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Abstract 
 
The existence of coral reefs is dependent on the production and maintenance of 
calcium carbonate (CaCO3) framework that is produced through biogenic 
calcification. The net production of CaCO3 is likely to decline in the future, both due 
to declining net calcification rates (decreasing calcification and increasing dissolution 
rates) and shifts in benthic community composition from calcifying organisms (e.g. 
corals) to non-calcifying organisms (e.g. fleshy algae). Here we present a framework 
for hydrochemical studies that allows both declining net calcification rates and 
changes in benthic community composition to be incorporated into projections of 
coral reef CaCO3 production. The framework involves upscaling net calcification 
rates for each benthic community type by using mapped proportional cover of the 
benthic communities. This upscaling process was applied to One Tree and Lady Elliot 
Reefs (Great Barrier Reef) and Shiraho Reef (Okinawa) and compared to existing 
data. Future CaCO3 budgets were projected for Lady Elliot reef, predicting a decline 
to 47% of the present value by end-century (800 ppm CO2) without any changes to 
benthic community composition. Under a 50% reduction in the benthic cover of 
calcifying organisms at Lady Elliot reef, CaCO3 production was projected to decline 
to 18% of the present value. These results show the combined negative effect of both 
declining net calcification rates and changing benthic community composition on 
reefs and the importance of considering both processes for determining future reef 
CaCO3 production. 
 
Introduction 
 
Coral reefs are comprised of a calcium carbonate (CaCO3) framework that supports a 
high diversity of species and provide a wide range of essential ecosystem services and 
economic benefit to many countries (Moberg and Folke 1999). This CaCO3 
framework is produced biogenically through calcification by a diversity of marine 
organisms, primarily hermatypic corals and crustose coralline algae, and contributes 
significantly to the global CaCO3 budget (Milliman 1993). Coral reef health is 
declining globally due to both local and global stressors (Hughes et al. 2003; Veron et 
al. 2009). Some stressors, such as ocean acidification, are predicted to directly reduce 
calcification rates in many calcifying organisms, leading to lower net community 
calcification of reefs (Kleypas and Yates 2009). The combination of local overfishing, 
water quality deterioration and global climate change is driving benthic community 
composition shifts toward less coral-dominated states, with an associated loss of the 



services they provide (Hoegh-Guldberg et al. 2007; Wilkinson and Global Coral Reef 
Monitoring Network 2008; De’ath et al. 2012). 
 
Due to the functional importance of CaCO3 production for coral reefs, it is important 
to know the current state of this process and how it might change in the future. 
Previous studies have used either census (e.g. Stearn et al. 1977) or hydrochemical 
approaches (e.g. Smith 1978) to calculate CaCO3 production. The two methods use 
different approaches to the estimation of CaCO3 production and have different 
advantages depending on the research question (Vecsei 2004).  Census-based 
approaches quantify the amount of calcium carbonate produced by a single organism 
per unit area of reef surface covered to estimate potential production of a reef 
community (Chave Smith, and Roy 1972). CaCO3 production is determined by 
assigning calcification rates (gm/m2/yr-1) to each type of calcifier (e.g. observed or 
mapped benthic community type)  and scaling up by multiplying the calcification 
rates (gm/m2) by thearea of each benthic community type (Equation 1). In terms of 
geographical scope, scaling up can either apply to the local community (in which 
case, field based estimates of coverage are employed usually at the transect scale), or 
areas estimated from remotely sensed map products can be used to yield a measure of 
carbonate production for the entire reef. 
 
 
The hydrochemical technique estimates net calcification (Gnet, i.e. calcification minus 
dissolution) by measuring changes in seawater alkalinity, where each mole of CaCO3 
precipitated reduces seawater alkalinity concentration by two moles, with the reverse 
occurring for dissolution (Smith 1978). The hydrochemical technique integrates the 
net effect of calcification and dissolution from all biotic and abiotic components of 
the system, without need for the investigator to account for community composition, 
thus also including cryptic species and carbonate sediment. There are limitations to 
the locations where the hydrochemical method can be employed, with the majority of 
studies occurring on reef flat when mixing with oceanic waters is limited (Langdon et 
al. 2010). The hydrochemical method also measures Gnet over short periods of time 
(e.g. hourly) and may be limited by the representativeness of when the measurements 
were taken. 
 
A number of studies have related Gnet of coral reefs, measured through hydrochemical 
techniques, to in situ variations in environmental parameters such as light, 
temperature, carbonate chemistry or nutrients (Silverman et al. 2007; Shamberger et 
al. 2011; Shaw et al. 2012). The relationships between carbonate chemistry and Gnet 
have been used to predict future changes under ocean acidification. However, because 
these relationships were determined under constant community composition at 
specific locations, they only provide predictions of changes in calcium carbonate 
production, specific to that location and assuming a constant benthic community 
composition remain. Loss of coral cover is occurring globally resulting in altered 
community composition of reefs (Wilkinson and Global Coral Reef Monitoring 
Network 2008). These changes in community composition are predicted to continue 
into the future (Hoegh-Guldberg et al. 2007), making it important to incorporate these 
changes into future predictions of coral reef CaCO3 production. 
 
Here we present a framework for the incorporation of variable benthic community 
composition into hydrochemical estimates of present CaCO3 production and future 



projections under an ocean acidification scenario. The hydrochemical method 
presented here has the advantage of incorporating processes, such as sediment 
dissolution, that are not readily incorporated into census techniques. We show for 
three Pacific reefs (Lady Elliot (Great Barrier Reef (GBR)), One Tree (GBR) and 
Shiraho (Japan)), how CaCO3 production rates for each benthic community type can 
be scaled-up to determine community-scale CaCO3 production across larger areas. 
Unlike census studies and previous larger scale upscaling studies, where calculated 
values cannot be compared with measured values, here we compare our scaled-up 
values with in situ community level measurements from each site at the same 
measurement and estimation scales. In this context “community level” refers to all 
benthic organisms and substrate (e.g. carbonate sediment) that form part of a mixed-
community study area (e.g. a reef flat). We then demonstrate how this approach can 
be used to predict future levels of CaCO3 production for future seawater chemistry 
and benthic composition scenarios. 
 
Methods 
 
Theory 
 
Hatcher (1997) proposed three upscaling mechanisms for reef processes: additive, 
integrative or differential.  Due to the absence of either known saturation effects with 
the geographical expansion of carbonate production across reef platforms, or non-
linear interactions in calcification at smaller spatial scales (as may be expected with 
the alternative mechanisms), we assume here that net CaCO3 production for different 
benthic communities is additive. This has previously been adopted for production and 
calcification of reefs at Moorea (Andréfouët and Payri 2001), Florida (Brock et al. 
2006) and the Great Barrier Reef (Hamylton et al. 2013; Hamylton 2014). The total 
net CaCO3 production can be calculated by the sum of the product of the net CaCO3 
production for an individual benthic type and the proportional area of each reef 
covered by that benthic community (Equation 1). This approach can be used to 
calculate present net CaCO3 production as well as predict future values where benthic 
community composition and production rates are known or can be modelled (Fig. 1). 
 

 

                                (1) 
   
where GT (mmol CaCO2 m-2 d-1) is the total net CaCO3 production, G is the net 
CaCO3 production for a particular benthic community type (i) (mmol CaCO2 m

-2 d-1) 
and C is the proportional coverage of that community type (unitless). 
 



 
Fig. 1. Schematic diagram of the inputs for calculating present and future net CaCO3 
production rates under the proposed framework 
 
The number of classes and the scale of the benthic community classifications can be 
determined for individual studies depending on the site-specific nature of the 
community, available data and the research question being addressed. The 
proportional coverage of each benthic type in a reef area can be determined through 
benthic surveys extrapolated across larger areas, or directly mapped from remote 
sensing imagery. For benthic surveys, the coverage could be classified to multiple 
scales, such as individual species or broad functional groups. The majority of 
mapping on coral reefs from airborne and satellites images has been at the coarser 
scales of functional groups or geomorphic zones. The final classification scale used 
may be dependent on the scale at which the CaCO3 production rate data is available. 
For example, if benthic communities are mapped to the general growth form classes 
of coral (e.g. massive, branching) but Gnet data is only available for a broad class of 
“live coral” then the benthic community classes will need to be generalised to match 
the descriptive resolution of the CaCO3 production rate data. 
 
CaCO3 production rate data ideally should be collected in situ at the study site (Yates 
and Halley 2003; Brock et al. 2006). Alternatively, published values from other areas 
can be used under the assumption that they are representative of the study area and 
mapped features or classes. Where published values are adopted, these should ideally 
be extracted from the same reef province (e.g. IndoPacific vs. Indian Ocean vs. 
Caribbean) to control for macroscale environmental variation (Kleypas et al. 1999). 
 
Upscaling case study in three Pacific reefs 
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Table 1. Proportion of reef area (%) covered by each benthic type at each of the study 
sites as measured during community metabolic studies at SH (Suzuki et al. 1995), 
OT1 (Silverman et al. 2012) and OT2 (Shaw et al. 2015) and from remote sensing at 
LE (Hamylton 2014) 

SH OT1 LE OT2 
Corals 19.0 13.7 11.8 25.2 

Non-calcifying algae 18.6a NA NA 22.9 
Coralline algae 0.2 1.3 42.0 7.3 

Sand 62.2 10.3 39.2 18.5 
Rubble/Dead coral NA 65.5 NA 25.4 

Halimeda NA NA 7.0 NA 
Palythoab NA 5.2 NA NA 

Other NA 4.0 NA 0.7 
a Sum of turf and macroalgae 
b Soft coral 
 
The Gnet parameterizations and source reference for each benthic community type are 
shown in Table 2. All rates were from in situ measurements using a hydrochemical 
approach except for Halimeda, which was taken from a review of existing in situ data 
of various methods for GBR locations (Rees et al. 2007), as a hydrochemical estimate 
was not available. The advantage of using in situ hydrochemical methods is that they 
are analogous to the methods used at the reef flat scale for comparison and that they 
are performed under natural, as opposed to laboratory, conditions. Cryptic species, 
such as some bioeroders and epiphytes, which contribute to the overall net community 
CaCO3 budget, are also included when in situ hydrochemical methods are applied to 
individual benthic community types. 
 
Table 2. Gnet parameterizations for each benthic community type 

Cover type 

Rate 
(mmol 
m-2 d-1) Description Reference 

Live coral 387.2a 
Shiraho reef flat and 

Moorea 
Nakamura & Nakamori (2009) 
Andréfouët and Payri (2001) 

Non-calcifying 
algae -11 

Turf algae from Shiraho reef 
flat Nakamura & Nakamori (2009) 

Crustose 
coralline algae 63.3 

Average of surface 
measurements. Lizard Is. Chisholm (2000) 

Sand 0.6 
Diffusive conditions. Heron 

Is. Cyronak et al. (2013) 
Rubble/Dead 

coral -10.7 Rubble. Molokai reef flat Yates & Halley (2006) 

Halimeda 60.2 
GBR, from review of 

studies (not hydrochemical) Rees et al. 2007 
Palythoa 0 Unknown value - 

Other 0 Unknown value - 
a A value of 400 mmol m-2 d-1 was used for site SH as this is the value measured at 
that location. For sites LE, OT1 and OT2, the above average value from Shiraho and 
Moorea was used.  
 



All data were taken from the Pacific to minimize regional differences in calcification 
rates. Rates were also taken from studies on shallow reef flat (shallower than 3m) 
benthic communities where possible to ensure consistency, both across the study sites 
and their associated geomorphic zones. The live coral data were taken from estimates 
of Gnet for 100% coverage from studies in Moorea and Shiraho reef flat (Andréfouët 
and Payri 2001; Nakamura and Nakamori 2009). Non-calcifying algae were 
parameterized with data for turf algae from Shiraho reef flat (Nakamura and 
Nakamori 2009), as turf algae were the dominant non-calcifying algae mapped in the 
study sites and due to a lack of data on Gnet for non-calcifying macroalgal 
communities. Sand was parameterized using data from Heron Island, GBR (Cyronak 
et al. 2013). The sand rate value was taken under diffusive conditions (c.f. advective 
conditions) to most closely match the slack water conditions of the overall Gnet 
measurements for each reef flat site. Dead coral and rubble were combined into one 
category that was parameterized based on a rubble community on Molokai reef flat, 
central Pacific (Yates and Halley 2006). The crustose coralline algae (CCA) 
parameterization was from Chisholm (2000) based on the average rates of individual 
species measured at the surface (most comparable depth to CCA on our study sites). 
We had no data to parameterize Palythoa or “other” benthic classes, so assigned them 
a value of zero. This is likely to be of limited consequence for our study with 
Palythoa only recorded at OT1 (5.2%) and “other” recorded at OT1 (4%) and OT2 
(<1%). 
 
CaCO3 production (mmol m-2 d-1) was calculated for each study site using Equation 1 
and the data from Tables 1 and 2. Each calculated value was compared to a measured 
value(s) for each study site. Both OT1 and OT2 have one measurement of daily 
CaCO3 production, from Nov-Dec 2009 (Silverman et al. 2012) and Nov 2013 (Shaw 
et al. 2015), respectively. For LE, the data from Shaw et al. (2012) for summer, 
autumn and winter 2010 was integrated over a 24-hr day using a cubic fit for each 
period to calculate the net daily CaCO3 production rates. The calculated value for SH 
was compared with data from both Suzuki et al. (1995) and Kayanne et al. (1995) 
who have each measured CaCO3 production at SH during March/April/September 
1990 and March 1993, respectively. 
 
Incorporating changes in benthic community composition  
 
We use the LE site to demonstrate how the framework presented here can incorporate 
changes in benthic community composition to future predictions of reef CaCO3 
production under changing net calcification rates. The LE site was chosen because 
there have been previous estimates of future CaCO3 production in response to 
changing carbonate chemistry (Shaw et al. 2012). Initially, the map of the proportion 
of the reef flat covered by benthic community classes was used to compare with 
previous predictions from Shaw et al. (2012) that assumed no change in benthic 
community composition. Future Gnet rates for each benthic community type were 
assigned based on values in the literature (Table 3). We estimated the change in 
CaCO3 production from present-day ar of 3.6 (Shaw and McNeil 2014) to future ar 
of 2.1 (corresponding with ~800 ppm CO2 levels). Although concurrent changes in 
sea surface temperature will also likely affect future calcification rates, our 
calculations are based on changes to calcification rates from changing carbonate 
chemistry alone, to be consistent with the predictions by Shaw et al. (2012). However, 



the framework presented here could be used to incorporate predicted changes in 
calcification rates from other compounding drivers.  
 
We applied a decrease in the net calcification rate (Gnet) of live coral of 15% per unit 
change of ar (Chan and Connolly 2013) from the present day rate (Table 2) over the 
1.5 unit ar change from 3.6 to 2.1. There were no data on Gnet for CCA at the target 
ar value of 2.1, so we interpolated between Gnet values measured for control and two 
treatment CO2 levels during a manipulation experiment of CCA from Heron Island 
(Anthony et al. 2008). The interpolation assumed a linear change in Gnet from control 
to intermediate CO2 and intermediate to high CO2 treatments, which yielded a 92.5% 
decline in CCA Gnet from present to the target ar of 2.1. Although change in Gnet 
between treatment levels may not be linear, and short-term experiments have a 
number of limitations for predicting future long-term changes, the focus here is to 
demonstrate how to incorporate future community changes into CaCO3 projections 
using available data.The future Gnet for sand was taken to be the rate measured by 
Cyronak et al. (2013) under elevated (~800 ppm) CO2 in situ at Heron Island, GBR 
(Table 3). For Halimeda we assigned a future rate of zero based on experimental data 
from Heron Island showing local Halimeda species no longer maintaining positive 
CaCO3 production by ar of 2.1 (Sinutok et al. 2012).  
 
These new rates (Table 3) were applied to the proportional area of benthic cover as 
described above in Equation 1. As we did not have future Gnet rates for either rubble 
or non-calcifying algae, we assigned their current Gnet, both of which were 
approximately -11 mmol m-2 d-1 (Table 2). This provides a conservative estimate of 
future declines in overall community Gnet, as it is likely that higher dissolution levels 
will occur in the future (Silbiger and Donahue 2015). 
 
Table 3. Net community calcification rate for each community type used under the 
future 800 ppm CO2 scenario 

Cover 
type 

Rate 
(mmol 
m-2 d-1) Description Reference 

Live 
coral 

300 
Applied a decline in Gnet of 15% per unit ar 

Chan & 
Connolly (2013)

Coralline 
algae 

4.7 
Interpolated from high-CO2 treatments in 
experiment at Heron Is. 

Anthony et al. 
(2008) 

Sand -3.6 
Rate measured from in situ CO2 addition 
experiment at Heron Is. 

Cyronak et al. 
(2013) 

Halimeda 0 
Based on high-CO2 experiments at Heron Is. 

Sinutok et al. 
(2012) 

Rubble/ 
algae 

-11 
Conservative estimate assuming present value 
due to insufficient data for future 
parameterization. - 

 
 
We applied changes in the future projected proportional area of each calcifying 
benthic community cover type to examine the effects of changing benthic community 
composition under the high CO2 (800 ppm) scenario. Qualitative predictions suggest 
that coral reefs will become less spatially complex and have higher levels of algal 
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Fig. 3. Calculated (hollow symbols) and measured (solid symbols) net CaCO3 
production rates for Shiraho (SH), One Tree 1 (OT1), Lady Elliot (LE) and One Tree 
2 (OT2) sites. Rates measured for SH by Suzuki et al. (1995) and Kayanne et al. 
(1995) are shown by diamond and circle symbols, respectively. LE summer, autumn 
and winter measured values are shown by diamond, circle and square symbols. The 
error bar on the OT1 measured value is the error estimate as provided by Silverman et 
al. (2012). 
 
Future projections 
 
When the areal proportion of benthic cover type was kept the same as present (Table 
1), but Gnet values for each community type were lowered, as expected for 800 ppm 
CO2 (Table 3), the calculated CaCO3 production rate for LE fell by 53%, from 77 
mmol m-2 d-1 to 36 mmol m-2 d-1. A previous study using an observed in situ 
relationship between Gnet and ar at LE, predicted a greater rate of Gnet decline of 51 
mmol m-2 d-1 per unit of ar (Equation 5 of Shaw et al. 2012). However, the 
relationship by Shaw et al. (2012) is based on a higher present-day Gnet value, such 
that the percent decline in Gnet from that relationship is 53%, which is the same as the 
percent decline that we calculate here based on declines of individual community 
components. The different rates of decline in Gnet with respect to ar may be due to 
uncertainties in each estimate and conform to the observation that predicted rates of 
Gnet decline based on in situ community studies are greater than for individual species 
experiments (Pandolfi et al. 2011). 
 
When we include a decline in areal proportion of calcifying benthic cover types, there 
is a further decline in predicted CaCO3 production rate (Fig. 4). When 50% of the 
original calcifier cover was replaced with algae/rubble, projected CaCO3 production 
at 800 ppm CO2 declines from 47% percent of the original rate to 18% (Fig. 4). The 
projected future CaCO3 production rate moves from being net positive to negative 
once calcifier cover drops to 18% of its original value (Fig. 4). 
 



 
Fig. 4. Projected CaCO3 production rates under 800 ppm CO2 scenario (ar = 2.1) and 
percentage change relative to current calculated levels for LE under different 
proportions of the current mapped calcifier coverage. 
 
Discussion 
 
Validation and comparison of CaCO3 production estimates 
 
Unlike previous scaled-up estimates of coral reef CaCO3 production that have had no 
validation or relied on comparison only with other estimated values, we were able 
here to compare our upscaled CaCO3 production rates with in situ measurements. 
Although the primary focus here was to demonstrate the scaling-up framework using 
available data from the literature, it was encouraging that the scaled-up value for LE 
was within the observed values and that other sites were all of the same order of 
magnitude (Fig. 3). There are however, a number of sources of uncertainty that could 
be addressed and improved from this analysis that would be expected to lead to higher 
accuracy results within the proposed framework, which are addressed below. 
 
Uncertainties in the scaled-up production estimates are likely to occur due to error in 
both the rate parameterization for each community type and the estimate of areal 
proportion of benthic cover types. Rate parameterizations in this study were taken 
from the literature and were not site-specific. Ideally rates would be measured for 
each representative community type in situ at the study site as CaCO3 production rates 
can vary in different locations due to environmental parameters, such as temperature, 
nutrients and carbonate chemistry (e.g Lough 2008; Manzello et al. 2008). Where in 
situ measurements cannot be made, rate parameterizations could potentially be 
improved by incorporating known geographic variations. For example, instead of 
having a uniform rate for coral calcification for all locations, it could be 
parameterized with respect to temperature, where latitudinal temperature gradients 



affect calcification rates (Lough 2008). Uncertainty also exists in the parameterization 
of calcification rates at the functional group scale used here, due to interspecific 
variability in calcification rates. For example, the CCA rate used was taken to be the 
average rate measured for three species, where the greatest rate measured for the three 
species was twice as high as the lowest (Chisholm 2000). The variability in 
calcification rate, combined with broad classifications that do not resolve species 
level, necessitate that there will be some uncertainty with the rate parameterization. 
However, this could be improved by performing in situ rate measurements with 
representative communities at the study site. 
 
Errors in the scaled-up CaCO3 production rates can also occur from limitations in 
mapping benthic communities. In situ classification methods are inherently subjective 
(e.g. is algae growing on dead coral classified as algae or dead coral?) and in the 
process of extrapolation, benthic cover types can be difficult to interpret on the basis 
of spectral information supplied from remote sensing instruments alone. While such 
approaches provide cost effective means of benthic community classification in reef 
environments (Mumby et al. 1999) over larger spatial scales (Goodman et al. 2013), 
an associated loss of resolution imposes a limit on capturing the fine scale details of 
calcifying communities. Furthermore, most standard in situ survey techniques and air 
and space borne remote sensing techniques generate 2-dimensional representations of 
benthic communities that are 3-dimensional (Goatley and Bellwood 2011). This leads 
to an underestimation of calcification processes occurring over rugose surface areas of 
community components, such as branching corals. Particularly in shallow reef flat 
environments, such as the study sites used here, the growth of certain corals is tidally 
constrained, with vertical surfaces that cannot be observed from above representing 
their active sites of lateral expansion, thus resulting in an underestimated coverage 
when only considered in two dimensions. 
 
An underestimate of live coral cover from using 2-dimensional benthic survey 
techniques could have contributed to calculated values of CaCO3 production that were 
lower compared with in situ measured values at three of the four study sites (Fig. 3). 
Due to the high rate of CaCO3 production of live corals (Table 2), the total 
community CaCO3 production rate is most sensitive to the proportion of live coral 
cover. For all sites, CaCO3 production by live coral is the dominant contributor to 
overall net CaCO3 production (Fig. 5). Therefore changes in live coral cover have a 
large potential to change total community production and errors in mapped coral 
cover can introduce potentially large uncertainty in the upscaled CaCO3 production 
value. 
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the range of in situ values. This highlights the seasonal nature of calcification and 
indicates that, where possible, in situ measurements should be timed to coincide for 
meaningful comparison. 
 
Incorporating benthic community changes into CaCO3 production predictions 
 
The benthic community composition of coral reefs is changing, with marked 
reductions in live coral cover observed in many reefs throughout the world (Gardner 
et al. 2003; Bruno and Selig 2007; De’ath et al. 2012). These changes are likely to 
continue into the future with further stress put on reefs from increasing sea surface 
temperatures and ocean acidity (Hoegh-Guldberg et al. 2007). Studies that have used 
in situ community scale measurements to predict the response of reefs to ocean 
acidification (Silverman et al. 2007; Shamberger et al. 2011; Shaw et al. 2012) have 
resulted in relationships of calcification and seawater carbonate chemistry assuming 
constant community composition. Here we provide an initial framework that 
overcomes this assumption by incorporating both changes in community composition 
and changes in calcification/dissolution rates to generate a more realistic prediction of 
future changes to coral reef CaCO3 production. 
 
Using our scaling-up approach we predict that community CaCO3 production at LE 
would decline by 53% under constant community composition (Fig. 4), in agreement 
with predictions by Shaw et al. (2012) from in situ relationships. The rate of decline 
of CaCO3 production increases with declining calcifier cover, such that a 50% decline 
in calcifier cover is predicted to result in an 82% decline in CaCO3 production from 
present values (Fig. 4). Although end-century CaCO3 production is still predicted to 
be positive under current levels of calcifier cover, we predict this to shift to negative 
if calcifier cover at LE drops to <18% of current levels. This prediction is based on a 
uniform decline in all calcifiers and would be higher if coral cover accounted for a 
greater proportion of decline than calcifying algae due to higher calcification rate 
parameterization of corals. Similarly, using census techniques, Perry et al. (2013) 
found a present-day threshold at which net CaCO3 production shifts from positive to 
negative of 10% live coral cover. 
 
Summary and future research directions 
 
The framework proposed here utilizes hydrochemical-based measurements, which 
have the advantage of integrating both calcification and dissolution for carbonate 
budget calculations. While predictions of future coral reef Gnet based on in situ 
hydrochemical relationships have previously been based on the unlikely assumption 
of constant community composition, the method proposed here incorporates both 
changing community composition and changes to calcification/dissolution rates of 
each community type. A recent review of coral reef carbonate models by Jones et al. 
(2015) has identified benthic community composition as a critically important factor 
that currently limits the predictive power of reef carbonate models. This framework 
allows multiple drivers of CaCO3 production decline to be assessed together (lowered 
Gnet from ocean acidification and changing benthic community composition from 
multiple stressors), where the assessment of multiple drivers of change and 
ecosystem-scale processes are presently major knowledge gaps for ocean acidification 
research (Riebesell and Gattuso 2015). 
 



The proposed framework is also suited to upscaling using remote sensing imagery and 
its derived maps, allowing CaCO3 budgets to be calculated for larger areas than 
previously used in hydrochemical studies, where the development of relationships 
between community metabolism and benthic communities for remote-sensing based 
upscaling has previously been identified as a future research requirement in the Guide 
to Best Practices for Ocean Acidification Research (Langdon et al. 2010). As 
incremental developments in remote sensing technology improve sensor spectral and 
spatial resolution, the level of detail and associated reliability with which calcifying 
communities can be mapped will improve the efficacy of the present framework. 
Although we have demonstrated application of the framework for calculation of 
CaCO3 production, it could also be applied to calculation of organic carbon 
production based on net community production rates of benthic community types. 
 
While it is promising that, by using calcification rate parameterizations from the 
literature, we can get reasonable agreement between upscaled and in situ measured 
CaCO3 production rates, there are a number of areas of future research that could 
markedly increase our ability to predict and understand future changes in coral reef 
CaCO3 production within the proposed framework: 

1. Standardized, high quality benthic cover estimation techniques.  
2. Incorporation of rugosity through use of 3-dimensional benthic cover 

mapping.  
3. Development of quantitative predictions of future benthic community 

composition to improve estimates of future CaCO3 production rates and to 
determine sensitivity to different future benthic cover scenarios. 

 
Maintaining reef CaCO3 framework is essential for the biodiversity and structural 
ecosystem services of coral reefs. The framework presented here is important because 
it helps us to understand how net CaCO3 production is changing and will change in 
the future. Critically, it incorporates both benthic community composition transitions 
(Hoegh-Guldberg et al. 2007) and reductions in rates of net calcification (Andersson 
and Gledhill 2013) into future CaCO3 production projections, and upscales current 
measurements to obtain CaCO3 production budgets across entire reef systems. This 
represents a spatial scale at which meaningful statements can be made about the 
implications of these community changes for ecosystem services in reef 
environments. Together, the advances presented by this modeling framework 
facilitate a more deterministic and realistic understanding of the current and future 
states of calcification than has hitherto been possible. 
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