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Abstract—This paper proposes a novel non-intrusive load
monitoring (NILM) method which incorporates appliance usage
patterns (AUPs) to improve performance of active load identifi-
cation and forecasting. In the first stage, the AUPs of a given
residence were learned using a spectral decomposition based
standard NILM algorithm. Then, learnt AUPs were utilized to
bias the priori probabilities of the appliances through a specif-
ically constructed fuzzy system. The AUPs contain likelihood
measures for each appliance to be active at the present instant
based on the recent activity/inactivity of appliances and the
time of day. Hence, the priori probabilities determined through
the AUPs increase the active load identification accuracy of the
NILM algorithm. The proposed method was successfully tested
for two standard databases containing real household measure-
ments in USA and Germany. The proposed method demonstrates
an improvement in active load estimation when applied to the
aforementioned databases as the proposed method augments the
smart meter readings with the behavioral trends obtained from
AUPs. Furthermore, a residential power consumption forecast-
ing mechanism, which can predict the total active power demand
of an aggregated set of houses, 5 min ahead of real time, was
successfully formulated and implemented utilizing the proposed
AUP based technique.

Index Terms—Non-intrusive load monitoring (NILM), fuzzy
systems, usage patterns, smart grid, demand side management
(DSM), direct load control (DLC), demand response (DR).

I. INTRODUCTION

I
N THE recent years, Demand Side Management (DSM)

has become an essential element of the rapidly develop-

ing smart grid; mainly as a result of increasing penetration

of intermittent and variable renewable energy sources such as
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solar photovoltaic (PV) and wind. Due to the unpredictable

nature of the generation, maintaining the second-by-second

balance between demand and generation has become a chal-

lenging task, if an expensive reserve service is not maintained.

As reserve services are mainly provided by operating certain

power plants below their rating, this not only underutilizes

its own capacity but also results in them being operated

inefficiently. As a viable solution to this problem, DSM is

considered. DSM tries to reduce/increase the demand either

by shifting or reducing the consumption so that the avail-

able generation can be utilized efficiently while maintaining a

minimum reserve.

Direct Load Control (DLC) is one attractive option for

DSM which helps the utility to shape the customer energy

consumption profile by remotely controlling customers pre-

agreed set of controllable appliances such as, heat, ventilation,

air-conditioning and smart (HVACS) systems. Even though a

smart meter connected at the consumer premises could make

these HVACS loads flexible, unless the grid operator knows

the amount of flexible load that is available at a given time,

the utilities continue to maintain a large reserve by deloading

generators.

This paper proposes a solution to this problem in the

form of a Load Monitoring (LM) method that can predict

the amount of flexible load available at consumer premises.

Using LM, the set of appliances that are currently turned

ON and their individual energy contributions at a customer

premise is predicted. Even though LM could be achieved

by attaching sensors for each appliance, due to the imple-

mentation cost and the complexity, it is not a feasible

solution. In contrast, Non-Intrusive Load Monitoring (NILM)

approaches, in which only the total power at the entry

point to the consumer premise is monitored to find the load

activities [1], involve lower implementation cost and com-

plexity. Due to these advantages, NILM methods are gaining

popularity.

A. Related Work

Throughout literature, a number of different NILM meth-

ods have been proposed. In general, those NILM methods

can be categorized based on the type of measurements uti-

lized, as steady state methods and transient state methods.
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Among steady state measurement based NILM methods,

information of active power [2]–[5], reactive power [6], har-

monic content [7], [8], and voltage-current trajectory [9], [10]

are commonly utilized. In transient state measurement based

NILM methods, voltage and current [11]–[13], power [8] as

well as harmonic information [7], [14] have been utilized.

NILM methods based on steady state measurements have

the common difficulty of identifying non resistive appli-

ances [1], [15], [16] and appliances which cause non-discrete

changes in power [17]. Transient measurement based NILM

methods have the common drawback of requiring measure-

ments with higher sampling rates in kilohertz range [18]–[20].

Such methods require high communication bandwidths and

processing power. Moreover, some of the aforementioned

techniques require more than one electrical measurement,

resulting in the need for costly, multi-functional smart meters.

Considering all these factors, for a scalable NILM solu-

tion, such commercial costs and implementation complexities

should be mitigated.

In more recent works, this NILM problem has been further

studied along several different major avenues. In [21] and [22],

several multi-label classification techniques based on wavelet-

domain and time-domain feature sets have been evaluated

to address the NILM problem. In parallel, Graph Signal

Processing based techniques have been utilized in [23]–[25]

for the same purpose. In [26]–[28], event detection and cluster-

ing avenue have also been explored to address the same NILM

problem, based on Subtractive Clustering, Bayesian-Viterbi

Clustering and Dynamic Time Warping techniques respec-

tively. Further, Sparse Coding (SC) and Hidden Markov Model

(HMM) based techniques are also two emerging avenues in

the same research. NILM methods proposed in [29]–[31] are

based on learning a basis for each individual appliance through

sparse coding and dictionary learning. These methods use

Deep-SC, ‘Powerlet’ Learning and Descriptive-SC techniques

respectively. In [5] and [32]–[38], number of different HMM-

based NILM techniques have been discussed. Furthermore, a

more detailed overview on various such recent NILM methods

have been presented in [21] and [39]–[41].

Even though there are many such diverse NILM approaches

suggested in [1]–[25] and [29]–[42] almost all the NILM meth-

ods estimate the present turned ON appliance combination

based on the recently collected set of measurements. For exam-

ple, the NILM strategy proposed in [3] decides the currently

turned ON appliance combination based on ten most recent

set of total active power measurements. Most of the proposed

NILM methods completely rely on smart meter measurements

without incorporating any of the activity that happened in the

recent past in terms of load activity and inactivity. Due to this

reason, a single erroneous or unlearned measurement has the

potential to mislead the NILM algorithm.

B. Contributions

As a remedy to the above mentioned common shortcom-

ing of NILM methods, this paper proposes a NILM method

which adapts itself to the user behavioral patterns rather than

being rigidly dependent on collected measurements or on the

learning period. This proposed NILM method uses the NILM

technique in [2] and improves upon it to gain this added adapt-

ability. Hence, in this proposed novel approach, individual

appliance usage patterns (AUPs) are used to augment the direct

smart meter measurements to identify the currently turned ON

appliance combination.

In this approach, the priori probabilities of individual appli-

ances at the current time instant are calculated using a devel-

oped fuzzy system. This fuzzy system utilize the pre-observed

historical individual AUPs containing historical activity of

each appliance as pertaining to the time of day and turned

ON/OFF duration likelihoods.

Further, to calculate the individual appliance priori probabil-

ities, the developed fuzzy system also uses the information of

the turned ON appliance combinations identified in the recent

past.

The individual appliance priori probability is the probability

of that appliance being in the turned ON state at the current

time instant. This key information is appropriately biased for

each appliance depending on the current behavior trends and

then considered in the proposed NILM method to find the most

probable currently turned ON appliance combination.

Hence the proposed NILM method does not solely depend

on collected measurements. To decide the NILM solution at

a certain time instant, apart from collected active power mea-

surements, it also considers the priori probability values (given

by pre-observed AUPs) of each appliance combination. As a

result of this novel approach, it delivers more accurate NILM

results when compared to very recent NILM methods.

Further, this paper proposes a novel load forecasting tech-

nique which uses the learned usage patterns of appliances

together with the present NILM result to predict the load pro-

file of an aggregated set of houses a few minutes ahead of

current time. Since this proposed total load forecasting tech-

nique incorporates both the AUPs as well as the current NILM

solution, it clearly demonstrates the viability of applying the

proposed NILM method and its incorporated AUPs in a DSM

application such as in DLC.

Furthermore, in this paper, implementation and scalability

aspects of the proposed complete NILM solution (with fore-

casting) have been explored. This is a clear contribution of

this paper as none of the NILM methods existing in the litera-

ture have not extensively demonstrated such applicability and

practicality of NILM in DSM.

In the proceeding sections, first, the underlying NILM tech-

nique is summarized under Section II. Then, the improvement

of the NILM algorithm by studying appliance usage pattern

is examined in Section III. Finally, the proposed total power

profile forecasting mechanism is introduced in Section IV.

II. UNDERLYING NILM METHOD USED

A. Overview of the NILM Algorithm

The overall flow of the proposed NILM algorithm is

described in Fig. 1. The main steps are,

1) Feature extraction from individual appliance power pro-

files (in Reading Set 1 - RS1) by the Karhunen Loève

Expansion (KLE) based technique described in [3].
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Fig. 1. Overall Flow of the Proposed NILM Algorithm.

2) Creation of Appliance/Combination/Power consumption

level signature databases using extracted features.

3) Turned ON appliance combination identification using

initial priori unbiased NILM step (for Reading

Set 2 - RS2).

4) Appliance Usage Pattern (AUP) extraction using the

obtained initial result (of RS2).

5) Evaluation of priori biased NILM method using con-

structed AUP based fuzzily priori biasing technique (for

Reading Set 3 - RS3).

6) Aggregated residential power profile forecasting method

(using the priori biased NILM result and usage patterns).

For the ease of explanation, steps 1-3 are referred to

as “Stage A” of the proposed NILM method. This section

describes the processes involved in Stage A. An in-depth anal-

ysis about this stage can be found in [2]. The final three

steps are referred to as “Stage B” and it is introduced in

Sections III and IV.

Individual appliance power profiles taken from two publicly

available datasets containing real measurements collected from

U.S. and German households were considered for this study.

They are Tracebase Database [43] and Reference Energy

Disaggregation Dataset (REDD) [34]. A publicly available

toolkit named NILM Toolkit (NILMTK) [44] was utilized for

dataset conversion and data pre-processing.

B. KLE Based Appliance Feature Extraction

If X = [X(n) X(n−1) . . . X(n−i+1) . . . X(n−N+1)]
T is a sliding

window (SW) of an individual appliance active power trace

(taken from RS1, at time instant n), its KLE is given by,

X = Qx̄ =

N̄
∑

i=1

qT
i Xqi (1)

where, q1, q2, . . . , qN̄ are the eigenvectors and Q is the eigen-

vector matrix of the Autocorrelation Matrix (ACM) of X.

Further, x̄ is the Karhunen Loève Transform of X.

According to (1), signal X was decomposed into N̄ number

of mutually uncorrelated spectral components which are also

known as Subspace Components (SCs) of X, named hereafter

as, x1, x2, . . . , xN̄ where xi = qT
i Xqi. Here, qi can be thought

of as a narrow band eigen-filter whose output is sinusoidal

with a center freq of fci and phase angle of θi. Thereafter, the

average amplitude of SC, which is incidentally the eigenvalue

λi, and the phase angle θi formed the complex features for

each SC. This is converted to rectangular form via relations,

Rei = λicos(θi) and Imi = λisin(θi). With that, for each SW

of length N there are N̄ number of SCs denoted by xi and each

of these SCs have three features, namely fci, Rei and Imi. In

order to establish the stationarity within the SW, parameters

N and N̄ has been chosen as ten and five respectively.

C. Signature Database Construction

Using the feature data obtained from each SW of train-

ing data (i.e., the RS1) for an appliance, 2D histograms

were formulated for each center frequency fc. Once these

histograms are normalized, they yield the probability of hav-

ing a feature; for instance, (Re1, Im1) at fc = 0.2 Hz

for the learned appliance (say A1). This is denoted sim-

ply as an appliance level Probability Mass Function (PMF)

P(A1,fc=0.2Hz)(Re1, Im1). Utilizing each of these constructed

appliance specific PMFs, a set of appliance combination spe-

cific PMFs for each fc for each possible appliance combination

were constructed through mathematical convolution opera-

tion between corresponding appliance specific PMFs [3]. This

gives the probability of obtaining a feature when that appliance

combination is currently turned ON.

These generated sets of appliance specific PMFs and appli-

ance combination specific PMFs form the appliance level

signature database (ALSD) and the combination level signa-

ture databases (CLSD) respectively [45]. Furthermore, in order

to perform the power level disaggregation according to [46]

after the active appliance combination is identified, the power

consumption levels of each and every appliance were studied
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Algorithm 1 Work Flow of Appliance Combination
Identification in Initial Priori Unbiased NILM Step (for RS2)

1: for each SW in RS2 do
2: Extract features from the SW; #5 SCs: Zi; i = 1, 2, ..., 5;
3: Set i = 1; #Iteration or SC Number
4: Set execution = 1; #Matching Incomplete Yet

5: Set S0 = {Cj : j = 2Napps} #Set of All Combinations
6: Apply the PES to S0 and obtain S1;
7: while execution do #Iterative SC Matching

8: Consider the ith dominant SC : Zi;
9: Apply the FES to S1 or S3 and obtain S2;

10: Apply the SES to S2 and obtain S3;
11: Apply the MAP criteria to S3 and obtain S4; #Get γCj,i

12: if γCj,i
> 0.99 then #Matching of Cj upto ith SC

13: Output: Turned ON Appliance Combination = Cj;
14: Set execution = 0; #Matching Complete
15: else if (i == 5) ∪ (S4 ∈ ø) then
16: Output: Most Probable Solution: argmax(γCj,i

, Cj);

17: Set execution = 0; #Matching Complete
18: else
19: i = i + 1 #Go to Next SC Matching
20: end if
21: end while
22: end for

and a power consumption level signature database (PCLSD)

was constructed [46].

D. Initial Priori Unbiased NILM Step

The next step of the proposed NILM method is to evaluate

the initial priori unbiased NILM step for the aggregated power

profile of RS2. In this step, every appliance combination was

considered to have an equal priori probability value to be the

currently active appliance combination. Thus, it is called the

priori unbiased NILM step in this paper.

First, as in [3], sliding windows of 10 samples taken from

the aggregated power profile in RS2 were considered sequen-

tially. Such a sliding window is referred to as an observation

sliding window (OSW). Then for each OSW, its corresponding

set of features were extracted in the same way as described

in Section II-B. After that, these extracted features (i.e., the

five SCs) were used to find the matching turned ON appliance

combination corresponding to that particular OSW. The con-

structed CLSD was utilized for this matching purpose, where

the possible features corresponding to every viable appliance

combination had been stored. This identification process is

summarized in Algorithm 1.

Initially, all the possible appliance combinations were con-

sidered as viable solutions and then appliance combinations

were rapidly reduced based on a “pre-elimination stage”

(PES), a “first elimination stage” (FES), and a “second elimi-

nation stage” (SES). Finally, a Maximum a Posteriori (MAP)

criteria was applied to evaluate the most likely solution.

At PES, the static level of the OSW (i.e., the first SC) is

compared with the minimum static levels obtained for every

possible appliance combination. Then every appliance combi-

nation with a minimum static level larger than the measured

active power signals static level (i.e., within the OSW in con-

cern) was eliminated. At FES, average power level of each

SC was used to eliminate the appliance combinations which

showed lower maximum possible average SC power levels [2].

After that, at the SES, for every remaining appliance combi-

nation, probability of generating the current SC of the OSW

was calculated using the PMFs stored in the CLSD. These

values were denoted by P(Zi/Cj) where Zi is the features of

ith SC of an OSW and Cj is the jth appliance combination. If

this likelihood value is not larger than 0.1, those combinations

were also eliminated.

Then at the MAP criteria, probabilities obtained after the

SES were utilized to calculate the most probable appliance

combination which matched all OSW SCs up to the current

iteration. This MAP criteria value is given by,

γCj,i =
P
(

Cj/Z1,...,i

)

∑

∀j

P
(

Cj/Z1,...,i

)

, (2)

where,

P

(

Cj

Z1,...,i

)

=

i
∏

k=1

P

(

Cj

Zk

)

=

i
∏

k=1

P
(

Zk

Cj

)

P
(

Cj

)

∑

∀j

P
(

Zk

Cj

)

P
(

Cj

)

. (3)

Here, P(Zk/Cj) values are taken from the pre-constructed

CLSD and P(Cj) denotes the priori probability of the appliance

combination Cj. In this step, since every appliance combina-

tion was assumed to have an equal priori probability value, (3)

was simplified further by assuming,

∀j, ∀OSWs : P
(

Cj

)

= constant. (4)

If the calculated γCj,i value in (2) is larger than 0.99 for a cer-

tain appliance combination Cj, in a certain iteration i, then that

combination was taken as the identified initial NILM solution

(i.e., the active set of appliances) for that OSW [2].

Finally, after evaluating Algorithm 1 for the RS2, through

the obtained results at the end of Stage A, each Appliance

Usage Pattern (AUP) was observed.

Next section describes how the proposed NILM method in

this paper utilized these observed AUPs to use the full MAP

criteria definition given in (3) without assuming (4).

III. STUDY OF APPLIANCE USAGE PATTERNS (AUPS)

In the NILM method proposed in [2], which was also used

in stage A, the turned ON appliance combination at a partic-

ular time instant was found by considering the most recent

few samples of measurements (i.e., by using the OSW). This

direct dependence between NILM result and the sensor mea-

surements hinders the accuracy levels. Therefore, as a remedy,

historical AUPs were used to enhance the accuracy of the

NILM method.

For example, due to an anomaly in measurements such as,

sensor measurement noises, interferences or unlearned behav-

ior of appliances and residential voltage level fluctuations,

correctly identified appliance combination given by a NILM

method may get altered by yielding an incorrect appliance

combination for a small duration of time. However, it is under-

standable that a sudden changes in the turned ON appliance

combination within a residential building is unlikely.

In the proposed NILM method, an avenue was created to

utilize the observed AUPs from the results of Stage A, in order
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to obtain the priori probability values for each appliance com-

bination for each OSW in Stage B. This section describes the

extracted AUPs, the technique used to calculate the priori prob-

abilities and the method which utilized the calculated priori

probabilities referred to as the “priori biased NILM method”.

A. Extracted Different Appliance Usage Pattern Profiles

Vital information was revealed when analyzing the AUPs

obtained from Stage A (See Fig. 1) of the proposed NILM

method. First, by exploring the individual appliance usage pro-

files given by the results of Stage A (for the RS2), it was

found that most of the appliances show certain ON durations

followed by certain OFF durations more often. For example,

appliances like Refrigerators, Freezers and Water Fountains

show specific ON and OFF duration occurrences more fre-

quently. Further, it was noticed that, some appliances are in

the ON state more commonly during a particular time period

of the day. For example, certain Lamps are more likely to be

in the ON state during the night and in the early morning.

Therefore, in order to interpret AUPs, these three parameters

ON Duration (OnDu), OFF Duration (OFFDu) and Time of

Day (TOD) were used.

In Stage B, results from Stage A were utilized to extract

the ON and OFF durations characteristics of each appli-

ance. Then the appliance specific histograms for ON and

OFF durations were constructed and converted to correspond-

ing Complementary Cumulative Mass Functions (CCMFs) as

respectively given by,

PONDu,Ak
(t) = P(ONDu ≥ t), (5)

and,

POFFDu,Ak
(t) = P(OFFDu ≥ t). (6)

Here, (5) gives the probability of the kth appliance Ak being

used for a duration of time more than t seconds. For exam-

ple, ON duration histogram and respective CCMF curve

obtained (PONDu(t)) for the Freezer (FR) is given in Fig. 2(a).

According to that histogram, ON duration of the FR takes a

bimodal behavior where it is most likely to show an ON dura-

tion of 5 or 10 minutes. Also FR is less likely to show an ON

duration more than 12 minutes or less than 4 minutes.

Similarly, (6) describes the probability of appliance Ak being

in switched OFF state for a duration of time more than t

seconds. As an example, OFF Duration histogram and the

obtained POFFDu(t) curve for the FR is shown in Fig. 2(b).

Note that CCMF curves in Fig. 2 should be read using the

right hand side y-axis.

Then, the first CCMF in (5) was converted into a conditional

Probability Mass Function (PMF) using,

PON,Ak
(t) = P

(

OnDu > t

OnDu > (t − 1)

)

=
PONDu,Ak

(t)

PONDu,Ak
(t − 1)

, (7)

which gave the probability of the appliance Ak being in the

turned ON state in the current time instant, given that it has

been in the turned ON state for a duration of time t seconds

up till now. Similarly, the probability of appliance Ak being

Fig. 2. (a) PONDu(t) and (b) POFFDu(t) for FR.

Fig. 3. PTOD(t) for WM and TV.

switched ON in the current time instant after being in the OFF

state for a duration of time t seconds up to now is,

POFF,Ak
(t) = 1 −

POFFDu,Ak
(t)

POFFDu,Ak
(t − 1)

. (8)

Finally, through tracking the time of day on which the

appliance Ak has been mostly used, a likelihood function was

constructed as PTOD,Ak
(t) which gave the likelihood of an

appliance being used at a given time in a day. Fig. 3 shows

the constructed PTOD(t) for the Television (TV) and wash-

ing machine (WM). Following this technique, AUPs were

characterized in terms of three appliance specific likelihood

functions: PON,Ak
(t), POFF,Ak

(t) and PTOD,Ak
(t).

B. Fuzzy Based Priori Probability (PP) Calculating Strategy

As the step after the AUP extraction described in

Section III-A, through the constructed likelihood functions,

a fuzzy logic based priori probability (PP) calculating tech-

nique was used to obtain the appliance combination specific

PP values P(Cj). Those PP values were used to generalize

the evaluation of MAP criteria in (3) without assuming the

constraint in (4).

For an appliance combination Cj = {A1, A2, . . . , An} where

n ∈ {1, 2, . . . , NA}; NA = number of appliances; and j ∈

{1, 2, . . . , 2NA}; its priori probability at the time instant t = t0
was obtained from under the assumption that all appliances

are independent as,

P
(

Cj

)

|t=t0 =

n
∏

k=1

PPP,Ak
(t0). (9)

Here, PPP,Ak
(t0) denotes the PP value of the appliance Ak at

time instant t = t0. In order to get this value, first, the history

of the given appliance state (ON or OFF) was used to obtain

the corresponding time duration that the appliance remained

in that state. While executing the proposed NILM method for

each appliance, the state history and the corresponding time

durations were updated and stored. Now, through the con-

structed likelihood functions in (7) or (8), either PON,Ak(t0)
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Fig. 4. FIS used to get the PP when Ak is ON : (FISON,Ak
).

Fig. 5. FIS used to get the PP when Ak is OFF : (FISOFF,Ak
).

or POFF,Ak
(t0) was found for each appliance Ak depending

on its ON/OFF state. Further, a time of day based likelihood

value for the appliance Ak was also evaluated based on the con-

structed likelihood function PTOD,Ak
. Based on the most recent

state of the appliance Ak, one of constructed Fuzzy Inference

Systems (FISs) out of FISON,Ak
in Fig. 4 or FISOFF,Ak

in Fig. 5

was used to get the PPP,Ak
(t0) value appropriately.

For the FISs, as shown in Fig. 4 and Fig. 5, piecewise linear

membership functions (MFs) were used. Since the appliance

Ak has the PON,Ak
(t) values biased towards 1, these MFs were

also automatically shifted towards that region in order to get

a better input sensitivity [47], [48]. Similarly, other input MFs

(3 per each appliance) were also decided based on that auto-

mated logic. All output MFs of FISs (2 FISs per appliance)

have the same MF arrangement where MFs have been shifted

outward from 0.5 towards both 0 and 1. This was done in order

to have a more information rich output rather than having a

result similar to PPP,Ak
= 0.5 where the information content

is less [49].

Furthermore, for each appliance, same two different Fuzzy

Rule Bases (FRBs) have been used for respective two appli-

ance specific FISs. These two FRBs were designed in such a

way that they can eliminate NILM solutions which indicates

sudden appliance state changes that occur at unusual time of

day. This fact is illustrated by the FIS Output Surfaces shown

in Fig. 6. There, since in such incidents PTOD,Ak
value is near

0, while the PON,Ak
or the POFF,Ak

value is near 1, FRB has

been designed to have a low priori probability value output for

such inputs. Thus, it increases the stability and the robustness

of the NILM solution.

The proposed priori biasing technique in this Section

depends on extracted common appliance usage behaviors.

However, as a result of randomness in the human behav-

ior, actual appliance usages might occasionally deviate from

these pre-constructed appliance usage patterns. Therefore, the

usage patterns may not solely be able to decide the turned

ON appliance combination. As a remedy to this scenario, the

overall priori biased NILM technique uses the usage patterns

Fig. 6. Output Surfaces for (a) FISON,Ak
and (b) FISOFF,Ak

.

only for priori probability biasing. Thus it is not the sole cri-

teria for determining the turned ON appliance combination.

Therefore, even under random behaviors, this priori biased

NILM algorithm works accurately.

C. The Priori Biased NILM Method

Using the AUP based PP calculation technique discussed in

Sections III-A & B, PP values required to evaluate the MAP

criteria given in (3) were found. To incorporate this priori bias-

ing approach into the priori unbiased NILM method described

in Section II, two additional stages were incorporated into the

Algorithm 1.

First, each appliance state and its present ON or OFF dura-

tion was updated before the PES (in Algorithm 1: line 6)

using the NILM solution in the previous time instant. Then,

in the first iteration (i = 1), after the SES (in Algorithm 1:

line 10), PP values of all remaining possible appliance combi-

nations were calculated using (9), by utilizing the constructed

appliance specific FISs: FISON,Ak
and FISOFF,Ak

.

With these modifications, the NILM algorithm with the pri-

ori biasing technique as shown in Algorithm 2 was deployed

as step 5 of the proposed NILM algorithm to carry out the

load combination identification for the aggregated power pro-

file: RS3. Here, from the obtained results, an improvement in

the NILM accuracy levels was observed with the introduction

of the AUP based priori biasing technique for NILM.

IV. TOTAL POWER DEMAND FORECASTING METHOD

Total power demand forecasting is considered as one key

application of NILM for DSM [1]. However, to the best of

authors knowledge, there are no known cases of NILM or even

AUP based approaches been utilized to tackle this problem of

demand forecasting reported in literature. As a viable solution,

this paper proposes a NILM and AUP based approach to fore-

cast the total demand of a number of houses, 5 minutes ahead

of current time instant. This information enables a DSM aggre-

gator to inform the Transmission System Operator the amount

of DSM available in case of a system emergency.

In the proposed NILM technique, identified ON and OFF

sets of appliances as well as their respective ON or OFF dura-

tions are available for a given time instant. Since pre-calculated

ON or OFF duration based CCMFs given in (5) and (6) are

also available, for each appliance, most probable ON or OFF

durations into the future were calculated for a constant con-

fidence level value, α, for each time instant. For illustrative

purposes, confidence levels have been chosen as 0.9 and 0.5.
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Algorithm 2 Work Flow of Appliance Combination
Identification in Priori Biased NILM Step (for RS3)

1: for each SW in RS2 do
2: Extract features from the SW; #5 SCs: Zi; i = 1, 2, ..., 5;
3: Set i = 1; #Iteration or SC Number
4: Set execution = 1; #Matching Incomplete Yet

5: Set S0 = {Cj : j = 2Napps} #Set of All Combinations
6: Update ON and OFF durations of each appliance;
7: Apply the PES to S0 and obtain S1;
8: while execution do #Iterative SC Matching

9: Consider the ith dominant SC : Zi;
10: Apply the FES to S1 or S3 and obtain S2;
11: Apply the SES to S2 and obtain S3;
12: if i == 1 then #only in 1st iteration
13: Calculate priori probabilities for every appliance combi-

nation in S3 using (9) and constructed FISs;
14: end if
15: Apply the MAP criteria to S3 and obtain S4; #Get γCj,i

16: if γCj,i
> 0.99 then #Matching of Cj upto ith SC

17: Output: Turned ON Appliance Combination = Cj;
18: Set execution = 0; #Matching Complete
19: else if (i == 5) ∪ (S4 ∈ ø) then
20: Output: Most Probable Solution: argmax(γCj,i

, Cj);

21: Set execution = 0; #Matching Complete
22: else
23: i = i + 1 #Go to Next SC Matching
24: end if
25: end while
26: end for

Fig. 7. tf vs td Profiles of RF for (a) ON and (b) OFF States.

These confidence levels are adjustable and the two values were

specifically selected to highlight the impact of this parameter.

For example, if the NILM method detected that, appliance

Ak has been in the ON state for a duration of td up till the

current instant, then, using the CCMF given in (5) the turned

ON duration tf into the future for that appliance with a confi-

dence level of α was found using the conditional probability

given by,

α = P

(

ONDu >
(

td + tf
)

ONDu > td

)

=
PONDu,Ak

(

td + tf
)

PONDu,Ak
(td)

. (10)

Further, to reduce the execution time, for each appliance

Ak and for each possible ON duration td, corresponding tf
values were pre-stored for few confidence levels such as

α = 0.3, 0.5, 0.7, 0.8, 0.9, & 0.95, during AUP extrac-

tion step. Due to this pre-storing techniques, forecasts with

different confidence levels can be achieved. Same procedure

was repeated to predict the likelihood of the OFF state tf into

the future for a given confidence level. Fig. 7 shows such

pre-stored curves for the Refrigerator (RF).

Now, these pre-constructed sets of profiles were used along

with the proposed NILM method’s present solution and the

power level disaggregation solution [46], to predict the indi-

vidual appliance power profiles ahead from the current time.

Through aggregation of these results for appliances in a num-

ber of houses, the proposed total power demand forecasting

technique was successfully validated.

V. CASE STUDY

Two case studies were carried out to evaluate the proposed

NILM method and the demand forecasting technique.

A. Performance Metrics

The case study utilized the following performance metrics.

1) Appliance Combination Identification Accuracy (Aci):

To asses the overall performance of the NILM method, Aci

value was calculated as the percentage of OSWs where the

turned ON appliance combination was found correctly [2].

2) F-Measure (Fm): The F-measure (Fm) [50] was used to

evaluate the accuracy of identifying the states of combination

(Cj), and is given by,

Fm,Cj = 2TP/(2TP + FN + FP), (11)

where TP, FN and FP, for each identified turned on appliance

combination, are the True Positives, False Negatives and False

Positives. The average Fm,Cj over ∀Cj in a given aggregated

active power signal is denoted as Afm.

3) Total Power Correctly Assigned (Apa): To evaluate the

performance of the power disaggregation, the “Total Power

Correctly Assigned” (Apa) metric described in [1] and [34]

was used. Metric Apa is formally defined as follows [34]:

Apa,Cj =

[

1 −

(

T
∑

t=1

n
∑

i=1

|ŷt
(i) − yi

t|/

(

2

T
∑

t=1

ȳt

))]

× 100%,

(12)

where ŷt
(i)

denotes the calculated mean power level of the

proposed method for ith appliance at the tth OSW while yi
t

denotes the measured mean power level for ith appliance at the

tth OSW in a given aggregated signal. Moreover, ȳ =
∑n

i=1 yi
t.

The average Apa,Cj over ∀Cj in a given aggregated active power

signal is denoted as Apd. Further, the metric Apa for estimation

of power demand forecasting is denoted as Apf .

4) Average Execution Time (Aet): All algorithms in this

paper were executed on a workstation with Intel Core i5 pro-

cessor and 16 GB RAM running at 2.3 GHz, with Windows

10 OS. In order to demonstrate the speed of the solution, the

metric Average Execution Time (AET) taken to process an

OSW to generate the NILM result was used.

B. Case Study 1

This case study was carried out to evaluate the NILM

accuracy improvement achieved by AUP based fuzzily pri-

ori biasing. Here, seven tests were carried out by deploying

the proposed NILM method exactly as illustrated in Fig. 1 for

the real data taken from Tracebase and REDD datasets.
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TABLE I
PERFORMANCE METRICS COMPARISON BETWEEN BASIC NILM (PUN)

VS AUP BASED ENRICHED NILM (PBN)

1) Procedure: The Tracebase dataset contains 22 differ-

ent individual appliance power profiles collected at 1 samples

per second from German households and office spaces. For

the first test, 12 residentially used appliances were purpo-

sively selected from this dataset such that, selected set of

appliances contained 2 or more number of appliances from

each appliance category [2]: “single-state” (SS), “multi-state”

(MS), and “continuously varying” (CV). From the selected set

of appliances by manually aggregating the appliance power

profiles a house was created (HouseT) which had individual

and aggregated power profiles for 52 days. As higher number

of different types of appliances have been used in the case

study, real-world complex conditions have been emulated in

the constructed HouseT.

First ten days of individual appliance power data (RS1) were

used in feature extraction and creation of signature databases.

Then, next 21 days of the aggregated power signal (RS2) were

evaluated by Stage A of Figure 1 to study the AUPs. Then

from the remaining aggregated power profile data (RS3), priori

biased NILM method was evaluated. Finally, for performance

comparison purposes, priori unbiased NILM method was also

evaluated for RS3.

The REDD dataset contains real measured active power sig-

nals taken from 6 real households in USA, with whole home,

appliance/circuit level data at 1/3 samples per second. These

data from the 6 REDD houses (House1-6) were used for the

evaluation of the proposed NILM method as the next six tests.

For each house, reading sets RS1, RS2 and RS3 were selected

in a similar manner to the previous case (HouseT). Since these

houses consists of different types of loads and even some

unknown loads, viability of the proposed NILM algorithm

under real measurements was validated through this real world

scenario.

2) Results and Discussion: Appliance combination iden-

tification accuracy (Aci, Afm), power disaggregation accuracy

(Apa) and the Average Execution Time (AET-Aet) obtained for

described test cases are given in Table I. From these results,

it was observed that, with the proposed priori biased NILM

method (denoted by PBN), for each house tested, turned on

appliance combinations were identified with more than 86%

accuracy in-terms of Aci and more than 84% accuracy in-

terms of Afm. However, with the priori unbiased NILM method

(denoted by PUN), these two values were 76% and 75%

respectively. So, the improvement due to the introduction of

AUP based priori biasing technique is substantial.

TABLE II
COMPARISON OF OBTAINED F-MEASURE VALUES

It should be noted that accuracy of the power level disag-

gregation has also been increased by around two percentage

points from using this strategy. Since both priori unbiased

and biased NILM algorithms had used the same power break-

down technique in [46], this slight improvement should be

due to the increased appliance combination identification accu-

racy achieved by the proposed NILM method. Although AET

has been increased by around 30% due to the introduced

priori biasing step in the proposed NILM method, still the

AET is well inside 1s or 3s sampling periods. Thus, real-time

implementation of this strategy is clearly viable.

Furthermore, REDD houses 3-6 contains several unknown

appliances and plug sockets. So, activation of such appli-

ances should decrease the NILM accuracy levels significantly.

The proposed NILM method was able to produce an accu-

racy improvement even under such a challenging scenario.

Also, it should be noted that, in the absence of such unknown

appliances, the proposed method generates NILM results with

accuracy levels higher than 93%. In addition, most NILM solu-

tions in the literature have actually not used the REDD houses

in concern (4, 5 and 6) due to the presence of the unknown

appliances. Even compared to the few that have used these

houses [5], [51], the accuracy level of the method proposed in

this paper is significantly higher [41], [42].

3) Comparison With State of the Art: In order to demon-

strate the strength of the proposed NILM method, obtained

F-Measure values (Afm) and power disaggregation accuracy

(Apa) values were compared among other state of the art

NILM methods. In this comparison, all considered algorithms

have utilized the data taken from publicly available REDD

dataset [34]. Moreover, use of common accuracy metrics such

as Afm and Apa suggested in [34] and [50] enabled this direct

comparison.

Table II summaries the overall average F-measure values

achieved by different state of the art NILM methods including

the proposed method in this paper. Here, for the completeness

of the comparison, fundamentally diverse set of recent and

benchmark NILM methods were used. These approaches have

been summarized in the following paragraph.

In [24] and [25], supervised and unsupervised Graph Signal

Processing (GSP) based two NILM methods have been dis-

cussed. Two benchmark NILM algorithms based on Hidden

Markov Models (HMMs) have been introduced in [5] and [35].

There, [5] uses an unsupervised HMM algorithm while [35]
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TABLE III
COMPARISON OF OBTAINED POWER DISAGGREGATION

ACCURACY VALUES

uses an additive factorial-HMM to identify the turned ON

appliance combination. Further, NILM via event (i.e., ON/OFF

transition) classification is also an emerging technique in the

research. In [28] two such methods have been introduced based

on supervised Decision Tree (DT) classifier and a Dynamic

Time Warping (DTW) based classier. Similarly, [27] define

Bayesian classifier and a Viterbi algorithm to address same

even classification task. Furthermore, [21] explores multi label

classification (ML-KNN) based NILM methods based on both

time domain and wavelet domain feature sets.

As reported in [5], [21], [25], [27], [28], and [39], it should

be noted that, the F-measure value of each aforementioned

NILM method has been evaluated considering only certain

set of appliances. In most cases, this specific set is selected

based on the identification accuracy level of each appliance

under the considered NILM method. Further, as mentioned

before, some of these NILM methods do not consider REDD

houses such as House 4, 5 and 6 due to the presence of

unknown appliances. In contrast, the proposed NILM method

have been evaluated for all houses of the REDD dataset consid-

ering all appliances in each household. Therefore the proposed

NILM algorithm have considered in essence a more challeng-

ing dataset. Despite this challenging nature of the used data,

according to the results shown in Table II, proposed NILM

method have also outperformed all the other NILM methods

in terms of appliance identification accuracy.

Another comparison was carried out to compare the

achieved individual appliance power level disaggregation accu-

racies (Apa) by different state of the art NILM methods

including the proposed NILM method in this paper. Results

of this comparison are summarized in Table III. Here also,

for the comparison, a fundamentally diverse set of recent and

benchmark NILM methods have been used. These approaches

are summarized as follows.

In [29], two load disaggregation schemes named as the

Greedy Solution and the Exact Solution have been proposed

based on Deep Sparse Coding (SC). In the work [31] another

two NILM methods, named General SC and Discriminative SC

have been proposed. For the load disaggregation task, another

three avenues have been explored in [22], [30], and [34]

which uses ‘Powerlets’ Learning (PED), Temporal Multi-Label

Classification (ML) and Factorial HMM (FHMM) respectively.

Moreover, three HMM based techniques, named Factorial-

Hierarchical Dirichlet Process HMM (F-HDP-HMM), F-

HDP Hidden Semi-Markov Model (F-HDP-HSMM) and

Expectation Maximization FHMM (EM-FHMM) have been

proposed in [33]. Furthermore, in [26], Subtractive Clustering

technique have been evaluated.

From the comparison of the results it is clear that, F-HDP-

HSMM method proposed in [33] and Subtractive Clustering

method proposed in [26] have slightly outperformed the pro-

posed NILM method. However, it should be noted that, these

two methods only have been evaluated for a limited number

of appliances considering only a single household, as reported

in [25], [26], [29], and [33]. In contrast, the proposed NILM

method was evaluated on all six houses. Also, in each house,

power profiles were disaggregated for the seven highest power

consuming appliances in each household.

From both comparisons, it can be concluded that, both appli-

ance identification accuracy and the power level disaggregation

accuracy of the proposed NILM method are comparable or

superior compared to existing state of the art NILM methods.

C. Case Study 2

This case study was carried out to validate the proposed total

power demand forecasting technique described in Section IV.

1) Procedure: Real household data taken from REDD

Houses 1, 2 & 3 were used for this study. For each of these

chosen houses, signature databases, and extracted AUPs had

already been constructed (using respective RS1, RS2 data in

the Stage A of the proposed NILM method) for the previous

case study. So, for each house, only the priori biased NILM

method was evaluated (i.e., the step 5) while generating load

forecasts for five minutes ahead of the current time instant.

So, for each house, using its RS2 data, the 5th and 6th steps

of the proposed NILM method were re-evaluated.

Next, for the chosen three houses, data corresponding to

21 different days were selected from their whole house power

profiles (from RS2 of each house). Then these 21 residential

power data profiles (each of length of 24 hours) were con-

sidered as data which belongs to 21 different houses for one

complete day. This was done to demonstrate the viability of

the prediction technique for a large area.

Finally, using appliance level power demand predictions

of each of the 21 constructed houses (during a day), the

total aggregated power demand forecast was estimated with

confidence levels (i.e., α) of 50%, 70%, 90% and 95%.

2) Results and Discussion: Actual and predicted total

power profiles of the 21 houses are presented in Fig. 8. For

demonstration purposes, Fig. 8 displays the prediction result of

a 15-minute window out of the power profile which was actu-

ally predicted for one complete day with a confidence level

of 90%. The accuracy of the total aggregated power predic-

tion of all 21 houses for each 3 hour period from 06:00 to

24:00 is presented in Table IV. Further, sensitivity of the fore-

casting accuracy was studied by varying the confidence level

parameter α and those results are also shown in Table IV.
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Fig. 8. Actual Vs Predicted Total Power Profiles.

TABLE IV
TOTAL POWER DEMAND PREDICTION ACCURACIES VS CONFIDENCE

LEVEL (α) WHEN TIME STEP AHEAD = 5 MINUTES

According to the actual and predicted total power profiles

(See Fig. 8), the proposed NILM algorithm has the ability

to identify downward steps in the total power demand more

efficiently when compared to identifying the upward trends.

Here, for many appliances as shown in Fig. 2 and in Fig. 7,

observed ON durations would be shorter compared to their

OFF durations. As a result, it improves the predictability of

instants where appliances are turning OFF compared to the

instants where appliances are turned ON. Thus, prediction

of downward trends in the total power demand by the pro-

posed NILM method is more efficient compared to forecasting

upward steps.

In general, according to the results in Fig. 8 and Table IV, it

is clear that the proposed NILM method identifies the turned

on appliance combinations and predicts the total power con-

sumption of number of houses five minutes into the future

with reasonable accuracy.

Furthermore, since the predicted breakdown is available at

the appliance level in each house, it enables a power sys-

tem aggregator to predict both the non-critical appliances that

could be turned off and the amount of Demand Response

achievable, ahead of an event that could create a possible sys-

tem emergency. A proper architecture to implement such a

mechanism in large scale is shown in Fig. 10 and discussed

in Section V-D.

3) Inferences From Sensitivity Analysis: From the sensi-

tivity analysis, a trade off between the used confidence level

α and the prediction accuracy was observed. Observations in

Table IV revealed that in order to forecast the total power

demand of 21 houses 5 minutes ahead, using a 90% confidence

level is more accurate than using a 95% or 70% confidence

levels.

In order to further investigate this dependence between

accuracy level, confidence level and the forecasting time

step ahead, same experiment was carried out to forecast

the total power demand of 21 houses, both 10 minutes and

Fig. 9. Prediction Accuracy Vs Confidence Level.

15 minutes ahead. For such time steps, optimum predic-

tion accuracy levels were achieved when the confidence level

is selected as 80% and 50% consecutively. Results of this

investigation is illustrated in Fig. 9.

According to the obtained results, predictions with increased

time step durations ahead are achieved through lowering the

used confidence level. This will slightly decrease the pre-

diction accuracy as shown in Fig. 9. On the other hand,

more accurate predictions for the near future can be obtained

via increasing the used confidence level. This is a logical

observation as in any case, with higher levels of confidence,

it is not possible to predict the behavior far beyond the

near future and vice versa. So, the introduced parameter

α enabled changing the prediction duration further into the

future.

D. Some Aspects of Installation and Scalability

Several key aspects have been discussed in this chapter on

the installation and scalability of the proposed NILM method.

1) Installation: The architecture and operation of its hard-

ware installation is illustrated in Fig. 10.

Here, for each household, only a dedicated processor unit

with a communication channel is required apart from the smart

meter. Once this residential NILM processor unit is installed

and connected to the smart meter, individual appliance sig-

nature learning and signature database construction phases

(i.e., steps 1 & 2 in Fig. 1) are initiated as described in

Sections II-B and II-C. Since most of the appliance models are

commonly used in many households, for a large scale imple-

mentation, signatures for such appliance models can be taken

from global databases. Apart from that, unique appliances for

the considered house should be learned individually by turn-

ing each of them ON and observing their power profile for a

duration of few hours. At the end of this signature learning

stage, House specific set of signature databases will be stored

in the processor unit.

After that, steps 3 & 4 (See Fig. 1) of the proposed NILM

method will be automatically completed in the residentially

installed processor unit. There, first, priori unbiased NILM

method as described in Section II-D will evaluate the appliance

usages. This method have been verified by the authors, both

in simulations [2] as well as in real-time implementation [45].

Next, using the obtained results, in step 4, appliance usage
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Fig. 10. Proposing Overall Hardware Architecture.

patterns of the installed household are extracted and, priori

biasing technique is formulated in the corresponding NILM

processor as described in Sections III-A and III-B.

There onwards, step 5 & 6 (See Fig. 1) are continu-

ously evaluated in the residentially installed processing unit.

Here, the novel priori biased NILM technique described in

Section III-C will evaluate the currently turned ON appliance

combination as well as the appliance power level disaggrega-

tion. Further, as described in Section IV, power level forecast

for five minutes ahead of current time value can also be

evaluated for each appliance in the considering household.

2) Increasing Number of Appliances Per House: In the pro-

posed NILM method, all the house specific signature databases

are kept pre-stored in the residentially installed processor unit.

There, in constructing the appliance combination level signa-

ture database (CLSD) as described in Section II-C, all possible

appliance combinations for the given set of residential appli-

ances are considered. So, it was observed that the size of this

CLSD tends to grow exponentially with the increase of number

of appliances in the household.

Table V was obtained by constructing CLSDs for different

number of residential appliances. For this task, real measure-

ments obtained from a laboratory setup was utilized. From the

obtained CLSD sizes and data reading times shown in Table V,

it is clear that even for higher number of appliances, database

TABLE V
MEMORY REQUIREMENT FOR DATABASES

sizes will not go beyond the sizes of conventional data storage

device.

Furthermore, when identifying the currently turned ON

appliance combination for an observed sliding window

(OSW), the proposed NILM method (i.e., the Algorithm 2)

first starts by considering all possible appliance combinations

as viable solutions for that OSW. Then onwards, this solution

space is continuously reduced using one pre elimination stage

(PES) and two iterative first and second elimination stages

(FES & SES) as described in the Section II-D & Algorithm 2.

In order to illustrate the strength of these elimination stages,

first, a house was synthetically created with 15 different appli-

ances taken from REDD dataset. Then, corresponding CLSD

of that house was constructed as described in II-C. Then, for

that CLSD, for all possible static levels of an OSW, the number

of appliance combinations left in the solution space after each

elimination stage in the 1st iteration was observed. This result

is illustrated using a logarithmic plot in Fig. 11 (a). From this

result, an exponential drop in the solution space was observed

for every possible static level of an OSW.
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Fig. 11. (a) Remaining no. of appliance combinations after each elimination
stage of the first iteration of Algorithm 2 and (b) Likelihood Vs different
possible OSW static levels.

Further, considering the actual total power profile of the

created household, a likelihood function was created for the

OSW-Static Level. This is shown in Fig. 11 (b). This behavior

conveys the fact that for an actual household, static levels of

observed sliding windows, taken from the total power profile

are more likely to have lower values. For this particular case,

most likely OSW static levels are in the range 0 W - 1000

W (Fig. 11 (b)). From this range, to further study the strength

of elimination stages, 400 W and 1000 W static levels were

arbitrarily chosen.

Then, same experiment was carried out while changing the

number of appliances in the household. After that, for the

selected OSW static levels of 400 W and 1000 W, the num-

ber of remaining appliance combinations in the solution space

after each elimination stage was observed. This is shown in

Fig. 12.

These observations conveys that, even though the number of

possible appliance combinations grow exponentially with the

number of appliances present in the house, the used elimina-

tion stages are capable of eliminating appliance combinations

in the solution space in an exponential manner so that final

solution is achieved within few iterations.

3) Increasing Number of Houses Per Aggregator: Once the

residential appliances have been classified into critical and non

critical categories [52], [53], using the appliance level break-

down of the current and forecast power consumptions, the

values of total / critical / non critical power demands can be

calculated for the household as shown in Fig. 10. Then, only

these six values are to be transmitted from each household to

the concentrator per every 1 s interval.

For this purpose, required communication bandwidth

between a house and the concentrator is estimated as 256 bps

Fig. 12. No. of appliance combinations remaining after each elimination
stage of the first iteration of Algorithm 2 Vs Total no. of appliances in the
household when the Static Level of OSW is (a) 400W and (b) 1000W.

(i.e., 32Bps). Further, monthly consumed data amount is cal-

culated to be 80 MB per house. From the data concentrators

point of view, in order to monitor 400 houses by one aggrega-

tor [54], a communication bandwidth of 100 kbps is required

between the aggregator and the concentrator. Furthermore,

inside the data aggregator, in order to carryout the data acqui-

sition, manipulation and storing for 400 households for 1 s

sampling interval, the average execution time was evaluated

to be 0.1225 s for the processor mentioned in Section V-A4.

All estimated parameter values confirms the ability to

deploy the proposed NILM technique using normal processor

units and conventional communication methods. This proves

the scalability as well as the feasibility of the proposed NILM

technique in a large scale setup.

VI. CONCLUSION

This paper proposes a novel NILM method with enriched

capabilities to not only identify turned-on appliances and their

power consumption levels, but also to adapt itself according

to AUPs. Since this NILM solution does not depend solely on

collected measurements, it produces more accurate and robust

results compared to existing NILM techniques. The ability to

use AUPs in NILM allowed this method to be used to predict

the total power consumption of a number of houses a few

minutes ahead of the present time instant (i.e., real-time). This

has an important practical interest as utilities are reluctant to

utilize DLC for DR due to difficulty of estimating amount of

load available for DR ahead of the real time.

The method utilizes the KL expansion to separate uncor-

related spectral information in active power profiles and

construct signature databases. Further, it incorporates AUPs
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via a fuzzy logic based priori biasing technique. Since the

algorithm performs with high accuracy even on power pro-

files sampled at low rates, expensive hardware is unnecessary.

Furthermore, from the execution speeds achieved, this is a

viable algorithm for a real-time implementation.
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