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Abstract
Ontology management and maintenance are considered cor-
nerstone issues in current Semantic Web applications in
which semantic integration and ontological reasoning play
a fundamental role. The ability to deal with inconsistency
and to accommodate change is of utmost importance in real-
world applications of ontological reasoning and management,
wherein the need for expressing negated assertions also arises
naturally. For this purpose, precise, formal definitions of the
the different types of inconsistency and negation in ontologies
are required. Unfortunately, ontology languages based on
Description Logics (DLs) do not provide enough expressive
power to represent axiom negations. Furthermore, there is no
single, well-accepted notion of inconsistency and negation in
the Semantic Web community, due to the lack of a common
and solid foundational framework. In this paper, we propose
a general framework accounting for inconsistency, negation
and change in ontologies. Different levels of negation and
inconsistency in DL-based ontologies are distinguished. We
demonstrate how this framework can provide a foundation for
reasoning with and management of dynamic ontologies.

Keywords: Negation, Inconsistency, Ontology
Change, Semantic Web

Introduction
The ability to deal with inconsistency and to accommodate
change is of utmost importance in real-world applications
of Description Logic based ontological reasoning and man-
agement (Baader et al. 2003; Horrocks, Sattler, & Tobies
2000). For example, one of the typical scenarios in de-
ployed Semantic Web applications is ontology reuse, where
users build their own ontologies from existing ones, rather
than starting from scratch. After adding new axioms into
an existing ontology, users may find that revised ontologies
become inconsistent. A remedy for such a situation would
require the removal of a minimal part of the ontology in or-
der to make the resulting ontology consistent (Haase et al.
2005). This type of change is usually required to meet some
rationality postulates, similar to those in the AGM theory
in the belief revision (Alchourrón, Gärdenfors, & Makin-
son 1985). Another example is reasoning with inconsis-
tent ontologies (Huang, van Harmelen, & ten Teije 2005),
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where querying systems should return meaningful answers
to queries on inconsistent ontologies. The latter suffers from
”entailment explosion” as any formula is a consequence of
an inconsistent logical theory.

Addressing effectively the issues raised in these exam-
ples requires precise, formal definitions of inconsistency
and negation. Unfortunately, DL-based ontology languages,
such as OWL DL (Patel-Schneider, Hayes, & Horrocks
2004), do not provide enough expressive power to repre-
sent axiom negations. Furthermore, there is no single, well-
accepted notion of inconsistency and negation in the Se-
mantic Web community, due to the lack of a common and
solid foundational framework. (Schlobach & Cornet 2003)
proposed an approach to debug inconsistent ontologies, in
which inconsistency is identified with the existence of un-
satisfiable concepts. (Huang, van Harmelen, & ten Teije
2005) developed a framework of reasoning with inconsis-
tent ontologies, in which inconsistency is given a classical
first-order logic interpretation. In (Haase et al. 2005), the
definition of axiom negation is merely mentioned in an ex-
ample at a footnote, without proper discussion in the paper.

In this paper, we propose a general framework accounting
for inconsistency, negation and change by which we aim at
providing a unique foundation of inconsistency and change
processing for DL-based ontologies. We distinguish differ-
ent levels of inconsistency and negation in DL-based ontolo-
gies, and investigate the relationship among the different no-
tions. Accordingly, we lay the foundations of a formal the-
ory of ontology change, based on a set of rationality postu-
lates inspired by the AGM theory of belief change. Further-
more, we discuss how this proposed framework can provide
a foundation for the tasks of ontology management and rea-
soning. Specifically, we show how a bridge connecting two
main ontology change operations - revision and contraction
- can be built under the proposed framework.

The rest of this paper is organized as follows: DL-based
ontologies and the AGM theory are briefly introduced in the
next section. Section Inconsistencies and Negations dis-
tinguishes different notions of negation and inconsistency in
DLs. Section Postulates for Ontology Change investigates
their application to ontology reasoning and management for
accommodating ontology changes. The final section sum-
marizes the paper and discusses further research directions.
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Preliminaries

Ontologies An ontology (Uschold & Gruninger 1996) typ-
ically consists of a hierarchical description of important con-
cepts in a domain, along with descriptions of the properties
of each concept, and constraints on these concepts and prop-
erties. In this paper, following the W3C Web Ontology lan-
guage OWL (Patel-Schneider, Hayes, & Horrocks 2004), we
consider Description Logics (DLs) based ontologies. De-
scription Logics are a family of class-based (concept-based)
knowledge representation formalisms, equipped with well-
defined model-theoretic semantics (Baader et al. 2003).
The SHOIN (D+) DL underpins OWL DL, the key sub-
language of OWL.

Let K be a Description Logic, C,D K-concepts, R,S K-
roles, and a, b individuals. An interpretation (written as I)
of an ontology consists of a domain ∆I (a nonempty set),
and an interpretation function (written as ·I), which maps
each individual name a to an element aI ∈ ∆I , each con-
cept name CN to a subset CNI ⊆ ∆I of the domain and
each role name RN to a binary relation RNI ⊆ ∆I × ∆I .
The interpretation function can be extended to give seman-
tics to K-concepts and K-roles, which are concepts and
role descriptions built by K-constructors. Example con-
cept constructors of SHOIN (D+) are ¬C,C � D,C �
D,∃R.C, ∀R.C, �nR, �nR and {a} (where n is a natural
number). A K-ontology (or simply ontology) O is a finite set
of axioms of the following forms:1 concept inclusion axioms
C � D, transitivity (abstract) role axioms Trans(R), role
inclusion axioms R � S, concept assertions C(a), role as-
sertions R(a, b) and individual (in)equalities a ≈ b (a 
≈ b,
respectively). In an ontology, we use TBox (RBox, ABox)
to refer to the set of concept (role, individual, respectively)
axioms. An interpretation I satisfies the concept inclusion
axiom C � D if CI ⊆ DI . Due to the limitation of space,
the reader is referred to (Baader et al. 2003) for more de-
tails of the semantics of DL constructors and axioms. An
interpretation I satisfies an ontology O iff I satisfies all its
axioms. An ontology O is consistent iff it has an interpre-
tation. A concept C is satisfiable w.r.t. O iff there exists an
interpretation I of O s.t. CI 
= ∅. A concept C is subsumed
by a concept D w.r.t. O iff, for every interpretation I of O,
we have CI ⊆ DI . Given an axiom ϕ, an ontology O en-
tails ϕ, written as O |= ϕ, iff, for all interpretations I of O,
we have I satisfies ϕ. An ontology O1 entails an ontology
O2, written as O1 |= O2, iff, for all interpretations I of O1,
we have I satisfies O2.

Given a (monotonic) Description Logic K, we consider a
pair 〈L,Cn〉, where L is the set of possible K-axioms and
Cn is a consequence operator such that, given a K-ontology
O, Cn(O) = {ϕ | O |= ϕ}. In the rest of the paper, we
will use 〈L,Cn〉 (or 〈LK, Cn〉 when necessary) to refer to
the Description Logic K. 〈L,Cn〉 is a very general model
introduced by Tarski in 1928; to guarantee rationality, Tarski
required that Cn satisfies iteration, inclusion and monotony;
see (Fuhrmann 1991).

1The kinds of role axioms that can appear in O depend on the
expressiveness of K.

AGM Theory and its Variations The theory of Al-
chourrón, Gärdenfors and Makinson 1985 — the AGM the-
ory — is probably the most influential work in the area of
belief change. This theory sets the foundations for future re-
search on belief change, by defining a set of widely accepted
properties that any rational operators should satisfy.

More specifically, AGM studied 3 different operators,
namely expansion, revision and contraction. Expansion is
the addition of a sentence to a knowledge base (KB), without
taking any special provisions for maintaining consistency;
revision is similar, with the important difference that the re-
sult should be a consistent set of beliefs; contraction is re-
quired when one wishes to consistently remove a sentence
from their beliefs instead of adding one. AGM introduced
a set of postulates for revision and contraction that formally
describe the properties that such an operator should satisfy
(expansion was skipped, as it is trivial).

The AGM theory is based on the coherence model. In
practice, this model states that both the explicitly repre-
sented knowledge and the implied knowledge are of equal
value and should be considered when deciding the changes
to be made upon the KB. In the context of ontologies, how-
ever, it seems more natural to use the foundational model,
under which there is a clear distinction between the explic-
itly represented knowledge (i.e., the one contained in the
KB) and the implicit one (i.e., knowledge implied by the
explicitly represented one). Under this model, changes can
be made in the explicit knowledge only; implicit knowledge
can only be indirectly affected through changes in the ex-
plicit knowledge.

The foundational model greatly restricts our options for a
“proper” modification of knowledge. This fact was verified
in (Fuhrmann 1991), in which an attempt to define a foun-
dational version of the AGM theory was made. There it was
shown that, in the logics originally considered by AGM, no
contraction operator can be defined that satisfies the founda-
tional version of the AGM postulates.

A second problem related to the application of the AGM
theory in the DL context is caused by the assumptions made
by AGM in the formulation of their theory: even though the
intuition behind the AGM postulates is independent of the
logic used for the representation of the KB, the formulation
of the postulates themselves is based on certain assumptions,
disallowing their direct use in logics such as DLs (Flouris,
Plexousakis, & Antoniou 2004). For example, well known
DLs do not provide enough expressive power to represent
negations of all the axioms. This fact is both a curse and a
blessing. On the one hand, it implies that the AGM theory
cannot be directly applied to DLs; on the other hand, if we
could reformulate the AGM theory in a more general con-
text, then the result of (Fuhrmann 1991) might not be appli-
cable in DLs, as they do not satisfy the AGM assumptions.

This problem was originally addressed in (Flouris, Plex-
ousakis, & Antoniou 2004), where the AGM theory (and
postulates) were recast so as to be applicable in a wider class
of logics, which includes DLs. That work studied the AGM
theory under both the coherence and the foundational model,
but was restricted to the operation of contraction only. It
was shown that there are certain conditions under which a
logic admits a contraction operator satisfying the AGM pos-
tulates in each of the two paradigms (coherence, founda-
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Figure 1: Examples of variant inconsistency and incoher-
ence.

tional). Such logics were termed AGM-compliant and base-
AGM-compliant, respectively.

In this paper, we focus on the foundational model; we
will show that the conditions introduced in (Flouris, Plex-
ousakis, & Antoniou 2004) for a base-AGM-compliant logic
are too restrictive, overruling practically all interesting DLs.
Following this observation, we propose a weakening of the
AGM postulates which is applicable in our context (DLs un-
der the foundational model) and present some ideas on the
operation (and postulates) of revision and its interrelation-
ship with contraction.

Inconsistency and Negation
Different notions of inconsistency in DLs have been used in
the Semantic Web community, as we have discussed them in
the Introduction. In this section we define different notions
of inconsistency and examine their relations. We start from
the most primitive inconsistency, i.e., the unsatisfiability of
a single concept.

Definition 1 (Unsatisfiable Concept) A named concept C
in the ontology O is unsatisfiable iff, for each interpretation
I of O, CI = ∅.

That would lead us to consider the kinds of ontologies with
unsatisfiable concepts.

Definition 2 (Incoherent Ontology) An ontology O is in-
coherent iff there exists an unsatisfiable named concept in
O.

The incoherence can be considered as a kind of the inconsis-
tency in the TBox, i.e. the terminology part, of an ontology.
An incoherent ontology has an incoherent TBox. However,
the incoherence does not provide the classical sense of the
inconsistency because there might exist a model for an inco-
herent ontology. Thus, we need the classical inconsistency
for ontologies.

Definition 3 (Inconsistent Ontology) An ontology is in-
consistent iff it has no interpretation.

We now briefly discuss the relationships of the two kinds
of inconsistencies of ontologies. Firstly, an ontology is in-
consistent does not necessarily imply that it is incoherent,
and vice versa. There exist different combinations of the in-
consistency and the incoherence. Figures 1 presents several
examples to show the variants of inconsistency and incoher-
ence. Figure1(1) is an example of inconsistent but coher-
ent ontology, in which the two disjoint concepts C1 and C2
share an instance a. Figure1(2) is an example of consistent
but incoherent ontology, in which the two disjoint concepts
C1 and C2 share a sub-concept C3. Figure1(3) is an ex-
ample of an inconsistent and incoherent ontology, in which
the two disjoint concepts C1 and C2 share a sub-concept
C3, which has an instance a. Figure1(4) is an example of
inconsistent but coherent TBox, in which the two disjoint
concepts C1 and C2 share a sub-concept which is a nominal
{a}.

Secondly, coherence and consistency are somehow re-
lated. We can introduce a fresh individual iC for each named
concept C in an ontology O. Accordingly, an enhanced on-
tology O+ = O∪{C(iC) | for all named concepts C in O}
can be constructed by adding these individual axioms about
these fresh individuals into the ontology. It is easy to see
that the following propositions hold:

Proposition 1 (a) Given an ontology O, if its enhanced on-
tology O+ is consistent, then O is coherent.
(b) Given a consistent ontology O, if O is coherent, then its
enhanced ontology O+ is consistent.

Axiom Negation in Ontologies
Negated axioms are closely related to inconsistencies and
changes in ontologies. They are one of the main sources
of ontology inconsistencies. For example, an ontology con-
taining the mutually negated axioms C(a),¬C(a) is incon-
sistent. Furthermore, negated axioms are one of the key
stones connecting the contraction and revision operators in
the AGM theory, although unfortunately well known DL-
based ontology languages do not provide enough expres-
sive power to represent negations of all the axioms. Sim-
ilar to the notion of inconsistency, the definition of the
negation is different from an approach to another approach
in the Semantic Web community (Haase et al. 2005;
Huang, van Harmelen, & ten Teije 2005), as we have briefly
discussed in the Introduction.

Based on the distinction between ontology consistency
and coherence, in the following we propose two correspond-
ing axiom negations.

Definition 4 (Consistency-Negation) An axiom ψ is said
to be a consistency-negation of an axiom φ, written ψ = ¬φ,
iff
(i)(Inconsistency) {φ, ψ} is inconsistent,
(ii) (Minimality) There exist no other ψ′ such that ψ′ satisfies
the condition (i) and Cn({ψ′}) ⊂ Cn({ψ}).

The inconsistency condition states the relationship be-
tween axiom negation and ontology inconsistency, which is
based on the classical notion of negation. We introduce the
minimality condition to make the negation minimal so that it
would not include any unnecessary additional part. Note that
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this does not enforce a unique consistency-negation though.
Similarly we have the following axiom negation which cor-
responds with incoherence.

Definition 5 (Coherence-Negation) An axiom ψ is said to
be a coherence-negation of an axiom φ, written ψ =∼φ, iff
(i)(Incoherence) {φ, ψ} is incoherent,
(ii) (Minimality) There exist no other ψ′ such that ψ′ satisfies
the condition (i), and Cn({ψ′}) ⊂ Cn({ψ}).

Note that it is possible to extend our notion of negated
axioms from a single axiom to a set of axioms, where a set
of axioms represent the negation of another set of axioms.
This extension goes beyond the scope of this paper.

Example 1 Let us consider the consistency negation and
the coherence negation of an axiom C � D, where C and
D are named concepts.

¬(C � D) = ∃(C � ¬D), ∼ (C � D) = C � ¬D

where ∃(C �¬D) is an existence axiom (Horrocks & Patel-
Schneider 2003), which states there exists some instance of
the concept C�¬D. Note that, in any ontologies containing
C � D and C � ¬D, the concept C is unsatisfiable.

It should be noted that the minimality condition of the
consistency-negation prevents the counter-intuitive property
that any axiom ψ is qualified to be a consistent-negation of
an inconsistent axiom φ (such as C � ¬C). It is easy to
see that its consistency-negation must be the tautology T
because the tautology T is implied by any axiom ψ, i.e.
Cn(∅) = Cn({T}) ⊆ Cn({ψ}). Thus no other axioms
can meet the minimality condition. For example, we have
¬({a} � ⊥) = T ; similarly, we have ∼ (D � ⊥) = T .

In the following we will briefly discuss whether the pro-
posed negations satisfy the following important properties:

1. Existence: It should exist in (almost) every DL.

2. Classicality: If the definition of negation is applied in a
classical logic, it should coincide with the classical nega-
tion.

3. Decidability: The problem of checking whether or not an
axiom is the negation of another axiom should be decid-
able.

Existence Definitions 4 and 5 improve the Existence prop-
erty by giving up the restriction on double negations; i.e.,
an axiom ψ should be logically equivalent to the negation
of the negation of ψ. Due to the limitation of space, here
we only illustrate our point with some examples. For a DL
〈L,Cn〉 that does not provide concept existence axioms, we
cannot use ∃(C � ¬D) as a negation of C � D; however,
Definition 4 allows C � ¬D(a) (where a is a fresh individ-
ual) as a consistency-negation of C � D. For a DL 〈L, Cn〉
that does not provide any role constructors, we cannot use
∃(R � ¬S) as a negation of the role inclusion R � S; how-
ever, Definition 5 allows C � ∃R.� � ∀S.⊥ (where C is a
fresh named concept) as a coherent-negation of R � S.

Classicality The classical negation has the following intu-
itive properties:

(i) Cn({φ}) ∩ Cn({¬φ}) ⊆ Cn(∅) (only the tautology ap-
pears in both the consequences set of an axiom and its nega-
tion);
(ii) Cn({φ}∪ {¬φ}) = L (the consequence set of the nega-
tion is the complement set of the consequence set of the ax-
iom).
It can be shown that, under standard assumptions (Flouris,
Plexousakis, & Antoniou 2004), the properties are guaran-
teed by the consistency-negation.

Decidability Given a DL 〈L,Cn〉, let us first consider the
consistency-negation. The checking of the inconsistency
condition is indeed a knowledge base satisfiability problem
of 〈L,Cn〉. The minimality condition can be checked by
trying to replace some sub-concepts (or sub-roles) with more
general ones.

Proposition 2 Given a DL 〈L,Cn〉, if the knowledge base
satisfiability problem of 〈L,Cn〉 is decidable, then the
consistency-negation checking in 〈L,Cn〉 is decidable.

Proposition 3 Given a DL 〈L, Cn〉, if the problem of con-
cept satisfiability w.r.t. to a TBox in 〈L,Cn〉 is decidable,
then the coherent-negation checking in 〈L, Cn〉 is decidable.

Postulates for Ontology Change
In this section we propose certain postulates which describe
two rational change operators for DL-based ontologies and
even the use of the different kind of negation for revision.
Our approach will be based on the AGM theory presented in
Section Preliminaries.

Postulates for Contraction
The main result that motivates our quest for a new set of
contraction postulates is summarized in the next lemma and
its corollary. Note that, as mentioned above, we use 〈L,Cn〉
(or 〈LK, Cn〉 when necessary) to refer to the Description
Logic K.

Lemma 1 For a DL 〈L,Cn〉, if there is an axiom x ∈ L
and a set of axioms Y ⊆ L such that Cn(∅) ⊂ Cn(Y ) ⊂
Cn({x}), then 〈L,Cn〉 is not base-AGM-compliant.

Corollary 1 Any DL that is at least as expressive as FL0

and whose alphabet allows at least two concept names and
one role name is non-base-AGM-compliant.

Corollary 1 practically overrules the use of the postulates
that appeared in (Flouris, Plexousakis, & Antoniou 2004) in
the DL context. The reason for this failure is related to the
so-called base recovery postulate (B-6). Here, we will pro-
pose a different set of postulates that satisfy the following:

1. Existence: For every monotonic DL 〈L,Cn〉, there is a
contraction operator satisfying the proposed postulates.

2. AGM Rationality: Whenever possible (i.e., for base-
AGM-compliant DLs), the proposed postulates allow ex-
actly the same contraction operators as the AGM postu-
lates do.

It turns out that the following set of postulates satisfies
both goals:
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(O-1) O − X ⊆ O.

(O-2) If O 
|= X , then O − X = O.

(O-3) If ∅ 
|= X , then O − X 
|= X .

(O-4) If X ∼= Y , then O − X = O − Y .

(O-5) If Cn((O−X)∪X) ⊂ Cn(Y ∪X) for some Y ⊆ O,
then Y |= X and ∅ 
|= X .

The postulates (O-1)-(O-4) are equivalent reformulations
of the postulates discussed in (Flouris, Plexousakis, & An-
toniou 2004), i.e. (B-2)-(B-5), respectively; postulate (B-1)
from (Flouris, Plexousakis, & Antoniou 2004) was ignored
because it is trivial. These postulates follow the AGM in-
tuition: contraction is an operation that is used to remove
knowledge from an ontology, so the result should not con-
tain any new, previously unknown, information (O-1); if the
contracted axiom is not part of our original knowledge, noth-
ing should be removed (O-2); but if it is, then contraction is
supposed to return a new ontology such that the contracted
expression is no longer explicitly asserted or entailed (O-3);
finally, the result should be syntax-independent (O-4).

Postulates (O-1)-(O-4) fail to capture the Principle of
Minimal Change (Gärdenfors 1992) which states that a con-
traction operator should remove as little information from
the ontology as possible. This principle was originally cap-
tured by postulate (B-6) in (Flouris, Plexousakis, & Anto-
niou 2004), while in our case it weakened to form (O-5).
(B-6) states that a contraction operation should only remove
axioms which are relevant to the contracted axiom; this is
guaranteed by restricting the union of the result of the con-
traction (O − X) and the contracted axiom (X) to entail (or
be equivalent to) the original ontology (O):

(B-6) O ⊆ Cn((O − X) ∪ X)

(O-5) comes very close to that by restricting Cn((O −
X)∪X) to be maximal out of all the possible selections for
O−X that satisfy the other postulates: if there is any Y ⊆ O
giving a “larger” set Cn(Y ∪ X), then Y will necessarily
entail X (so Y would not be a possible subset of O − X ,
by (O-3)). The latter implication (∅ 
|= X) was included in
(O-5) in order to capture a certain limit case.

Now let us see why this set of postulates satisfies the re-
quired properties. The Existence property is easy to show.
As a DL based ontology, O contains a finite number of ax-
ioms. Thus, there is only a finite number of subsets of O,
so one can find at least one Y ⊆ O for which Cn(Y ∪ X)
is maximal. Once some technical details and limit cases are
taken care of, the following proposition can be shown:

Proposition 4 For any logic 〈L,Cn〉, there is a contraction
operator ‘−’ such that the operation O −X satisfies (O-1)-
(O-5) for all finite O ⊆ L and all X ⊆ L.

The second property, AGM Rationality, is more difficult
to show, so we will break its proof in two parts. Firstly, we
will show that if (B-1)-(B-6) are satisfied by a contraction
operator, then (O-1)-(O-5) are also satisfied. This is triv-
ial for (O-1)-(O-4), as these are equivalent reformulations
of (B-2)-(B-5) respectively. To show that (O-5) is satis-
fied as well, notice that (B-6) requires that O is entailed by
Cn((O − X) ∪ X). If O |= X , then O |= Cn(Y ∪ X),

for all Y ⊆ O. This fact, combined with the requirement
imposed by (B-6), shows that the “if part” of (O-5) cannot
be true for any Y ⊆ O, so (O-5) trivially holds. If, on the
other hand, O 
|= X then (B-3) (equivalently, (O-2)) indi-
cates O − X = O; thus, again, the “if part” of (O-5) cannot
be true for any Y ⊆ O, so (O-5) holds. This gives the fol-
lowing result:

Proposition 5 If a contraction operator satisfies (B-1)-
(B-6), then it satisfies (O-1)-(O-5).

This result implies that the original set of postulates
(B-1)-(B-6) is stronger than (O-1)-(O-5); this should be ex-
pected, by Proposition 4, as the result of this proposition
does not hold for (B-1)-(B-6) (see Lemma 1 and (Flouris,
Plexousakis, & Antoniou 2004)).

To show AGM Rationality, we should also show that the
two sets of postulates are actually equivalent whenever pos-
sible (i.e., in base-AGM-compliant DLs). The proof follows
similar steps as the proof of Proposition 5. The only non-
trivial task is to show that whenever (O-1)-(O-5) are satis-
fied, (B-6) is also satisfied. This is shown by the fact that,
in base-AGM-compliant logics, there is always a Y ⊆ O
which does not entail X , such that Cn(Y ∪ X) entails O;
thus, (O-5) guarantees that O − X will be selected in such
a way that Cn((O − X) ∪ X) will imply O, thus satisfy-
ing (B-6). Once some limit cases are taken care of (one of
which justifies the use of the implication ∅ 
|= X in (O-5)),
the following can be shown:

Proposition 6 For a base-AGM-compliant logic, if a con-
traction operator satisfies (O-1)-(O-5), then it satisfies
(B-1)-(B-6).

Finally, it is important to note that the proposed postu-
lates, as well as Propositions 4-6, are applicable not only
to DLs, but also to all logics that comply with the 〈L,Cn〉
model.

Postulates for Revision
To the our knowledge, there has been no attempt to recast
the AGM postulates for revision in the context of the foun-
dational model; furthermore, there has been no attempt to
generalize these postulates in the sense of (Flouris, Plex-
ousakis, & Antoniou 2004). The main reason for the latter
shortcoming are postulates which requires the definition of
a negation. The definitions of negation presented in the pre-
vious section allow us to overcome this problem and present
some initial thoughts on these issues for DLs.

The original AGM postulates for revision (K+1)-(K+6)
can be found in (Alchourrón, Gärdenfors, & Makinson
1985) and are omitted due to space limitations. Postulate
(K+1) requires that the result of revision is a theory; in our
context, this should be dropped, as we are working on the
foundational model. Postulates (K+2)-(K+5) can be refor-
mulated as follows:

(O+1) X ⊆ O + X .

(O+2) If Cn(O ∪ X) 
= L, then O + X = O ∪ X .

(O+3) If Cn(X) 
= L, then Cn(O + X) 
= L.

(O+4) If X ∼= Y , then O + X ∼= O + Y .
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It can be easily shown that each of (O+1)-(O+4) is equiv-
alent to (K+2)-(K+5) in the standard case. Postulate (K+6)
poses some extra problems, because it requires the definition
of negations of DL axioms. A straightforward (and equiva-
lent) reformulation of (K+6) follows:

(O+5) (O + X) ∩ O ∼= O − ¬X .

In (O+5), the ‘¬’ symbol may be replaced by the standard
negation, consistency negation or coherence negation, de-
pending on our needs and on which type(s) of negation exist
in the underlying logic.

In the AGM theory, there is a close connection between
revision and contraction, as this is expressed by the Harper
Identity (which is equivalent to (O+5)) and Levi Identity;
here we present a generalized version of these identities:

Harper: O − X ∼= Cn(O + ¬X) ∩ Cn(O).
Levi: O + X ∼= Cn(O − ¬X) ∪ Cn(X).

Again, in place of the symbol ‘¬’, any of the negations that
we proposed could be used. In the AGM setting, it has been
shown that for any given revision operator that satisfies the
AGM postulates for revision, the contraction operator de-
fined by the Harper identity satisfies the AGM postulates
for contraction; moreover, for any given contraction oper-
ator that satisfies the AGM postulates for contraction, the
revision operator defined by the Levi identity satisfies the
AGM postulates for revision. One of our most important
goals for future work is the proof that these facts hold for
the generalized versions of the postulates, the Levi and the
Harper identities.

If the coherence negation is used for (O+5), the Levi and
the Harper identities, then it is more appropriate to replace
the postulates (O+2) and (O+3) with following coherence-
based postulates:

(O+2*) If O ∪ X is coherent, then O + X = O ∪ X .

(O+3*) If X is coherent, then O + X is coherent.

The coherence postulates are useful for the revision on the
ontologies which have only T-boxes, because their incoher-
ence appears much more often than their inconsistency. It
is more meaningful to avoid their hidden inconsistency, i.e.
their incoherence.

Conclusions and Outlook
As has been mentioned in the Introduction, inconsisten-
cies, as well as negations in ontologies are closely related
to ontology change. In this paper we have proposed a gen-
eral framework accounting for negation, inconsistency and
change for DL-based ontologies, which aims at providing a
foundation for reasoning and management of dynamic on-
tologies. Such a foundation is of utmost importance for the
deployment of real-world applications in the context of the
Semantic Web. In our framework, we have shown how to
use the proposed negations to achieve the Harper identity
and Levi identity for ontology change, by which we can
make a close connection between the ontology revision and
contraction operations. The distinction between incoherence
and inconsistency provides us two different approaches for
devising rationality postulates for ontology revision, which
cover different needs in different application scenarios.

Encouraged by our results so far, we plan to further gen-
eralise our postulates w.r.t. the Levi and the Harper iden-
tities. Furthermore, it would be useful to investigate de-
tailed impacts of this proposed framework in some spe-
cific inconsistency processing in ontology reasoning and
management, such as the diagnosis and debugging of in-
consistent ontology, reasoning with inconsistent ontologies,
multiple-version ontology reasoning, and ontology evolu-
tion and change.
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