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Inconsistency in historical simulations and future projections of 28 

temperature and rainfall: a comparison of CMIP5 and CMIP6 models 29 

over Southeast Asia 30 

 31 

Abstract 32 

The objective of this research was to assess the difference in historical simulations and future 33 

projections of rainfall and temperature of CMIP5 (RCP4.5 and 8.5) and CMIP6 (SSP2-4.5 34 

and 5-8.5) models over Southeast Asia (SEA). Monthly historical rainfall and temperature 35 

estimations of 13 global climate models common to both CMIPs were evaluated to assess 36 

their capability to reproduce the spatial distribution and seasonality of European Reanalysis 37 

(ERA) rainfall and temperature. Models were used to determine uncertainty with 38 

spatiotemporal variability of rainfall and temperature projections. The CMIP6 GCMs did not 39 

appear to perform better than the older CMIP5 in SEA unlike other parts of the globe, except 40 

for rainfall. The CMIP6 models showed Kling-Gupta Efficiency (KGE) values in the range 41 

of -0.48-0.6, 0.21-0.85 and 0.66-0.91 in simulating historical rainfall, maximum temperature 42 

and minimum temperature compared to 0.13-0.46, 0.3-0.86 and 0.42-0.92 for CMIP5. The 43 

improvement in CMIP6 models in SEA was in the low uncertainty in ensemble simulation. 44 

The projections of CMIP5 and CMIP6 showed a relatively smaller increase in temperature 45 

with the CMIP6 ensemble when compared to CMIP5 models, while rainfall appeared to 46 

decrease. The geographical distribution of the changes indicated a greater increase in 47 

temperature in the cooler region than in the warmer region. In contrast, there was increase in 48 

rainfall in the wetter region and a smaller improvement in the drier region. This indicates 49 

increased homogeneity in temperature spatial variability, but more heterogeneity in rainfall, 50 

in the SEA region under climate warming scenarios. 51 

 52 

Keywords Tropical climate, GCM, CMIP5/CMIP6, Uncertainty, Köppen climate 53 
classification   54 
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1. Introduction 55 

Climate change is a global issue due to the damaging effects on various sectors, including 56 

water resources, public health, energy, and agriculture (Lee et al., 2017; Muhammad et al., 57 

2019; Shahid, 2010; Shahid et al., 2017). Mapping possible changes in the climatic 58 

parameters is crucial for planning climate change adaptation and mitigation strategies. It is 59 

particularly important in environmentally-critical locations, where subtle changes in weather 60 

parameters may significantly impact the service sector. Global Climate Models (GCMs) have 61 

the ability to simulate the effects of greenhouse gas (GHG) emissions on climatic systems 62 

and realistically predict future conditions (Flato et al., 2013; Hartmann, 2016). These models 63 

are widely used to model past climatic conditions and project future responses to increased 64 

GHG emissions and land-use changes (Chen et al., 2014; Taylor et al., 2011; van Vuuren et 65 

al., 2011). A major advantage of GCMs is their ability to predict future climate in response 66 

to various atmospheric GHG concentration scenarios. These GCMs are available publicly as 67 

part of the Coupled Model Intercomparison Project (CMIP).  68 

 Most GCMs incorporate a large degree of uncertainty, primarily due to inadequate 69 

model descriptions of the physical processes driving the climate system and climate scenarios 70 

(Gao et al., 2019; Hamed et al., 2021a; Weigel et al., 2010). Certain models, however, are 71 

capable of resolving regional climatic events, thereby increasing their usefulness in 72 

predicting future climate change scenarios for a given region. It is normally a good idea to 73 

utilize all available climate models to reflect a complete range of future changes. CMIP 74 

models have rigorously improved over the years to overcome these uncertainties, from 75 

CMIP1 to the latest version, CMIP6 (Eyring et al., 2016). 76 

 CMIP6 GCMs differ from previous CMIPs in that the newest version provides a more 77 

accurate depiction of the Earth's physical processes. Additionally, the CMIP6 model forecasts 78 

additional scenarios using shared socioeconomic pathways (SSPs) (O’Neill et al., 2014; 79 

Schlund et al., 2020). These updated climate projections take socioeconomic developments, 80 

technological advancement, and other environmental factors (such as land use) into account 81 

(Moss et al., 2010), enabling the development of new scenarios to better evaluate the 82 

consequences of climate change policies. CMIP6 places a premium on coordinated 83 

experiments to gain a better understanding of the processes behind climate variability. As a 84 

result, CMIP6 GCMs are expected to minimize possible bias to a greater extent than their 85 

predecessors (Arias et al., 2021; Iqbal et al., 2021; Song et al., 2021b). 86 

Southeast Asia (SEA), located between two oceans (the Pacific to the east and the 87 

Indian to the west) and two continental regions (Asia and Australia), is considered the largest 88 
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archipelago in the world (Chang et al., 2005). The climate in this region is tropical, with high 89 

temperatures and well-distributed monthly rainfall of >200 mm. The climate is determined 90 

by latent heat release near the equator and convective tropical air masses. The rainfall 91 

distribution is controlled by a land-sea breeze process, resulting from the interaction of 92 

elevated island topography and synoptic winds (Hamed et al., 2021b; Qian, 2008).   93 

 SEA has experienced different climatic extremes over the last 50 years (including 94 

droughts during El Nino events and heavy rains in La Nina periods) especially in the 95 

Indonesian region (Dewi, 2010; Nasional, 2012). The mean temperature has risen by 0.1-96 

0.03°C per decade over the past 50 years, and the sea level has risen by 1-3 mm per year 97 

(IPCC, 2007). The severity and frequency of climatic extremes are likely to increase, putting 98 

the SEA region at risk of climate change impacts (Thirumalai et al., 2017; Ge et al., 2019; 99 

Nashwan et al., 2018a; Raghavan et al., 2017). Significant changes in seasonal rainfall 100 

patterns and an increase in the frequency of flooding and water shortage would profoundly 101 

affect many service sectors (Nashwan et al., 2018b; Nashwan and Shahid, 2022; Ziarh et al., 102 

2021). In order to be prepared for these increased impacts, policymakers must be informed 103 

about the climate change implications for these areas and the adaptation methods required to 104 

mitigate impacts and increase industry resilience.  105 

 Numerous studies have examined both the historical and potential future climate 106 

change in SEA and adjacent areas using GCMs (Desmet and Ngo-Duc, 2021; Iqbal et al., 107 

2021; Kang et al., 2019; Khadka et al., 2021; McSweeney et al., 2015; Noor et al., 2019; 108 

Salman et al., 2020; Supari et al., 2020; Supharatid et al., 2021; Tangang et al., 2020). For 109 

example, Iqbal et al. (2021) used compromised programming to rank 35 CMIP6 GCMs for 110 

Mainland Southeast Asia (MSEA). Analysis revealed that three GCMs could accurately 111 

reproduce annual mean rainfall over central and southern regions. Desmet and Ngo-Duc, 112 

(2021) investigated rainfall, near-surface temperature and wind for 28 CMIP6 models in 113 

SEA. They ranked GCMs by combining two different scores (spatial and temporal) to 114 

generate each variable score. A final global score, combining all variables, is then reported. 115 

Khadka et al. (2021) compared 28 CMIP5 and 32 CMIP6 GCMs to assess their ability to 116 

replicate large-scale atmospheric circulations over the SEA summer monsoon domain. These 117 

showed better performance for the CMPI6 GCMs than for CMIP5. These studies evaluated 118 

the historical performance of GCMs in regards of simulating climate over SEA. Only 119 

Supharatid et al. (2021) investigated the change in rainfall and temperature in SEA using 120 

CMIP6, although their study was confined to MSEA. They utilized two SSP scenarios to 121 

examine changes in climate parameters. It appears that a comprehensive assessment 122 
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involving a comparison of CMIP5 and CMIP6 historical simulations and future projection 123 

over the entire SEA (comprising both mainland and maritime continents) is lacking. Despite 124 

the governments in this region having already taken steps to reduce climate change effects 125 

based on the CMIP5 modelling, this planning could be negatively impacted by population 126 

growth and large-scale economic development. So the risk associated with climate change 127 

would not be uniform over the whole region. Governments in the region need current, 128 

detailed information to inform the adaptation strategies selected for various SSPs. A 129 

comparative evaluation of the projections, based on CMIP5 and CMIP6 models, is essential 130 

for the region in order to streamline all existing adaptation measures. 131 

This study aims to evaluate the difference in previous historical estimations and 132 

projections of CMIP5 and CMIP6 models over Southeast Asia. Both rainfall and temperature 133 

data are examined and evaluated to assess the validity of the decision-making process based 134 

on the various projections.   135 

 136 

2. Description of the study area and data 137 

2.1. Southeast Asia (SEA) 138 

SEA lies between latitude -10° - 30°N and longitude 90° - 141°E (Figure 1). SEA covers an 139 

area of about 4,550,000 km². It includes eleven countries and is made up of two main regions 140 

(Mainland and Maritime Southeast Asia). SEA is located within the zone of the Asian 141 

monsoon cycle, located between the Pacific and Indian Oceans. It is one of Asia's most active 142 

regions affected by convective heating processes. SEA has a generally level topography apart 143 

from some parts of Myanmar and Indonesia, where the elevation rises to 4000 m above sea 144 

level. The average yearly rainfall for the region varies between 750 and 5000 mm (Khan et 145 

al., 2019; Peel et al., 2007; Yang et al., 2021), and the mean temperature is 25 °C. As a result 146 

of the diverse spatiotemporal atmospheric processes occurring within the region, climate 147 

extremes such as droughts and floods are common in most parts of SEA.  148 
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 149 

Figure 1 Southeast Asian topography 150 

2.2. Gridded rainfall and temperature dataset  151 

To assess the ability of the GCMs’ to simulate annual rainfall, and maximum and 152 

minimum temperatures, ERA5 - a global high-resolution reanalysis dataset, is used. ERA5 is 153 

the fifth edition of the Copernicus Climate Change Service's (C3S) atmospheric, oceanic, and 154 

land-surface reanalysis product of the European Centre for Medium-Range Weather 155 

Forecasts (ECMWF) (Hersbach et al., 2020). This provides data on 240 atmospheric 156 

variables for different pressure level settings. ERA5 is generated by combining an enhanced 157 

version of the Integrated Forecasting System (IFS) cycle 41r2 with high-quality global 158 

observations. This study used the hourly ERA5 dataset of two climatic variables (e.g., rainfall 159 

and near-surface temperature) with a 0.25-degree spatial resolution, spanning the period from 160 

January 1979 to December 2005. The hourly rainfall is used to estimate the total monthly 161 

rainfall, while the highest and lowest diurnal temperatures were used to extract the average 162 

maximum and minimum temperatures. SEA is considered a data-scarce region due to the 163 

unavailability of high-quality long-term observation data (Li, 2020). The evenly spaced 164 

gridded dataset is generally used for model validation in data-scarce regions. ERA5 is a 165 

reanalysis climate data product that provides consistent high-resolution hourly data of several 166 
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climate variables. It should be noted that several studies have reported the use of ERA5 as a 167 

reference dataset near SEA (Khadka et al., 2021; Zhai et al., 2020; Zuluaga et al., 2021). 168 

The spatial distribution of mean annual rainfall, Tmx, and Tmn over SEA is shown in  169 

Figure 2. Hkakabo Razi Mountains in the north and Papua in the south experience the 170 

highest annual rainfall (>5000 mm), while the lowest can be found in the middle of Myanmar. 171 

Tmx is homogeneous in SEA except for the high mountainous regions. Tmn ranges from 15 to 172 

30 °C over SEA. However, Tmn in the northern region of SEA can be a low as -5 °C. 173 
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 174 
Figure 2 Spatial variability of yearly mean (a) Tmx and (b) Tmn, and (c) annual total rainfall 175 

over SEA during 1979–2005, estimated via ERA5. 176 

SEA is subject to a wide variability in climatic conditions. The region is classified 177 

into six climate zones based on Köppen climate classification (Peel et al., 2007): tropical 178 
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rainforest climate (Af), tropical monsoon climate (Am), tropical Savannah climate (Aw), 179 

temperate without dry season (Cf), temperature dry summer (Cs), and temperature dry winter 180 

(Cw). Due to small areal coverage of Cf, Cs, and Cw, they are combined and included in 181 

zone C (Figure 3). Af is major climate zone over the SEA, covering 47% of total area, 182 

whereby annual rainfall varies from 2000 to 4000 mm. During winter, the temperature drops 183 

to near freezing point (-5 to 0 °C), particularly in zone C, however it often rises to above 35 184 

°C during some summer days, particularly in Thailand in the Aw zone. Annual rainfall ranges 185 

from 760 to 1000 mm in most of the Aw zone. In general, the temperature in both Af and 186 

Am zones is greater than 18 °C, however the total rainfall amounts received are different 187 

(Alvares et al., 2013).  188 

 189 

 190 

Figure 3 Köppen climate classification of SEA based on ERA5 (1979-2005). Köppen climate 191 
classes are Tropical rainforest climate (Af), Tropical monsoon climate (Am), Tropical 192 
Savannah climate (Aw), Temperate without dry season (Cf), Temperature dry summer (Cs), 193 
and Temperature dry winter (Cw). 194 

 195 

2.3. Global climate models (GCMs)   196 

This study assesses the performance of 13 CMIP5 GCM's (Taylor et al., 2012) and their 197 

updated versions, CMIP6 (Eyring et al., 2016) over SEA. The output of the models have been 198 
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downloaded from the open-access platform https://esgf-node.llnl.gov. This site provides 199 

historical and future projections of monthly rainfall, Tmx and Tmn. The models details are 200 

presented in Table 1. Out of several variant labels available, the first one, r1i1p1 for CMIP5 201 

and r1i1p1f1 for CMIP6, is chosen to simplify the evaluation process. CMIP5 investigates 202 

several greenhouse gas emissions scenarios through the radiative concentration pathways 203 

(RCPs). In CMIP6, new SSPs are used which consider possible changes in the Earth's 204 

environment, as well as global economic and demographic trends. Future projections of the 205 

RCP 4.5 and 8.5 of CMIP5 are compared with their equivalent radative forcing in CMIP6, 206 

SSP2-4.5 and SSP5-8.5 in this study. 207 

Table 1 Detailed description of the CMIP5 and CMIP6 GCMs used in this research 208 

Institution / Country Abbreviation  Model Resolution 

Australian Research 
Council Centre of 
Excellence for Climate 
System Science, Australia 

ACCESS 
CMIP 5 ACCESS1-3 1.90 × 1.20° 

CMIP 6 ACCESS-CM2 1.87 × 1.25° 

Beijing Climate Center, 
Beijing, China BCC CMIP 5 BCC-CSM1.1-M 2.80 × 2.80° 

CMIP 6 BCC-CSM2-MR 1.12 × 1.12° 
Canadian Centre for 
Climate Modelling and 
Analysis, Victoria, Canada 

CANESM 
CMIP 5 CANESM2 2.80 × 2.80° 

CMIP 6 CanESM5  2.79 × 2.81° 
Euro‐Mediterranean Centre 
on Climate Change 
coupled climate model, 
Italy 

CMCC 
CMIP 5 CMCC-CM 0.70 × 0.70° 

CMIP 6 CMCC-ESM2 0.94 × 1.25° 

EC-Earth Consortium, 
Europe EC-EARTH CMIP 5 EC-EARTH 1.10 × 1.10° 

CMIP 6 EC-Earth3  0.35 × 0.35° 
Chinese Academy of 
Sciences Flexible Global 
Ocean-Atmosphere–Land 
System model, China 

FGOALS 
CMIP 5 FGOALS-g2 2.80 × 2.08° 

CMIP 6 FGOALS-g3  2.00 × 2.00° 

Geophysical Fluid 
Dynamics Laboratory, NJ, 
USA 

GFDL-ESM 
CMIP 5 GFDL-ESM2G 2.50 × 2.00° 

CMIP 6 GFDL-ESM4  1.00 × 1.25° 
Institute for Numerical 
Mathematics, Russia INMCM CMIP 5 INMCM4.0 2.00 × 1.50° 

CMIP 6 INM-CM5-0  2.00 × 1.50° 
Institute Pierre Simon 
Laplace (IPSL), Paris, 
France 

IPSL-CM-LR 
CMIP 5 IPSL-CM5A-LR 3.70 × 1.90° 

CMIP 6 IPSL-CM6A-LR 2.50 × 1.27° 

Japan Agency for Marine-
Earth Science and 
Technology (JAMSTEC), 
Kanagawa, Japan 

MIROC 
CMIP 5 MIROC5 1.40 × 1.40° 

CMIP 6 MIROC6  1.40 × 1.40° 

CMIP 5 MPI-ESM-MR 1.90 × 1.90° 
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Institution / Country Abbreviation  Model Resolution 

Max Planck Institute for 
Meteorology (MPI-M), 
Germany 

MPI-ESM-
HR CMIP 6 MPI-ESM1-2-HR 0.94 × 0.94° 

MPI-ESM-LR 
CMIP 5 MPI-ESM-LR 1.90 × 1.90° 
CMIP 6 MPI-ESM1-2-LR 1.87 × 1.86° 

Meteorological Research 
Institute, Ibaraki, Japan MRI CMIP 5 MRI-CGCM3 1.10 × 1.10° 

CMIP 6 MRI-ESM2-0  1.12 × 1.12° 
 209 

3. Methodology 210 

ERA5 0.25°×0.25° reanalysis dataset is used as a reference to evaluate CMIP5 and CMIP6 211 

GCMs. The evaluation process entails examining past performance of the three climatic 212 

variables (e.g., mean annual rainfall, Tmx and Tmn). This is carried out using statistical and 213 

graphical metrics. Ultimately the model ensemble mean is used to project future changes for 214 

each climate zone of SEA for different CMIPs. GCMs have spatial resolution ranges from 215 

0.70° to 3.70° (Table 1), so they are normally interpolated to a common spatial resolution of 216 

1.0°×1.0° using bilinear interpolation technique. The ERA5 data is also aggregated to the 217 

resolution of 1.0°×1.0°, so all datasets have similar grid sizes and therefore provide an 218 

unbiased comparison. Methodological details are presented below.  219 

3.1. Statistical and graphical analyses 220 

The Kling-Gupta efficiency (KGE) is employed to estimate the relative performance of the 221 

two CMIPs (Gupta et al., 2009; Kling et al., 2012). The KGE is a single metric designed to 222 

evaluate three statistical characteristics together (e.g., Pearson's correlation (r), spatial 223 

variability ratio and the normalized variance) as shown in equation (1). The combination of 224 

three metrics provides valuable diagnostic information about the model's performance. KGE 225 

is less susceptible to extremes and has greater capability to describe and quantify the overall 226 

fitness of GCMs (Radcliffe and Mukundan, 2017). The KGE value varies between 1 and -∞, 227 

where 1 represents a complete match. There is no specific meaning attached to the KGE value 228 

when it equals zero. However, Knoben et al., (2019) compared the KGE with the Nash-229 

Sutcliff efficiency index and noted that KGE values above -0.41 represented a reasonable 230 

performance, while values closer to 1 generally indicated high performance. The KGE is 231 

calculated for three climate variables of each GCM compared to the reference dataset (1979-232 

2005).  233 
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where 𝜇"#$ 	and 𝜇%&' are the mean, and σ"#$ 	and σ%&' are the standard deviation for GCM 234 

and ERA5 data, respectively.  235 

The Taylor diagram (Taylor, 2001) is employed to visually represent the  performance 236 

of each GCM. The diagram is a robust graphical plot that integrates three statistical metrics, 237 

degree of correlation (R), centered root-mean-square error (CRMSE) and ratio of spatial 238 

standard deviation (SD). CRMSE determines the discrepancies between two CMIPs and the 239 

ERA5 observed data. The blue line in the diagram represents constant CRMSD values, with 240 

values increasing with distance from the center. 241 

Statistical tests were employed to estimate the similarity between the seasonal 242 

variability of CMIPs and ERA5 rainfall, Tmx and Tmn, following Baker and Huang (2014). 243 

The tests include 1) t-test to show the similarity in the mean, 2) F-test to assess the similarity 244 

in data variance, and 3) Kolmogorov–Smirnov (KS) test to evaluate the similarity in data 245 

distribution (Sardeshmukh et al., 2000).  246 

3.2. Future projections  247 

Future projections of annual rainfall, Tmx and Tmn using GCMs of two CMIPs are compared 248 

with the historical period (1979-2005) to evaluate possible future climate changes in SEA. 249 

Two projections are considered: the medium (RCP4.5 and SSP2-4.5) and high (RCP8.5 and 250 

SSP5-8.5) impact scenarios. For a detailed comparison, future horizon was divided into near 251 

(2020-2059) and far (2060-2099) futures. The median and 95% confidence band of the 252 

projection interval are considered for each scenario in order to quantify the associated 253 

uncertainty of the different CMIP models. The seasonal variability of different climate zones 254 

for rainfall, Tmx and Tmn are measured for each model. Finally, maps are prepared to depict 255 

percentage of change in rainfall and absolute change in temperatures (°C). 256 

4. Results 257 

4.1. Evaluating skills of CMIP5 and CMIP6 GCMs 258 

Figure 4 depicts the ability of two CMIPs to replicate annual rainfall, Tmx, and Tmn in terms 259 

of KGE. A single radar chart is used to present KGE of CMIP5 (in light green) and CMIP6 260 

(in light red) GCMs for each climate variable. KGE values less than zero on the rainfall radar 261 
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chart are defined as zero for illustration purposes. It shows that GCMs are able to estimate 262 

Tmn better than Tmx and rainfall in SEA. The performance of the CMIP5 models and their 263 

improvements in CMIP6 are almost the same in simulating Tmx and Tmn. Few models of 264 

CMIP6 simulated Tmx better than previous versions, namely: MPI-ESM-HR, IPSL-CM-LR, 265 

GFDL-ESM, EC-Earth, CanESM and MRI. Both versions of FGOALS simulated a lower 266 

value of  Tmx than other models, indicating poor modelling capability. For Tmn, only five 267 

models of CMIP6 indicated better performance than their predecessors, including MPI-ESM-268 

HR, INM-CM, GFDL-ESM, EC-Earth and CanESM. INM-CM showed the largest 269 

improvement in CMIP6 for Tmn. Although the performance of the models of both CMIPs was 270 

nearly identical in replicating historical temperatures, CMIP6 GCMs displayed an enhanced 271 

ability to simulate historical rainfall in all cases apart from FGOALS and IPSL-CM-LR. 272 

Among the CMIP6 models, EC-EARTH was best in replicating all variables. ACCESS of 273 

CMIP6 exhibited the best performance in replicating rainfall (KGE 0.59) and CMCC of 274 

CMIP5 in replicating Tmx and Tmn (KGEs 0.86 and 0.92, respectively). KGEs of both 275 

FGOALS and IPSL-CM-LR were poor (KGEs -0.31 and -0.48, respectively) for rainfall, 276 

therefore indicating poor capability. 277 
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 278 
Figure 4 Performance of CMIP5 and CMIP6 GCMs in estimating historical annual average: 279 
(a) Tmx, (b) Tmn; and (c) rainfall during 1979-2005 280 
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KGE is the integration of three statistical metrics, namely Pearson’s correlation (r), 281 

mean of GCM to mean of ERA5 (b) and variability ratio (g). Figure 5 presents the three 282 

components of KGE in terms of r, b-1 and g-1 aiming to illustrate the most influencer 283 

component of the final KGE score. The r, b, g and KGE of CMIP5 and CMIP6 GCMs in 284 

simulating historical rainfall are presented in blue and red bars. The result indicates that all 285 

the components contribute significantly to a higher value of KGE. However, models that 286 

have near optimum values of b and g (e.g., MPI-ESM-LR) showed a low KGE due to low r, 287 

indicating a bit higher influence of spatial correlation on model performance. 288 

 289 

 290 

Figure 5 Bar charts show the performance of CMIP5 and CMIP6 in simulating historical 291 
rainfall based on KGE and its components.  292 

 293 

4.2. Taylor diagram  294 

The ability of the two CMIP models to estimate annual rainfall, Tmx and Tmn are presented 295 

(along with their MME means) as Taylor diagrams (Figure 6). Hollow circle on the x-axis 296 

presents reference data (i.e., ERA5). The CMIP5 and CMIP6 models are represented using 297 

coloured circles and triangles, respectively. The model symbol nearest to the hollow circle 298 

indicates the best performing model. The correlation of the models with the reference data is 299 
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best for Tmn (0.85). This is followed by Tmx (0.75) and then rainfall (0.45). A strong 300 

correlation for Tmn indicates better capability of GCMs of both CMIPs in modeling Tmn. 301 

Model over and underestimation, however, is noted. FGOALS of both CMIPs 302 

underestimated Tmx and Tmn variability, while INM-CM5-0 overestimated Tmn variability. 303 

The majority of models, of both CMIPs, simulated observed rainfall variability reasonably 304 

well, except for a large overestimation by IPSL-CM6A-LR and FGOALS-g3. 305 

 306 

 307 
Figure 6 Taylor diagrams, showing skill of the GCMs of two CMIPs in simulating: (a) Tmx; 308 

(b) Tmn; and (c) rainfall  309 

 310 

 311 
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4.3. Seasonal variability  312 

The multimodel ensemble (MME) medians of the available 13 GCMs for both CMIPs have 313 

been used to show bias in the seasonal variability of temperature and rainfall for each climatic 314 

zone when compared to ERA5. Figure 7 shows the month-to-month bias in Tmx. This is 315 

estimated by subtracting the CMIPs MME from ERA5. The dashed red line represents the 316 

bias in the CMIP5 MME median, while the dashed blue line represents the bias in the CMIP6 317 

MME median. The horizontal black dashed line represents the zero bias. The 95% confidence 318 

interval band of GCMs’ bias has also been provided to show simulation uncertainty. 319 

 Overall, the bias in MME median of CMIP6 was more aligned to the zero line than 320 

CMIP5. The 95% confidence interval band of the CMIP6 ensemble was also thinner, 321 

suggesting lower uncertainty in their estimates of Tmx than for CMIP5. The results also 322 

indicated that the inner model differences of CMIP6 were far less than for CMIP5. Both 323 

versions of CMIPs displayed higher uncertainties in simulating seasonal variability of Tmx in 324 

climate zone C than in other zones. Both CMIPs underestimated Tmx in zone Af. CMIP6 325 

overestimated Tmx in Am for all months, except January and February. Both versions also 326 

underestimated Tmx in the Aw climate zone for all months, except for the April to June period. 327 
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 328 

Figure 7 Seasonal variability in mean bias in Tmx of CMIP5 and CMIP6 GCMs compared 329 
to ERA5 dataset for four different climate zones (AF, Am, Aw and C) of SEA  330 

 331 

Figure 8 presents the month-to-month viability of bias in Tmn, estimated by the two 332 

CMIPs. Like Tmx, CMIP5 shows larger inter-modality in Tmn than CMIP6. This indicates low 333 

uncertainty in the CMIP6 simulations when compared to CMIP5. For most months, a subtle 334 

overestimation by GCMs of both CMIPs was noticed for the Af and Am zones, especially by 335 
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CMIP6. The median bias for the MMEs was nearly identical with ERA5 for the climate zone 336 

C, while the bias confidence interval band of CMIP5 was between -11 and 4 °C.   337 

 338 
Figure 8 Same as Figure 7, but for Tmn 339 

Similar results are seen for rainfall. Uncertainty in the CMIP6 rainfall bias (Figure 9) 340 

band is thinner than CMIP5 bias for all climate zones. However, CMIP6 MME overestimated 341 

rainfall for the Af zone to a greater degree than for CMIP5 MME. In the Am and Aw zone, 342 

MME of both CMIPs under and overestimated monsoon rainfall, respectively. The 343 



20 
 

differences were greater for CMIP6 MME. The highest underestimation by both CMIP 344 

MMEs was noted in zone C. Both CMIPs MME median and confidence interval band were 345 

below zero for most of the months. This indicates an underestimation of rainfall by all GCMs 346 

for both CMIPs in this zone.  347 

 348 
Figure 9 Same as Figure 7, but for rainfall 349 

 Overall, the results support the findings determined in statistical evaluations of the 350 

models. Table 2 presents the results of the t-test, KS test and F-test for seasonal rainfall, Tmx 351 
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and Tmn of CMIPs seasonal median and ERA5 in different climate zones. Both CMIP5 and 352 

CMIP6 seasonal MME were statistically indistinguishable at the 95% level based on all three 353 

tests in all climate zones, except zone Af for the t-test and KS test. The results indicate no 354 

significant difference in CMIP5 and CMIP6 models in SEA. Inter-model variability of 355 

CMIP6 GCMs, however, was less than for the CMIP5 GCMs. The uncertainty in simulations 356 

in CMIP6, therefore, was lower than for the CMIP5 GCMs. 357 

Table 2 The results obtained using Student’s t-test, KS and F-test for historical seasonal Tmx, 358 
Tmn and rainfall of CMIP5 and CMIP6 against ERA5 in different climate zones. Zero (0) 359 
indicates that the test supports the null hypothesis of no difference, while one (1) indicates 360 
rejection of the null hypothesis at the 5% significance level. 361 

Variable Month Zone Af Zone Am Zone Aw Zone C 
t  KS F t KS F t KS F t KS F 

Tmx CMIP5 vs ERA5 1 1 0 0 0 0 0 1 0 0 0 0 
CMIP6 vs ERA5 0 0 0 0 0 0 0 1 0 0 0 0 

Tmn CMIP5 vs ERA5 1 1 0 0 0 0 0 0 0 0 0 0 
CMIP6 vs ERA5 1 1 0 0 0 0 0 0 0 0 0 0 

Rainfall CMIP5 vs ERA5 0 0 0 0 0 0 0 0 0 0 0 0 
CMIP6 vs ERA5 1 0 0 0 0 0 0 0 0 0 0 0 

 362 

4.4. Projected Tmx, Tmn and rainfall 363 

Figure 10 shows the temporal evolution of Tmx (plots a and b) and Tmn (plots c and d) averaged 364 

over SEA by the MMEs of CMIP5 and CMIP6 for differing scenarios. The upper plots (e.g., 365 

a and c) show the projection for medium emission scenarios; RCP4.5 for CMIP5 and SSP2-366 

4.5 for CMIP6, respectively, while the lower plots (e.g., b and d) show the projection for 367 

high-end scenarios; RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6, respectively (Figure 10). 368 

The MME median projection is presented using an intermediate solid line for the applicable 369 

historical period (1979 – 2005 for CMIP5 and 1979 – 2014 for CMIP6) and the dashed line 370 

for the future period, while the band presents the 95% confidence interval of the projections. 371 

The blue line represents CMIP6, and the brown line represents CMIP5. A 30-year moving 372 

average is used to smooth the lines. 373 

 Figure 10 shows a much thinner confidence band (less uncertainty) in the projections 374 

for CMIP6 than its predecessors, CMIP5. For Tmx, both versions show nearly the same future 375 

projection for different scenarios for 2020-2059. CMIP6 shows a greater increase in Tmx for 376 

SSP2-4.5 and a reduced increase for SSP5-8.5 compared to RCP4.5 and 8.5 projections for 377 

2060-2099. Tmx is projected to reach 30.2 °C and 31.74 °C for SSP2-4.5 and 5-8.5, while 378 

29.9 °C and 31.97 °C for RCP4.5 and 8.5 by 2100. The CMIP5 MME median shows an 379 
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abrupt shift in Tmx between the historical estimations and the modeling forecasts. This is not 380 

seen in the CMIP6 modeling. A gradual increase in Tmx from historical to future periods 381 

indicates a realistic projection by CMIP6. 382 

 The MME median of CMIP6 shows a slight decrease in Tmn in the future (when 383 

compared to the CMIP5) for both scenarios (Figure 10). The Tmn is projected to reach 25.11 384 

°C and 26.6 °C for SSP2-4.5 and 5-8.5, and 25.29 °C and 26.7 °C for RCP4.5 and 8.5 by 385 

2100. As is the case for Tmx, CMIP6 also shows reduced uncertainty in the Tmn projection 386 

when compared to CMIP5. 387 

  388 

Figure 10 Temporal evolution of Tmx (°C) (a and b) and Tmn (°C) (c and d) for CMIP5 389 

(yellow) and CMIP6 (blue) under different scenarios (upper row) RCP4.5 and SSP2-4.5 and 390 

(lower row) RCP8.5 and SSP5-8.5. Shadings signify 95% projections confidence interval. 391 

The vertical line indicates the end of the historical estimations. 392 

 393 
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Figure 11 shows rainfall projections generated by CMIP5 and CMIP6 MME. The 394 

MME median of CMIP6 indicates the potential for a greater increase in rainfall in the future 395 

than does CMIP5. The uncertainty in the projections of both CMIPs, however, is similar. The 396 

CMIP6 MME projected an increase in rainfall from nearly 2500 mm from the present day to 397 

2700 mm by 2100 for SSP2-4.5, while CMIP5 MME indicated a potential for 2577 mm for 398 

RCP4.5 (Figure 11 (a)). For the higher scenario, the MME of both CMIPs projected the 399 

rainfall to reach 2640 mm by 2100 (Figure 11 (b)). Results indicate a greater decrease in 400 

rainfall for SSP5-8.5 than for SSP2-4.5, and a greater increase in rainfall for RCP8.5 than 401 

RCP4.5. 402 
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 403 

Figure 11 Annual rainfall (mm) projection by CMIP5 (yellow) and CMIP6 (blue) models for 404 
different scenarios: a) medium scenario (RCP4.5 and SSP2-4.5); and b) high scenario 405 
(RCP8.5 and SSP5-8.5) 406 

 407 

4.5. Spatial changes of temperature and rainfall 408 

Changes in annual Tmx, Tmn and rainfall were estimated using the MME mean of CMIPs for 409 

both the near and far futures, and for both the medium and high scenarios. These were 410 

compared to the historical period (1979-2005). 411 
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Figure 12 depicts the geographical distribution of projected change (°C) in Tmx. Both 412 

CMIPs projected a rise in Tmx for the two future periods. However, CMIP6 MME projected 413 

a smaller rise in Tmx than did CMIP5 MME. The projections of both CMIPs are highly 414 

consistent. Both MMEs projected a maximum increase in Tmx in the north (> 4.0 °C), and a 415 

minimum to the southeast (Papua), with a temperature of 1.0-1.33 °C in the near future and 416 

1.59-3.01 °C in far future. Tmx projections also show a reduced rate of temperature increase 417 

in the central parts of SEA. 418 

The increase in Tmn was similar to Tmx (Figure 13). In contrast to Tmx, however, the 419 

CMIP6 MME modelling projected a greater increase in Tmn than for CMIP5 MME, for both 420 

projection scenarios in both periods. Overall, Tmn is projected to increase more than Tmx. The 421 

greatest increase is seen in the north (5.02 °C), while the lowest is in the southeast, 0.96-1.27 422 

°C in near future and 1.57-3.08 °C in far future. Both Tmn and Tmx show the greatest increase 423 

in regions where historical temperatures are less and vice versa.  424 

Figure 14 shows the geographical variability in the projected changes in annual 425 

rainfall in percent. Both the CMIPs MME provided projections for annual rainfall for both 426 

the medium and high scenarios. The greatest increase is projected for the near future for 427 

SSP2-4.5. Both CMIPs, however, display a 25% decrease in rainfall in the south (Java) and 428 

southwest (Sumatra) parts of SEA. Rainfall increases in the northwest (Borneo and 429 

Indonesia) and the southeast (Papua). A 10 to 20% increase in rainfall in those regions is 430 

projected in the far future, for all scenarios. Rainfall would increase in the higher rainfall 431 

regions of SEA.  432 
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 433 

Figure 12 Geographical variability of the change in Tmx (°C) over SEA based on MME of 434 
CMIP5 and CMIP6 for two futures in medium and high projection scenarios 435 
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 436 
Figure 13 Same as Figure 12, but for Tmn (°C) 437 
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 438 

Figure 14 Same as Figure 12, but for rainfall 439 

 440 
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5. Discussion 441 

A large number of studies have examined the ability of CMIP5 and CMIP6 GCMs to estimate 442 

the historical climate in different regions of the globe (Jain et al., 2019; Gusain et al., 2020; 443 

Kamruzzaman et al., 2021; Song et al., 2021a; Yazdandoost et al., 2021). Overall, these 444 

studies have revealed an improvement in the CMIP6 models compared to previous versions, 445 

i.e. CMIP5. Improvements in CMIP6 modelling have been noted in studies of the Tibetian 446 

Plateau (Lun et al., 2021), Central and South America (Ortega et al., 2021), Columbia (Arias 447 

et al., 2021), Meditteranean region (Bağçaci et al., 2021). The superiority of CMIP6 models 448 

over the older CMIP5 models was also reported for extreme indices work over East Africa 449 

(Ayugi et al., 2021), extreme rainfall and temperature in major river basins of China (Zhu et 450 

al., 2021), extreme precipitation over the whole of China (Luo et al., 2021), Australia (Deng 451 

et al., 2021), and Western North Pacific and East Asia (Chen et al., 2021). CMIP6 models 452 

were found to simulate climatic variables more accurately than CMIP5 models. For example, 453 

Jiang et al., (2021) found improved measurement of clouds and vapor over the tropical ocean 454 

using CMIP6. In the nearby region of SEA, Jain et al., (2019) reported enhancement of 455 

CMIP6 GCMs over Central and North India. Gusain et al., (2020) reported the higher 456 

capability of CMIP6 GCMs in estimating the Indian summer rainfall. Song et al., (2021b) 457 

showed an improvement in CMIP6 modelling over South Korea. Kamruzzaman et al., (2021) 458 

found there was an enhanced ability of CMIP6 MME to replicate spatial variability of rainfall 459 

and temperature over Bangladesh when compared with CMIP5 MME.  460 

The current study findings were different to those noted in other parts of the world, 461 

with the performance of CMIP6 GCMs found to be similar to that of CMIP5. The KGE 462 

showed an improvement in some of the CMIP6 GCMs in simulating historical rainfall, 463 

however, the Taylor diagram indicated similar performance of GCMs for both CMIPs. The 464 

major difference in the CMIP6 models when compared to the CMIP5 models was less inter-465 

model variability. Due to this, the uncertainty bond in CMIP6 ensemble was much narrower 466 

than in the CMIP5 ensemble. A comparable finding is reported by Deng et al., (2021) when 467 

comparing the performance of CMIPs in simulating temperature extremes over Australia. 468 

These showed narrower ensemble ranges for CMIP6 models when compared to CMIP5 469 

models (Deng et al., 2021). These results indicate more consistency in simulations using 470 

CMIP6 GCMs when compared to CMIP5 GCMs. All CMIP6 GCMs used the same forcing 471 

datasets and boundary conditions (Taylor et al., 2018). Therefore, the simulations of CMIP6 472 

GCMs are more consistent. 473 
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The results reported here also contradict the findings from Khadka et al., (2021) over 474 

SEA. That study did not use common models to compare both CMIPs and also used different 475 

subsets of the CMIP5 and CMIP6 GCMs. In the current study, common GCMs for both 476 

CMIPs were used and so provided an estimation of the relative performance of the GCMs. 477 

Khadka et al., (2021) also used correlation and RMSE for measuring the performance of the 478 

GCMs. So two metrics were used to estimate different properties of the model performance. 479 

It should be noted that making decisions using multiple statistical metrics is always 480 

problematic, as using different metrics can often provide different outcomes. For this reason, 481 

the current study used an integrated metric (KGE). This measures the ability of the model to 482 

construct spatial distributions, variables and bias, and thus has provided a reliable assessment 483 

of GCM capability. 484 

The SEA is comprised of both mainland and maritime continents. Shallow and deep 485 

marginal seas, with complex land-sea distribution and topography, have resulted in a complex 486 

climatic regime (Robertson et al., 2011). Atmospheric circulation patterns (resulting from the 487 

land-sea configuration) make seasonal temperatures and rainfall asymmetric over the region 488 

(Yoneyama and Zhang, 2020). These factors may have influenced CMIP6 modelling 489 

performance and affected the improved capability noted in other studies when comparing 490 

performance against the older CMIP5 models. 491 

 This study reported some inconsistencies in the projection of temperature and rainfall 492 

for both the CMIP5 and CMIP6 models. CMIP6 showed a large increase in Tmx for SSP2-4.5 493 

and a small increase for SSP5-8.5, compared to RCP4.5 and 8.5, for the far future projections 494 

(2060-2099). The MME mean of CMIP6 showed a slight decrease in Tmn in future than 495 

CMIP5 for both scenarios. In contrast to Tmx, CMIP6 MME projected an increase in Tmn 496 

compared to CMIP5 MME for both projection scenarios in all periods. This has also 497 

contradicted the findings available for other regions. SSP scenarios have previously been 498 

reported as indicating a greater increase in temperature than their equivalent RCP scenarios 499 

(Ortega et al., 2021). However, both CMIPs have reported a greater increase in Tmn when 500 

compared to Tmx, as noted in other regions. The greatest inconsistency in the CMIP5 and 501 

CMIP6 GCMs was in the rainfall projections. The results showed a decrease in rainfall for 502 

SSP5-8.5 as compared to SSP2-4.5, with an increase in rainfall noted for RCP8.5 compared 503 

to RCP4.5. This indicated an increase in rainfall with increase in temperature for CMIP5 504 

MME in the region. In contrast, CMIP6 MME showed a decrease in rainfall for SSP5-8.5 505 

despite a rise in temperature.  506 
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 The spatial distribution of temperature and rainfall changes revealed a greater 507 

increase in temperature in the cooler regions and a reduced increase in the warmer regions. 508 

This was in contrast to the rainfall projections. Increased rainfall was noted in the high rainfall 509 

regions and reduced rainfall in the current low rainfall regions. The results indicated more 510 

homogeneity in the geographical variability of temperature, but more heterogeneity in the 511 

spatial distribution of rainfall. The current temperature in the region is more homogeneous 512 

than in any other part of the world and the present study indicates that this would continue 513 

into the future. In contrast, the current spatial distribution of rainfall in SEA is highly diverse, 514 

ranging from 750 mm to >6000 mm. Some parts of Papua in the southeast receive the highest 515 

rainfall globally (~ 11000 mm). The SEA has the highest density of animal life on the planet 516 

with the various species inhabiting a narrow climatic niche. Climate change is expected to 517 

increase species diversity.  518 

 519 

6. Conclusion 520 

The present study evaluated the use of CMIP5 and CMIP6 in developing present and future 521 

climate projections for the Southeast Asia region. Uncertainties in historical simulation and 522 

future projections of the CMIPs were also examined as part of determining overall model 523 

performance. The study revealed no significant improvement in GCMs (from CMIP5 to 524 

CMIP6) in simulating present-day temperature and rainfall over SEA. However, the CMIP6 525 

ensemble did display less uncertainty in the simulation work than CMIP5. This indicated a 526 

greater degree of confidence could be assumed in any decision-making based on the CMIP6 527 

projections. Both CMIPs revealed that a rise in temperature and rainfall in most of SEA 528 

would occur. Some inconsistencies in the CMIP5 and CMIP6 models projections were noted. 529 

This has emphasized the need to streamline existing adaptation measures, particularly those 530 

arising from CMIP6 SSP scenarios. The study projected a decrease or an insignificant 531 

increase in rainfall in the low rainfall region. This may increase both flood and water stress 532 

in the region. Any changes in the homogeneity in temperature and rainfall could significantly 533 

affect the biodiversity in the region. Future modelling should take account of the increased 534 

availability of GCMs both CMIPs, and utilize the ability to compare and contrast the various 535 

model iterations.  536 

  537 
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