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Abstract

Current feature-based object recognition methods use
information derived from local image patches. For robust-
ness, features are engineered for invariance to various
transformations, such as rotation, scaling, or affine warp-
ing. When patches overlap object boundaries, however,
errors in both detection and matching will almost certainly
occur due to inclusion of unwanted background pixels. This
is common in real images, which often contain significant
background clutter, objects which are not heavily textured,
or objects which occupy a relatively small portion of the
image. We suggest improvements to the popular Scale In-
variant Feature Transform (SIFT) which incorporate local
object boundary information. The resulting feature detec-
tion and descriptor creation processes are invariant to
changes in background. We call this method the Background
and Scale Invariant Feature Transform (BSIFT). We demon-
strate BSIFT’s superior performance in feature detection
and matching on synthetic and natural images.

1. Introduction

Feature-based methods are commonly used for object
recognition. Such approaches seek to efficiently match
objects from a database to those seen in novel images
using a sparse set of information-richfeaturesextracted
from images. Because the features only require local sup-
port, matching can be successful even in highly cluttered
scenes. And when the features are designed to be extremely
distinctive, only small numbers of matches are necessary
to provide high confidence in an object’s detection. These
methods have also been motivated from a biological per-
spective [14, 24].

There are two broad steps involved in any feature-based
scheme. First, features – also referred to askeypointsor
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interest points– are detected within an image. For this step,
repeatability of detection is crucial [15]. If the detected
locations of interest points on an object vary from image
to image, there is no hope of successful matching. Second,
signatures – ordescriptors– are computed from local image
values for each detected interest point in order to distinguish
between them. The goal is to design a highly distinctive
descriptor for each interest point to facilitate meaningful
matches, while simultaneously ensuring that a given interest
point will have the same descriptor regardless of the object’s
pose, the lighting in the environment, etc. So we see that
both steps, detection and description, rely on invariance to
various properties for success.

Much past work in this area has focused on producing
interest points and descriptors that are invariant to scaling
of the image [14, 15, 11, 7]. All of these approaches operate
in scale-space to detect each interest point’s characteristic
scale [9, 8, 13]. Rotation invariance duringdetection is
generally accomplished “for free” by using rotationally
invariant image measures, such as the Laplacian. There are
generally two approaches for creating rotationally invariant
descriptors. Lowe [14] attaches a coordinate frame to each
descriptor while others, e.g. [15], again use rotationally-
invariant measures computed locally, such as local jets
[8, 21].

Lowe’s features have some invariance to affine trans-
formation engineered into them, but others have designed
truly affine-invariant features. In [2], Baumberg describes
a method for creating affine-invariant descriptors around
scale-invariant interest point detections. Mikolajczyk and
Schmid go a step further in [16], combining the detection
and description phases into an iterative scheme such that
bothsteps are invariant to affine transformation.

Unfortunately, because all of these methods rely on the
use of local image information at various scales, features
whose descriptors overlap the object and the background
will incorporate information from both. In fact, many fea-
tures’ detectedlocationswill also be affected by the back-
ground. Therefore, when the object is seen with different
backgrounds, its features would necessarily be different
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(both in location and description). In particular, this prob-
lem is exacerbated as the size of the object relative to the
image decreases. As small features completely contained
within the object become impossible to detect for lack
of resolution, we must depend on larger-scale features,
which are more likely to overlap with the background.
Ideally, the detection and description of an object’s fea-
tures would be the same regardless of the background on
which it is seen. This implies that there is another type
of invariance which would be desirable for feature-based
methods: background invariance. We seek to address such
a notion in this paper. We would like to incorporate object-
background (often called figure-ground) separation into the
detection and description processes in order to achieve such
invariance. Knowledge of this separation could be obtained
from various sources, including stereo disparity [3], motion
cues [4], local or global segmentation schemes [26, 23],
simple background subtraction, or a combination of these
methods [19].

It should be noted that the discussion thus far has cen-
tered around features derived from image intensity informa-
tion directly. Recently, edge-based features have emerged
which exhibit some degree of background invariance in or-
der to recognize wiry shapes in cluttered scenes [6, 17, 10].
Such methods build local features from edge maps in order
to capture shape rather than texture. It is likely that future
feature-based systems will leverage both shape and texture
information for successful recognition of a wide variety
of objects. To our knowledge, the work desribed in the
remainder of this paper is the first to address background
invariance when using texture information.

2. Background Invariant Detection

Our method builds directly on Lowe’s Scale Invariant
Feature Transform (SIFT) because of its popularity. Rele-
vant portions of the SIFT method will be briefly reviewed
here since our modifications occur at a fairly low level, but
for complete details see [14]. Initial keypoints are detected
as local extrema of a scale-space Laplacian pyramid. In
practice, this Laplacian pyramid is efficiently approximated
by the construction of a Difference-of-Gaussian pyramid
instead. It is here, at the very beginning of the detection
process, where we introduce our first modification.

Note that smoothing an image with a Gaussian filter
blurs information across object-background boundaries. We
can, however, replace this isotropic smoothing with more
local process which respects arbitrary boundary conditions.
This idea of usinganisotropicsmoothing has been exten-
sively studied, e.g. [20, 25, 5]. We will only present here the
basic concepts relevant to the remainder of the paper. The
key idea we use is that Gaussian smoothing is equivalent to

performing iterative local heat diffusion according to:

I(k+1)(x, y)← I(k)(x, y) + τ∇2I(k)(x, y) (1)

where,

∇2I(x, y) =
∂2I

∂x2
+

∂2I

∂y2
(2)

That is, if we diffuse at each pixel(x, y) in an image
I for k iterations according to (1), then asτ → 0, we
have equivalently smoothed the image by a Gaussian with
σ =

√
2kτ . To keep the diffusion process numerically

stable, we useτ = 0.2. The advantage of using a local
diffusion process is that we can naturally enforce arbitrary
boundary conditions anywhere in the image, namely at
object boundaries. In practice, we use Neumann boundary
conditions when computing the second derivatives neces-
sary for (2), allowing us to switch the diffusion process on
or off according to local boundary information. While most
prior work determines the amount of local diffusion based
on local intensity gradient information, we use boundary
information from anoutsidesource. Otherwise,everyedge
in the image could suppress information flow across it,
while we are only interested in preventing information flow
across those edges that correspond to object boundaries. We
leave the discovery of these edges to a separate process,
which is an interesting problem in itself and is addressed
further in the results section.

We can now build a boundary-respecting Gaussian pyra-
mid by pausing our diffusion process at appropriate inter-
vals to save each desired level. As pointed out by Lowe [14],
if we start with an initial smoothing ofσ0, the desired scale-
normalized Laplacian pyramid can be closely approximated
by a Difference-of-Gaussian pyramid with the degree of
smoothing at each levelL chosen according toσL =
2L/sσ0, wheres is the number of samples per scale octave
(typically 3 or 4).

Once the Difference-of-Gaussian pyramid is
constructed, sub-pixel local extrema are identified in scale-
space and low-contrast and edge-like features are filtered
out, all following [14]. A synthetic example is shown in
Figure 1, where an image of a Sony Aibo1 has been pasted
onto two different textured backgrounds. Interest points are
plotted as X’s with circles representing their corresponding
scales. Only those detections whose locations and scales
are the same regardless of background are shown (with
lines connecting them). In the center we see that when
using regular SIFT, with no boundary information, only
38.3% of the detections with the brick background are also
detected at the same location with the rocks background.
On the right, where boundary information (derived from
the known silhouette of the Aibo) was incorporated into
the detection process as described above, 98.4% of the

1 Aibo is a registered trademark of Sony Corporation.
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Original Images

23 of 60 (38.3%)   
identical detections

Regular SIFT

60 of 61 (98.4%)    
identical detections

Using Boundary Information

Figure 1. The incorporation of boundary information allows for more consistent feature detection on
the same Sony Aibo object image pasted onto different backgr ound images.

detections are the same regardless of background. We
emphasize that correspondence here is only in the sense
of location and scale. No notion of descriptor matching
has been incorporated into this example. Note how using
boundary information allowed for consistent detection of
the larger features, which are arguably more meaningful
[24], as well as detection of more features along the narrow
legs of the Aibo.

3. Background Invariant Description

Now that we have a method for detecting interest points
in a background-invariant manner, we need to generate
descriptors for those interest points which will also remain
the same regardless of background. Again, our descriptors
are constructed much like Lowe’s SIFT descriptors, so for
further details see [14].

For each interest point, image gradient magnitudes and
orientations are extracted within a patch whose size is de-
termined by the scale of the interest point. The orientations
are put into a histogram weighted by their magnitudes and
by distance from the patch center in order to determine
a dominant orientation for each interest point. (Note that,
in practice, multiple peaks in this orientation histogram
may result in multiple interest points at the same location,
but with differing orientations.) At this point, without any
modification, background invariance is violated since we
are working with a patch of image values which will often
overlap object and background pixels. In order to impose
background invariance on this step of the descriptor gener-

ation, we use a boundary-respecting weighting mask in the
creation of the orientation histogram, rather than a simple
Gaussian. This lessens the importance of samples further
from the interest point while also effectively removing
samples not on the object.

The creation of a weighting mask by heat diffusion as
above would seem to be the natural choice here, but it turns
out not to have the desired effect in this case. Figure 2
compares different weighting masks for an interest point
marked by the red X with local boundary information as
shown in (a). Without utilizing the local boundary informa-
tion, a simple Gaussian weighting mask (b) as used by SIFT
will clearly give non-zero weight to pixels which do not
lie on the object, resulting in a non-background-invariant
descriptor. But if we diffuse outward from the interest point
according to (1) in order to produce a boundary-respecting
Gaussian mask (c), we see that the weight values build up
like a “snowdrift” at the boundaries, resulting in a weight
mask which is no longer truly a function of distance from
the interest point (note that the darkest part of the mask
is not at the X as we would like). If we use a distance
marching procedure [22] to propagate distances away from
the interest point while respecting boundary information,
however, we obtain the correct weight mask (d). Such a
mask gives zero weight to pixels not on the object and
weight proportional to distance from the interest point for
pixels on the object. In addition, this procedure is more
efficient than repeated diffusion at every interest point.

Finally, we also found that adding a weighting mask
based on distance from the nearest boundary increased per-
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(a)

Interest Point with 
Local Boundaries

(b)

Simple Gaussian 
Weight Mask

(c)

Weight Mask 
by Diffusion

(d)

Weight Mask 
by Distance Marching

(e)

Distance Transform from 
Local Boundaries

Figure 2. Various weighting masks around an interest point f or incorporating a nearby object
boundary into descriptor creation.

formance. This weighting function can be computed using
a distance transform from local boundaries and is point-
wise multiplied by the Gaussian weighting mask described
above. An example is given in Figure 2 (e). The idea here
is to lessen the contribution of pixels which lie close to
object boundaries, whose precise locations are not generally
known in practice. Thus the final weighting mask becomes
a balance between increasing weight as we approach the
interest point and decreasing weight as we approach a
nearby boundary.

Once a dominant orientation is assigned, a coordinate
system is aligned to that direction. The gradient orientations
at each site within the local patch are placed into sixteen
histograms, each with eight bins, positioned relative to the
aligned coordinate system. Each orientation sample’s con-
tribution to a given histogram is weighted by its magnitude,
distance from that histogram’s position in the coordinate
frame, and distance from the interest point itself. This
process is illustrated in Figure 3. For the interest point
marked by the green X at the center, a coordinate frame has
been aligned to the dominant gradient orientation as found
by the procedure outlined above. Each square in the grid
represents a sample site for the patch surrounding the inter-
est point, where a sample consists of the gradient orientation
and magnitude for that location in the image. The sixteen
histogram centers are designated by the red dots. The blue
shaded sample is shown to contribute to its four nearest
histograms with a weight which is bilinearly interpolated
based on distances to those histograms’ centers.

To add background invariance to this standard SIFT
descriptor, a boundary-respecting weighting mask produced
by fast marching is again used to weight each sample’s
histogram contribution according to its distance from the
interest point. The distance-from-nearest-boundary weight
as described above is used here as well. Finally, all sixteen
histograms’ bin values are concatenated into a 128-vector,
which is then normalized into a unit vector. Following [14],
this vector is further adjusted by clipping all values at 0.2
and then renormalizing. The resulting vector forms the 128-

Figure 3. Descriptor creation from a set of
gradient orientation histograms aligned to an
interest point.

dimensional descriptor for an interest point. In Figure 4, we
have artificially chosen the same interest point for the Sony
Aibo object, but with different backgrounds. Note that the
large scale of the interest point and the shape of the object
cause significant inclusion of background pixels. We see
in (c) that the SIFT descriptors computed with the brick
background (upper bars) and the rocks background (lower
bars) are very different. There is no hope of the two being
matched as the same descriptor. But when boundary infor-
mation is incorporated into the weight masks as described,
we see that the resulting descriptors (d), are exactly the
same.

We now have all the pieces necessary for what we refer
to as a Background and Scale Invariant Feature Transform
(BSIFT). In the following sections, we will compare the
performance of our BSIFT method to standard SIFT.

4. Synthetic Results

In order to evaluate our method’s performance, we need
to know ground truth object boundaries. To facilitate large-
scale evaluation with a database of objects and a non-
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Figure 4. Incorporating boundary information into the desc riptor creation allows us to compute
exactly the same descriptor for an interest point, despite i ts overlap with two different backgrounds.
SIFT, on the other hand, produces drastically different des criptors.

trivial number of example images, we artificially paste
object images from a database of 110 objects onto a set
of 25 background images. The set of backgrounds consists
of about half indoor office/lab scenes and half outdoor
natural scenes. The database of objects and backgrounds is a
concatenation of some of our own images with many others
from various online databases [18, 1, 12]. Each object has
been hand segmented into foreground and background pix-
els, so precise object boundaries are known. Furthermore,
features have been extracted from the objects with and with-
out using boundary information (i.e. using BSIFT and SIFT,
respectively), and all of these features are stored in one large
database consisting of over 8000 features for each method.
In order to guard against implementation differences and
ensure the only variable being tested is the inclusion or lack
of boundary information, we do not use Lowe’s publicly-
available SIFT library to test against our BSIFT imple-
mentation. Rather, we use only our own code, supplying
boundary information to test BSIFT or witholding boundary
information to test SIFT. (Without any boundary infor-
mation, our method defaults to using standard Gaussian
smoothing and Gaussian weighting masks.) We therefore
expect that our baseline performance will differ from the
more mature SIFT library available from Lowe. Finally,
it is worth noting that the database includes many low-
texture objects as well as objects with narrow appendages.
Both are difficult for existing feature-based methods. A
random selection of some of the objects in our database is
shown in Figure 5. The database is also available online at
http://www.cs.cmu.edu/˜stein/BSIFT .

For each test, a random background and object pair
is chosen and the object is pasted onto the scene at a
random location, orientation, and scaling (60-100%). In
addition, we can simulate to some degree the effect of
errors in object boundary extraction by introducing random
contiguous breaks in the boundaries. This degradation is
quantified by the percentage of the original boundary that

Figure 5. A few examples from the 110-object
database used in our synthetic experiments.

is eroded away. Our performance criterion is the percentage
of interest points present for the object in the database
that are correctly matched to the object in the generated
image - where a correct match implies that both the object’s
identification and location are correct. For reliable results,
[14] suggests defining a match to be found when the ratio
between the closest and second-closest descriptors in the
database, using simple Euclidean distance, is less than a
threshold (currently 0.6 in for the tests described here).
The interesting cases are those when our method finds
substantially more matches than SIFT, or better still, when
SIFT fails to find any matches and our method succeeds.

For a set of 3000 experiments, we found that the average
correct match (true positive) rate using our method was
80.1% while SIFT’s was only 55.4%. Our method had a
strictly greater number of correct matches (meaning more
confident object recognition) 68.1% of the time. In fact,
our method found at least one match while SIFT failed
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Figure 6. As expected, as boundary degrada-
tion increases, BSIFT’s performance resem-
bles that of regular SIFT more and more.

completely in 26.3% of the experiments. In 9.3% of the
experiments SIFT found more matches than our method,
and in 15.0% neither method found any matches (thus
demonstrating the existence of some rather difficult objects
in our database).

As expected, our method’s performance and its supe-
riority to regular SIFT decrease as boundary degradation
increases since information derived from object boundary
locations is the only difference between the two methods.
Figure 6 shows a plot of performance values versus the
amount of boundary degradation for a set of 1000 exper-
iments in which scaling was set at 100% and boundary
degradation varied between 0 and 60%. Note how BSIFT’s
performance falls off gracefully rather than completely
failing as boundaries are eroded away and information
leaks through during the diffusion and distance marching
processes. Finally, in Figure 7, we also see that BSIFT is
more resistant to the effects of scaling. For a set of 1000
experiments in which scaling varied uniformly between
60 and 100% (while edge degradation was disabled), we
see that the matching rate for BSIFT does not fall off as
significantly as for SIFT. For BSIFT the matching rate
drops about 10% as the scaling decreases, whereas SIFT’s
performance – which is consistently much lower than our
method’s – drops more than 20%.
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Figure 7. As scaling decreases, SIFT’s per-
formance remains below that of BSIFT and
falls off more quickly. BSIFT achieves over
80% correct matching performance over the
scaling range.

5. Results from Real Data

As suggested above, some possibilities for obtaining
the required boundary information necessary for BSIFT
include stereo disparity, motion parallax, various local or
global segmentation schemes (e.g. graph cuts), or simple
background subtraction. We present results using back-
ground subtraction and stereo disparity to demonstrate our
method’s viability in practice. For the following examples,
we emphasize that the small number of matches (relative
to typically reported SIFT results) is due to extremely
limited resolution and fairly low-texture objects. These
cases are not often considered elsewhere, but are important
in practice.

In the top row of Figure 8, a toy car has been placed on a
desktop such that it is quite small with respect to the image
size. Thus, there is not enough resolution to find many
features on the object. We see that SIFT finds two feature
matches while BSIFT finds six. In the bottom row, a set of
dry-erase markers – which exhibit very little texture – have
been placed in an office scene, again such that they are small
with respect to the image size. Here, SIFT fails to find any
matches, while our method finds four. Note that there are
only nine and eleven total features detected for the markers’
training image using SIFT and BSIFT, respectively.

Figure 9 shows results using boundary information de-
rived from a stereo disparity map. In this case the test image
has been downsampled to160 × 120, while using the full-
resolution training image. The smaller features normally
available on the fan, which regular SIFT could correctly
match, are of little use in this case because of the lack
of resolution. The texture of the couch in the background
contaminates any largescale SIFT features, but BSIFT is
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Original Image - Toy Car Background Subtraction SIFT: 2 Matches Found BSIFT: 6 Matches Found

Original Image - Markers Background Subtraction SIFT: 0 Matches Found BSIFT: 4 Matches Found

Figure 8. BSIFT outperforming SIFT using background subtra ction for a toy car object (top row) and
a set of dry-erase markers (bottom row). Note that only three matches for the dry-erase markers are
visible because two are at the same location but with differe nt orientations.

able to correctly match them. Indeed, SIFT fails to find a
single match, while BSIFT finds four.

6. Conclusion

In this work, we have explicitly introduced the notion of
background invariance as an additional type of invariance
necessary for feature-based object recognition methods to
perform well in general applications. We have developed
a straightforward set of modifications based on heat dif-
fusion and distance marching for introducing background
invariance to the detection and description processes of
the popular SIFT algorithm. We have also shown on fairly
large-scale synthetic tests as well as some real experiments
that the use of object boundary knowledge can improve
feature matching performance significantly. We reiterate
that while we have outlined a SIFT-based approach, the
addition of background invariance will likely improveany
feature-based method. SIFT, however, is a natural choice
due to its popularity in the literature and in application.

With the basic principles and methods defined, the main
thrust of future research will focus on robust extraction of
object boundaries to use with our BSIFT approach. We
will also investigate our method’s sensitivity to boundary
localization.

In its current form, however, this work provides for the
first time a foundation for incorporating boundary informa-

tion into intensity feature detection and description as well
as results indicating the approach’s practical utility.
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