology, loss of neural

function from specific brain areas, or cognitive impair-

ment. A conclusion that plaque is not the cause of LOAD

provides one possible explanation for Aβ vaccination trials

not improving patient outcome, even when plaque was

removed.

Why are plaques present in cognitively normal individuals?

Several valid interpretations of AD data could equally

explain the Aβ deposition paradox:

1. The type of plaque is important for cognitive

decline. Plaques can be either diffuse, fibrillar or

dense cored, and fibrillar amyloid plaques may

represent the toxic plaque in the AD brain [89].

Some suggest a rise in fibrillar plaque load is

correlated to dementia [90], but both diffuse and

fibrillar plaques exist in cognitively normal people

[91] and in any event plaques are questioned as a

cause of cognitive deficits [92].

2. Plaques may be non-toxic, but could become toxic

when bound to metal ions [93].

3. Some individuals may have a ‘cognitive reserve’, a

hypothetical concept described as accumulating

over a lifespan, allowing them to cope with more

amyloid [94].

4. Amyloid fibrils may be biologically inert [74] casting

doubt over the role of these lesions in the AD brain.

5. Amyloid plaques are not the cause of AD, rather it is

soluble Aβ oligomers, a theory with limitations

(discussed in detail below).

6. Another possibility, difficult to resolve, is that

Aβ plaque load contributes in only some cases of

AD, together with the simply corollary that it

has little to do with outcome in many cases of

the diseases.

7. Plaques could be an occasional by-product of APP

cleavage with variable, if any, mechanistic

consequence.

8. Plaques may be formed for a purpose, as a

cerebral blood vessel sealant to maintain vascular

supply to the brain during aging [95]. The

implications of reduced clearance of brain Aβ

and the presence of amyloid plaques in the

cerebral vasculature are reviewed in depth

elsewhere [96].

Causal or not, why do Aβ plaques accumulate? Studies

of EOAD mutations suggest they arise from increased

cleavage of longer, more amyloidogenic forms of Aβ.
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However, this does not explain Aβ plaques in LOAD

cases lacking EOAD mutations, and in non-demented

individuals. Failed clearance of Aβ via reduced levels of

Aβ cleaving enzymes such as neprilysin [97] and insulin-

degrading enzyme [98] may allow plaque to accumulate.

Also, the risk allele APOE4 may relate to reduced Aβ

clearance from the brain [99]. Whilst used as evidence

for the amyloid hypothesis, these latter explanations for

plaque accumulation also fit with the other plausible ex-

planations for plaque accumulation outlined above.

The rise of the soluble Aβ hypothesis

Rather than considering that the unreliability of plaque

as a disease marker may reflect badly on the amyloid hy-

pothesis, its guardians embraced soluble Aβ oligomers

as a cause of AD [100]. Yet, as we elaborate in the next

section, concerns have been voiced about the oligomer

hypothesis. These include a suggestion the amyloid hy-

pothesis is “…that invisible molecules target invisible

structures” [101], with new information interpreted within

a constantly fluctuating amyloid hypothesis, rather than

being molded into alternative hypothesis which may

better explain disease causality. Regardless, the amyloid

hypothesis has shifted in recent years to suggest soluble

Aβ oligomers, rather than plaques, are responsible for

neurodegeneration.

Uncertainty surrounding the presence of Aβ oligomers

in vivo

Oligomers are seen in the brain tissue of AD mouse

models, although this does not correlate with cognitive

decline [102]. Nevertheless, in one study oligomers were

found in post-mortem human AD brains but not cogni-

tively normal controls [40]. Furthermore, oligomers ap-

peared to differentiate AD, dementia without AD pathology

and cognitively normal patients in another [103]. This evi-

dence is much cited in support of a role for oligomers in

AD, but the data fail to define clearly which manifestation

of many possible Aβ oligomers are toxic, or if Aβ oligomers

are responsible for toxicity [104].

Debate also continues over the nature of amyloid assem-

blies in vivo, with studies reporting various assemblies

showing different toxic effects (reviewed in [105]). More-

over, at present it is only possible to study Aβ oligomers

secreted from in vitro cultures, or extracted from post-

mortem brain tissue [105,106]. Accordingly, some have in-

ferred current evidence for Aβ oligomerisation may simply

be an artifactual consequence of detection techniques

such as sodium dodecyl sulphate (SDS) polyacrylamide gel

electrophoresis (PAGE) [107]. Hence it is not yet clear if

Aβ oligomers are present in the original tissue, or rather

arise due to experimental manipulations.

For example, SDS-PAGE can detect Aβ oligomers in

human brain homogenates, yet surface-enhanced laser

desorption/ionization time-of-flight MS (SELDI-TOF MS),

which requires less manipulation of samples prior to

analysis, fails to detect dimeric Aβ in human brain ho-

mogenates [107]. Both SDS-PAGE and SELDI-TOF MS

could detect Aβ monomers from human brain hom-

ogenate. As the authors note, this suggest an over-

reliance on low-resolution techniques, such as immuno-

blotting, may have distorted our understanding of Aβ

biochemistry in the in vivo human brain. Clearly, our

understanding of the true biochemistry and presence of

Aβ monomers, dimers and higher order oligomers in

the human brain in vivo is limited. Unfortunately, data

that brought the amyloid hypothesis to its current, Aβ

oligomer-based state, including the aspects concerning

synaptotoxicity, arose from material driven by such

low-resolution techniques.

Studying Aβ oligomer toxicity in vivo is methodologically

difficult

As we have discussed above, support for a role of

Aβ-oligomers in AD derives from experiments showing

that injection of oligomers into the brain causes deficits

in synaptic plasticity, learning and memory, and reduces

synaptic spine density. However, there are several meth-

odological aspects of these experiments which give cause

for concern:

1. Some studies involve injection of synthetically

derived peptides into the rodent brain, that were

first crystallised into oligomers in vitro. These

synthetically-derived peptides lack post-translation

modifications, and may be different from Aβ peptides

produced in the human brain [108].

2. In humans Aβ oligomers associate with lipoproteins,

which may prevent Aβ-related toxicity, whereas

synthetically derived Aβ are applied without these

lipoproteins [109]. Clearly, this questions their

physiological relevance.

3. Oligomerisation of Aβ may be stimulated by its

adherence to the implanted plastic pumps used to

deliver peptides [41].

4. The physiological relevance of injecting a bolus dose

of either synthetically or human derived Aβ-oligomers

into an intact rodent brain is doubtful, since this

experimental protocol scarcely mimics the

deposition of Aβ in vivo [110].

Clearly, models for testing Aβ oligomer toxicity in vivo

must be considered in the context of our limited under-

standing of Aβ oligomer biology in vivo and in the con-

text of technical limitations summarised above. Data

from these studies cannot yet be confidently interpreted

to elucidate the pathogenic mechanisms occurring in the

human brain.
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The role of Aβ oligomers in AD pathogenesis is uncertain

In sum, the doubts associated with Aβ plaques have

driven the field towards considering oligomers as the

central toxic species. However, a new set of problems

arise from a lack of unequivocal evidence that Aβ olig-

omers are toxic in vivo [104]. There is yet to be a study

convincingly establishing a relationship between spe-

cific conformations of oligomers and the initiation of

disease in vivo, clearly in part due to methodological

difficulties. Conflicting data from separate groups must

be reconciled to gain a true understanding of Aβ biol-

ogy in the normal and diseased brain. Standardising

experimental protocols for identifying Aβ species is an

important first step [111]. At this stage, a harsh inter-

pretation is that perceived Aβ toxicity may represent

experimental artefact rather than the true function of

Aβ in vivo during the disease process. More likely, the

role of Aβ, in whatever forms it is active, will surely ul-

timately need to fit into a broadened holistic view of

disease.

Key Observations in Human AD are Poorly
Understood and Poorly Modelled
AD symptoms and pathology are heterogeneous

The similarities between EOAD and LOAD pathology

are integral to the amyloid hypothesis. Yet, both LOAD

and familial EOAD are highly heterogeneous. They exhibit

(1) different ages of onset [112], (2) differing temporal

progressions [113], (3) different and varying cognitive

symptoms [114] and (4) dissimilar pathological presen-

tations [115].

Furthermore, a third of patients with EOAD show

non-memory symptoms, whilst in LOAD only 6% have

non-memory symptoms [116]. In twins environmental

influences play a part in the timing of onset and on the

levels of pathological markers at the end stage [117].

This heterogeneity has been recognised in recent AD

diagnostic guidelines from the National Institute on

Aging (NIA) and Alzheimer’s Association (AA) [118].

Important to note also is that although essentially

100% of individuals with Down’s syndrome have neuritic

fibrillar plaques and NFTs by the fifth decade, the onset

of dementia is highly variable, with only 70% becoming

demented by their 70s, but with most maintaining their

baseline cognitive abilities through their 40s and into

older ages [13].

AD brains show mixed pathological presentations

Regional aggregation of Aβ may differ in familial and

sporadic cases. Remarkably, amyloid deposition is ac-

tually greater in some regions in sporadic AD cases

than in early onset cases with presenilin mutations

[119], indicating not all cases of AD follow the same

distinct pattern of amyloid deposition as suggested in

2002 [120]. This observation alone raises doubt that

the clinical phenotype of AD is solely related to Aβ

deposition.

Furthermore, up to 50% of AD cases have mixed patholo-

gies with other neurodegenerative conditions. For instance,

α-synuclein deposition (otherwise seen in Lewy bodies), is a

common co-morbidity with amyloid deposition, with more

than 50% of AD patients also exhibiting α-synuclein accu-

mulation [121].

Many consider disease heterogeneity as the manifestation

of human genetic variation and environmental factors

influencing progression of an Aβ or a tau-driven dis-

ease. Animal models provide support for this view, since

they show homogeneous disease phenotypes, where

variation can be introduced through environmental ac-

tions such as exercise and environmental enrichment

and through mouse strain genetic background, provid-

ing a model for the amyloid hypothesis. However, as we

shall next discuss, animal models may not truly reflect

either LOAD, or even all cases of EOAD. A real possi-

bility, instead, is that human AD may be heterogeneous

in presentation because the causes of AD may be hetero-

geneous, causing the diversity of symptoms that character-

ise the disease.

Pre-clinical AD models are not representative of human

disease

Almost all mouse models of AD are engineered to

over-express human APP to such an extreme extent that

animals show pathology within months of birth. The treat-

ments in current human testing have usually been shown

to alter this pathology before being developed for the

clinic. However, this approach has yet to produce a re-

sult that has translated to a positive human clinical

outcome [66].

Little evidence indicates that APP is overexpressed in

the human AD brain [122]. Indeed, total Aβ may be re-

duced [123]. More worrying, most mouse models do not

show substantial neuronal loss, despite the presence of

large depositions of amyloid [124]. Further, in contrast

to human AD, where synapse loss is integral, mice show

a highly variable presentation. Some mice show increased

synaptic density in specific brain regions, while most

models show reduced synaptic density.

Thus, while providing reasonable models for assessing

the ability of a treatment to remove Aβ in vivo, and for

investigating the relationship of Aβ to other features

of the disease, such as its inflammatory components

[125], the reality is that removing an overexpressed Aβ

molecule in these mice may not be relevant to remov-

ing an under expressed, but aggregated molecule, from

the human brain. Additionally, a number of questions
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remain as to the relevance of these transgenic mice to

human AD:

1. Overexpression of wild-type APP, rather than mutant

human APP, can cause memory impairments in mice

independently of amyloid deposition [126,127]. APP

overexpression may therefore only model rare forms

of AD in which APP locus duplication is linked to

EOAD [128]. Such duplication is associated with a

very limited number of early-onset cases [129,130].

This questions the validity of mice overexpressing

mutant APP. Further, it raises concerns about controls

used in most mouse experiments; i.e. studies of

age-related cognitive decline should use mice

expressing wild-type APP at comparable levels to

over-expressed mutant-APP, alongside the commonly

used non-transgenic wild-types as controls, but

usually do not [131].

2. Despite increases in amyloid, a number of mouse

studies failed to detect any cognitive abnormalities

[132]. For example, mouse models expressing

familial AD-related mutant APP revealed no

cognitive deficits [133]. Remarkably, in one report,

overexpression of mutant human protein actually

improved the cognitive performance relative to

controls [134].

3. Mouse models of AD deposit peptides that are

distinct from those found in the human brain, an

important consideration in the design of drugs

targeting Aβ removal [135,136].

4. The phenotype of AD mouse models varies

depending on the background strain used, and can

affect the outcome of drug studies [137]. Prudence

therefore requires drugs to be investigated in

multiple mouse lines and models, but this is not

often done.

5. A related concern is that cognitive testing of mice

requires updating [138].

6. While expressing the human APP gene, genetic

animal models of AD also express endogenous,

non-human APP. A critical question remains as to

the role of endogenous mouse amyloid and APP in

these models. Evidence suggests that the

endogenous protein has an essential role in learning

but this has barely been studied [139]. If true then

removing endogenous Aβ in these mice, and indeed

in humans, may have detrimental effects on

memory, thereby contributing to the very problem

they are designed to treat.

7. Both EOAD and LOAD are pathologically

heterogeneous and many non-genetic risk factors

for disease also exist, for instance Type II diabetes.

Mouse models poorly represent these features of

human AD.

Development of novel pre-clinic models to improve

translation of drugs to the clinic

Given the limitations of the mouse models, several groups

have attempted to investigate alternatives. This includes

other species that may better recapitulate AD pathology

including rats, octodon degu, chicks, dogs, guinea pigs,

rabbits, dolphins and non-human primates, although

these are much more expensive to investigate and some

still rely on APP over-expression.

Notable exceptions to the over-expressing mouse models

include the senescence accelerated mouse model (SAMP8)

[140] and the anti-NGF mouse [141]. These latter models

replicate several features of AD without relying on human

familial mutations. Others have used mice with inducible

neuronal loss to replicate the patterns of loss seen in hu-

man AD [142]. Stimulation of inflammation also recapitu-

lates many AD features in mice, including increased levels

of cleaved APP fragments, altered tau phosphorylation

[143] and declining motor and cognitive skills.

Recently a more relevant mouse model was created in

which humanized Aβ, with human AD-causing mutations,

was inserted into endogenous mouse APP [144]. These

mice showed Aβ pathology, neuroinflammation and mem-

ory impairment, although there was an absence of tau

pathology. This study supports a role for mutant APP

(but not necessarily for Aβ per se) in some familial forms

of disease. It does not however show Aβ causality in more

common sporadic forms of disease. It is also prudent to

recall that the majority of familial cases of AD are linked

to mutations in presenilin genes, rather than mutations in

APP, which are rare [145].

We are intrigued by the highly relevant modelling of

AD based on other risk factors of disease. For example,

diabetic mice develop many similar features to AD mice

[146] and a mouse model of chronic heart failure shows

alterations in the metabolism of cerebral Aβ and cogni-

tive impairments [147]. These mouse models show it is

not necessary to have familial AD mutations, nor do

they need to have the aggregating form of amyloid, to

re-create several features of disease. However in general,

at this stage, the genetic mouse models hold front and

center stage in AD studies. Studies based on these need

to be increasingly treated with caution and consideration

given to the use of different models.

Genetics Paint a Complex Picture of AD
Pathogenesis Beyond Aβ
A complex picture indeed

It is widely accepted that Aβ, when injected or over-

expressed in substantial excess, can cause pathology in ro-

dents, but what is the scenario by which genetic mutations

in the human cause AD? APP trafficking, function and

cleavage is complex and highly controlled. We show in

this section that mutations in APP can cause changes to a
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range of APP cleavage products, all of which could affect

synaptic function. Meanwhile, presenilin mutations impact

the cleavage of numerous proteins also with synaptic func-

tions. Thus, even in EOAD caused by mutations in APP

or presenilin, Aβ may not be the sole basis of disease. In

sum, a valid, but inconvenient interpretation of AD genet-

ics is that the aberrant processing of APP, or of other pro-

teins cleaved by presenilin containing enzymes, is the key

contributing factor in familial AD, rather than solely aber-

rant production of Aβ that contributes to histopathology.

Furthermore, as we first discuss below, given the numer-

ous genes and processes implicated in AD, it seems highly

unlikely that any single gene such as APP alone will ac-

count for this disease in the majority of AD cases.

The genetic risk factors for AD are many and varied

Genome-wide association studies (GWAS) have identified

a number of genetic risk factors for AD. To date, the most

emphatic demonstration that numerous genes contribute

to the risk of AD has come from a meta-analysis of four

GWAS data sets consisting of 17,008 AD cases and

37,154 controls from 15 countries [148], which implicated

11 new regions of the genome as risk factors for AD. The

findings reinforce the importance of the innate immune

response and inflammation (HLA-DRB5/DRB1, INPP5D,

MEF2C) already implied by previous work (CR1, TREM2).

Also reinforced is the importance of cell migration

(PTK2B), lipid transport and endocytosis (SORL1). New

hypotheses on AD pathogenesis have also emerged related

to genetic mutations in molecules associated with hippo-

campal synapse function (MEF2C, PTK2B), the cytoskel-

eton and axonal transport (CELF1, NME8, CASS4) as well

as myeloid and microglial cell functions (INPP5D). While

efforts are often made to relate new data to the amyl-

oid hypothesis [149], many of these mutations are not

conveniently placed within it.

Furthermore, new research showing the molecular sig-

natures of AD vs. normal aging indicates that the molecu-

lar phenotype of AD is highly complex, with a variety of

transcriptional changes differentiating AD from aging.

Transcriptional profiles for neuroinflammatory and lipid

metabolism genes in particular are altered early in disease

in this dataset [150].

GWAS and ageing data is therefore increasingly con-

sistent with a view that Aβ (or more likely altered APP

production, function and cleavage) exists somewhere

within a highly complex disease framework that is yet to

be understood. It is unclear whether numerous mecha-

nisms converge on a single primary pathway, or, if AD will

need to be redefined as a host of diseases manifesting ul-

timately as memory loss, resulting from synapse loss and

neurodegeneration. The latter view, that memory becomes

problematic when brain function is disrupted, has simple

appeal, but is a nightmare from a therapeutic perspective.

Mutations in presenilin genes do not always increase Aβ

cleavage

There is a widespread assumption that all the genetic

links to AD effectively modify the cleavage of Aβ to pro-

duce more of the longer forms, Aβ42 and Aβ43, or in-

crease the ratio of longer Aβ peptides compared to shorter

ones and in turn that this is causative of AD. Certainly, evi-

dence for increased levels of Aβ42, or for increases in the

Aβ42:Aβ40 ratio as a result of APP, PSEN1 and PSEN2

mutations has been found in both in vivo and in vitro stud-

ies [151-153]. However the conclusion is not warranted in

view of the full data set.

In a study examining the effects of eight FAD PSEN1

mutations on Aβ production, most of the mutants pro-

duce no change in the Aβ42:40 ratio [154]. Furthermore,

family members with the same FAD mutations exhibit

heterogeneity in their clinical and neuropathological

phenotypes [155]. These results are supported by studies

showing heterogeneous effects of FAD PSEN mutations

on the Aβ42:40 ratio depending on the mutation [156-158],

but are contradicted by reports of universal increases in

Aβ42 as a result of FAD mutations [153,159]. Nevertheless

as it stands, it seems unlikely that FAD mutations lead

to the same phenotypic amyloid cleavage, resulting in

increased Aβ42 and/or increases in the Aβ42:40 ratio.

Newer evidence for the role of a longer form of Aβ,

Aβ43, in disease pathogenesis may be the result of a fa-

milial AD-linked presenilin mutation [160]. The Aβ43:

Aβ42 ratio is increased in mice harbouring this particu-

lar presenilin mutation, with no change in Aβ40 or Aβ42

levels [160]. We simply cannot draw conclusions at this

stage about the role of any form of Aβ in disease. It

would be prudent to include measurements of a variety

of Aβ cleavage forms in disease, and determine the im-

portance of qualitative versus quantitative changes in Aβ

production over time, during disease [161].

Presenilin has important physiological functions

independent of Aβ cleavage

Evidence from rare clinical case studies illustrates muta-

tions in presenilin genes can be associated with neurode-

generation independently of amyloid plaque deposition.

Presenilin mutations have been found in frontotemporal

lobe dementia (FTD) without amyloid pathology [162],

dementia with Lewy bodies [163], posterior cortical atro-

phy dementia [164] and atypical dementia [165]. However

newer evidence suggests presenilin mutations may not be

the true causes of all these amyloid-independent neurode-

generative states, as genetic defects in the progranulin

(PGRN) gene can explain FTD, atypical phenotypes and

parkinsonism, also associated with presenilin mutations

[166,167]. There is however at least one clinical case in-

volving a point mutation in PSEN1, that is associated with
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the development of Pick’s disease with tauopathy, but

without amyloid plaques [168].

Regardless, in AD, where amyloid plaques are present,

there is good reason to suggest that the effects of prese-

nilin mutations on APP biology may account only in

part, if at all, for the AD pathology they associate with.

In fact, there are several known functions for presenilin

which could be impacted by FAD-linked presenilin mu-

tations. These alternative functions include roles in

macroautophagy, APP vesicle transport, cell survival,

cleavage of a wide variety of possible substrates, and the

importance of presenilin for synaptic function, which to-

gether have culminated in the presenilin hypothesis of

AD [169]. There are also links between presenilin func-

tion and the innate immune system, which may account

for the presence of neuroinflammation in EOAD, inde-

pendently of amyloid [170]. The numerous effects FAD-

linked presenilin mutations would have on all these pro-

cesses could together account for AD independently of,

or additional to, any effect on amyloid pathology.

The Presenilin hypothesis of AD

A ‘presenilin hypothesis’ of AD has been articulated

[169]. We further suggest that presenilin mutations fit

best within a hypothesis that AD is a disease driven by

synapse loss. Though the AD literature has largely fo-

cused on the role of PSEN1 in APP cleavage (Figure 2),

presenilin mutations affect a range of proteins and

therefore processes, particularly those involved in syn-

aptic function, as summarised above. Given that prese-

nilin appears important for cleaving proteins that are

crucial at synapses, presenilin mutations would lead to

synaptic dysfunction. It would also follow that drugs

targeting presenilin in humans are destined to have

profound detrimental effects on the brain with long-

term use. This indeed was the result of recent clinical

trials of presenilin antagonists, also termed γ-secretase

inhibitors (Table 1).

Nevertheless γ-secretase inhibition continues to be pur-

sued. Recent evidence using conditional presenilin KOs

has suggested that presenilin function is not as critical in

the adult brain as the developing brain, allowing the field

to justify its ongoing use as a target for drug intervention

(See [171] for a detailed review). This is in spite of the res-

ervations that emerge from consideration of data reviewed

above.

APOE4 dysfunction is related to inflammation

The APOE4 allele has been a known genetic risk factor

for sporadic AD, and it remains the strongest known

[22]. It has been linked to the amyloid hypothesis by indi-

cations it is involved in the clearance pathway of Aβ, with

deficits causing a toxic Aβ accumulation and aggregation

[172]. Meanwhile, an alternative avenue of enquiry shows

that APOE4 has intimate connections with innate im-

munity, and this was reasoned to explain its broader re-

lationship with inflammatory disease, not just AD. One

observation is that APOE suppresses TNF secretion

from inflammatory cells [173] (also see [174]). Import-

antly an APOE mimetic that suppresses TNF secretion

has successfully treated experimental models of neurode-

generative disease, including traumatic brain injury [175],

stroke [176] and AD [177]. As well as reducing behavioral

deficits, in the study of AD, the APOE mimetic also re-

duced Aβ plaques and tau tangles [177]. The relationship

of APOE4 to inflammation therefore opens a channel of

enquiry directed to explain why stimulation of APOE

expression in mice enhances normal Aβ clearance (both

soluble oligomers and plaques) and reverses behavioural

deficits. In line with the observation of the link between

presenilin mutations and inflammation, the links between

APOE4 and inflammation further point to inflammation

as a major player in AD pathogenesis independently

of Aβ.

Understanding the complexity of APP biology

independently of Aβ is important to understanding AD

pathogenesis

APP synthesis, trafficking and cleavage are complex and

highly regulated processes (Figure 2). It is important to

recognise that familial AD APP and presenilin mutations

may not only impact Aβ production, but also the produc-

tion of the other peptides produced from APP including

sAPPα, sAPPβ, p3 and AICD, as well as the relative levels

of full-length APP. Interestingly, overexpression of AICD

can cause an AD-like phenotype [178], whilst increased

cleavage of sAPPβ is associated with familial Danish De-

mentia with similar aetiology to AD [179]. Furthermore

lowered levels of neurotrophic sAPPα are seen in AD,

and mutations which inhibit the α-secretase enzyme

ADAM10, which liberates sAPPα from its precursor, are

found in the promoter region and coding sequence of

some individuals with AD [180]. Depletion of sAPPα by

inhibition of ADAM10 trafficking can bring about spor-

adic AD phenotypes [181], corroborating an independ-

ent role for APP cleavage products other than Aβ in

bringing about disease phenotypes.

Whilst the functions of p3 and sAPPβ are little ex-

plored (which in itself is a remarkable reflection of the

intense focus on Aβ at the expense of other cleavage

products of APP), a wealth of evidence exists for physio-

logical functions of sAPPα, Aβ, AICD and full-length

APP [182] (Figure 2). These studies raise questions as to

whether familial AD driven by presenilin and APP muta-

tions is primarily a result of aberrant Aβ expression, or

if it is in fact a result of altered APP cleavage, and the re-

sultant effects of altered APP cleavage on sAPPα, sAPPβ,

Aβ, AICD, p3 and full-length APP. This brief discussion
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does not even approach the possible physiological func-

tions of C83, C99 (Figure 2), the different functions of

the multiple isoforms of APP including APP695, APP751
and APP770, or the highly homologous proteins to APP,

APLP1 and APLP2, which are also physiologically

expressed in the human brain and may serve redundant

functions with APP proteins.

There are many unresolved issues in the amyloid

hypothesis

The field has pursued the idea that Aβ accumulation is

the central cause of AD based in part on an amyloid-

centric interpretation of the genetics. Yet as described

above, numerous products of APP are affected by APP

mutations and by presenilin mutations.

One valid conclusion, in view of the complex biology

of APP function and cleavage, is that APP and presenilin

mutations cause AD because they alter several cleavage

products of APP, which each in turn contribute to AD.

In this view of disease, alterations in Aβ expression

would only be a part player in pathology or, perhaps

even, a by-product, and an indicator of altered APP

function and cleavage. This conclusion, if true, would

predict that clinical trials of anti-Aβ drugs will fail even

in some or all cases of EOAD.

Meanwhile, analysis of the effects of presenilin muta-

tions does not lead to the conclusion that AD is caused

by Aβ. The cleavage of a range of proteins is affected by

presenilin mutations and many would affect the synapse.

In fact as we illustrated, presenilin mutations do not al-

ways alter Aβ production as may be expected. Finally,

many mutations and risk factors associated with AD may

not relate to Aβ metabolism.

Yet, amyloid-centric interpretations continue to flour-

ish. A recent study showed that a mutation, determined

to modestly decrease Aβ levels of the course of lifespan,

is preventative of AD [23]. This data was taken to sug-

gest that a life-long reduction in Aβ reduces the risk of

AD. However, the mutation also results in marginally

(albeit non-significant) increases in levels of beneficial

neurotrophic sAPPα. Regardless, an alternative interpret-

ation is that a life-long change in APP function and

cleavage could protect against AD independently of low-

ered Aβ production.

Future Directions
The emergence of more holistic approaches to

understanding AD pathogenesis

As suggested by Figure 3, the amyloid hypothesis is at

least incomplete, and quite possibly largely incorrect.

Therefore it follows that therapies targeting Aβ or APP

processing may not treat LOAD, and possibly may not

even work in some cases of EOAD. Given this conclu-

sion, it is worthwhile to consider alternative possibilities.

There are a number of theories in the literature that

must be given serious consideration and ultimately inte-

grated into a holistic view of disease. We will elaborate

on just some of these, below.

Insulin resistance and Inflammation

It is suggested that a similar pathogenesis operates in

AD as in Type 2 diabetes (T2D), but restricted to the

brain, thus describing AD primarily as a result of cere-

bral insulin resistance [183]. Certainly cerebral insulin

Figure 3 Controversies and Inconsistencies Within the Current

Amyloid Hypothesis. 1. Aβ deposition occurs in cognitively normal

individuals; 2. There is a weak correlation between plaque load and

cognition; 3. The biochemical nature and presence of Aβ oligomeric

assemblies in vivo is unclear; 4. Pre-clinical AD models based on

EOAD-linked mutations are biased toward the amyloid hypothesis;

5. Pathological heterogeneity and comorbidities are unexplained

by the amyloid hypothesis; 6. Aβ has a normal physiological role

and targeting Aβ may disrupt these roles over the long term; 7.

Genetic factors linked to AD can be interpreted independently of

amyloid; 8. APP cleavage and function is more complex than solely

the production of Aβ, indicating other APP family members may

play a role in disease progression; 9. The triggers of synapse loss,

neuronal loss and neuroinflammation in AD are still unclear; 10. The

relationship between Aβ and tau pathologies is unclear; 11. The

onset of dementia in Down’s Syndrome is highly variable, despite

the presence of fibrillar plaques in 100% of Down’s individuals by

the fifth decade; 12. The APOE4 genotype has numerous functional

effects, rather than solely relating to reduced Aβ clearance,

including links to enhanced inflammatory phenotypes. Each of

these points are discussed in detail in the text.
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resistance is present in AD just as in T2D [184], and

the appropriate alterations in post-insulin receptor

intracellular signalling have been impressively demon-

strated in fresh AD autopsy brains [185]. This idea is

likely inseparable from the argument that AD is an in-

flammatory disease, since evidence that excessive TNF

induces insulin resistance is biochemically precise

[186] and, as has been reviewed [187], is widespread

across many inflammatory diseases, infectious and

sterile. Moreover an agent that inhibits TNF produc-

tion [188] and another that controls insulin resistance

[189] have both been shown to reverse AD in experi-

mental models [190].

The inflammatory hypothesis of AD is a valid alternative

to the amyloid hypothesis

We and others have long proposed a role for neuroinflam-

mation, driven by microglia and astrocytes, as a trigger

for Alzheimer’s pathogenesis [46,125,187,191]. The case

for chronic inflammation, as classically defined, rather

than Aβ, being the primary initiator of AD has a long

history, with new evidence continuing to accumulate.

From 1989 it has been reported that inflammatory cyto-

kines are essential for the excess APP required for the

amyloid hypothesis of AD [192], as well as up-regulating

its cleavage to form Aβ [187]. In addition, parallel studies

demonstrating that oligomeric Aβ influences synapses

through inducing the inflammatory cytokine TNF

[187,193,194] have been enlightening. A possible role

for neuroinflammation in synapse pathology early in

disease has now been acknowledged [195] and there is

much evidence, from genetics and measuring indica-

tory of inflammation very early in AD, that it is in the

right place at the right time to be causal, and likely to

precede Aβ and tau pathologies [187]. More recently,

the clinically approved specific anti-TNF agent, etaner-

cept, is reported to prevent changes caused by admin-

istering Aβ to mice intracerebroventricularly [196].

The tau hypothesis of AD

The concept of hyperphosphorylated tau being a pri-

mary mediator of AD, like amyloid, has a long history,

which continues to grow [197]. Much interest still exists

in where tau sits in the pathogenesis of AD [198]. In our

view, AD is sufficiently diverse that it is conceivable that

the role of tau, and where it sits in AD pathology, could

vary among individuals. If tau is a primary activator of

disease in some cases, it is imperative that the reported

harmlessness of phosphorylated tau to neurons during

mammalian hibernation [199] be discussed in AD re-

search circles. Furthermore, hyperphosphorylated tau

can be considered another histological sign of cytokine

activity [187].

Redefining ‘neuroinflammation’ through viewing the

synapse as a complex multicellular structure is important

in future AD research

The inflammatory hypothesis is an example of how

amyloid and tau research can be integrated into a novel

set of ideas, both expanding the amyloid hypothesis and

including it. However, while we use the term ‘neuroin-

flammation’ throughout this text and elsewhere, we note

that neuroinflammation is poorly defined. In its simplest

form neuroinflammation is currently defined by altered

glial cell morphology and excess pro-inflammatory cyto-

kine release [46]. This must ultimately give way to a

more complex and subtle view of glial function/dysfunc-

tion within the multicellular synapse [200].

Stepping back to consider the multitude of factors we

have summarised above, a complex picture emerges that

consistently points to synaptic dysfunction and loss as a

major link between the diverse characteristics of the dis-

ease. We have recently pointed out the synapse needs to

be re-defined and understood as a multicellular structure

where glia play a critical role [46]. This allows us in turn

to re-imagine AD.

Microglia and astrocytes are essential to normal synapse

biology, including the removal [201,202] and formation of

synapses [203,204], and maintenance of synaptic function

[205,206]. Disruptions in signalling between glia and

synapses, which may involve several known cytokines

such as TNF, could therefore drive the well-known syn-

apse loss in AD, either independently of, or in conjunction

with Aβ [46].

A consequence of this interpretation is that the issue

may not be an upregulation of neuroinflammatory sig-

nalling from these cells per se, that is involved in disease.

Rather, expression of pro-inflammatory cytokines and

other neuronal and glial derived molecules regulating

the synapse could be disrupted subtly for a host of rea-

sons, well before frank inflammation is apparent. APP,

along with presenilin and indeed numerous other fac-

tors, may exert effects on the synapse through actions

on glial function, leading to either excess synapses

(as occurs in autism) or synapse loss (as occurs in AD).

This would modify glial function at synapses, and poten-

tially drive synapse loss. Thus, we propose that many of

the factors thought to cause inflammation are more

likely to cause a dysregulation of glial function at the

synapse in the first instance, long before changes in cell

morphology become obvious. Consequently, more subtle

mechanisms may underpin AD.

Clearly, understanding the physiological roles of micro-

glia and astrocytes at synapses, as opposed to simply con-

sidering them as cells with key roles in innate immunity

and ‘neuroinflammation’, is a critical avenue for future

research. We suggest future research will reveal that the

entire current concept of ‘neuroinflammation’ is poorly

Morris et al. Acta Neuropathologica Communications 2014, 2:135 Page 14 of 21

http://www.actaneurocomms.org/content/2/1/135



understood, defined and characterised. This concept

will require profound rethinking before we can truly

understand the role of glia in the unperturbed brain and

in AD pathogenesis [46].

Conclusion
In the words of Joseph Lister (1876)

"In investigating nature you will do well to bear ever

in mind that in every question there is the truth,

whatever our notions may be. This seems, perhaps, a

very simple consideration, yet it is strange how often it

seems to be disregarded. I remember at an early period

of my own life showing to a man of high reputation as a

teacher some matters which I happened to have

observed. And I was very much struck and grieved to

find that, while all the facts lay equally clear before

him, those only which squared with his previous theories

seemed to affect his organs of vision."

Lister’s quote is salient. Hypotheses are an important

part of any scientific method, but the sentiment of Karl

Popper, quoted earlier in this article, should be taken

seriously. Keeping Popper’s views in mind may prevent

us from becoming over-reliant upon, and blinkered by,

any single hypothesis for AD.

It has been said the amyloid hypothesis, like certain

banks, may have become too big to fail [101]. The hy-

pothesis may yet prove its merit, at least in some cases,

through early intervention trials with amyloid-directed

therapeutics [70,71]. However, on the basis of the data

discussed here, the role of Aβ as a primary cause of all

AD remains debatable. We are therefore concerned by

the suggestion that, if anti-Aβ treatments are success-

ful in patients with EOAD, this would support an argu-

ment for treating all AD with anti-Aβ drugs [207].

Such a conclusion would merit questioning without

direct clinical evidence that the treatments are effective

in LOAD.

We are not arguing that Aβ has no role. In fact it may

be a player in a more complex view of disease and, fur-

ther, its role may even be variable. We suggest instead

that to solve the complex riddle of AD, theoretical

models must expand beyond Aβ as the central cause of

dysfunction, instead including Aβ in a wider theory that

accounts for the extensive data and advances in neuroscience

that have accumulated over the last decade. Ultimately

it is critical that any role for Aβ must be placed in the

context of a holistic view of the disease that accounts

for all the data.

Even more so, with recent meta-analyses highlighting

some major pitfalls with experimental design and statis-

tical power in neuroscience [208,209], we need to be

wary. Conclusions drawn from any experiment must be

replicated before accepting them as fact, especially con-

sidering the difficulty in replicating in vivo studies when

using different background animal strains, and different

methodological approaches [210,211].

An important suggestion we make is that the concept

of neuroinflammation mediated by glia may need to give

way to a more subtle understanding of how aberrant

glial function at synapses drives AD. We suggest an al-

ternative view that, given evidence for synapse dysfunc-

tion as an early event in AD, synapse dysfunction may

ipso facto be the cause of AD. We recently suggested

[46] a new definition of the synapse as “…a complex, dy-

namic and often transient structure involving several cells

interacting within a sophisticated extracellular matrix and

milieu.” Within this framework, one of the normal roles of

glia in synapse structural plasticity is to modulate and

also remove synapses. Improving our understanding of

how dysregulation of the multicellular synapse leads to

aberrant synapse elimination will likely produce novel

insights into mechanisms of synaptic degeneration in

AD, and provide insights into the relationship between

synaptic degeneration and other pathological hallmarks

of the disease. The corollary of this is that if we can

identify signaling pathways that reverse glial mechanisms

leading to synapse removal, we may identify approaches

that could halt or even reverse AD, independent of spe-

cific cause. Regardless, if synapse loss is one of the earliest

events in disease then we must go back to first principles

and understand what drives this loss.

The primary point of our review is to suggest it is in-

appropriate to ignore equally valid interpretations of data.

There are many thousands of papers on Alzheimer’s

disease, and many of these papers can be interpreted in

alternative ways, while still more are contradictory to,

and/or inconsistent with, the amyloid hypothesis. There

are also many thousands more investigating mechanisms

driving synapse function and dysfunction that could be

linked to AD literature, given synapse dysfunction is a key

early event and accurate correlate of AD progression. We

conclude by suggesting the students, post-docs and young

faculty who will determine the course of AD research in

the next decade, must spend time reading this literature

extensively, and thinking deeply, and thus become the

next generation of leaders that, at the expense of time

away from the lab bench, determine the best pathway

forward.
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