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Abstract
The Global Ecosystem Dynamics Investigation (GEDI) lidar began data acquisition from the
International Space Station in March 2019 and is expected to make over 10 billion measurements
of canopy structure and topography over two years. Previously, airborne lidar data with limited
spatial coverage have been used to examine relationships between forest canopy structure and
faunal diversity, most commonly bird species. GEDI’s latitudinal coverage will permit these types
of analyses at larger spatial extents, over the majority of the Earth’s forests, and most importantly in
areas where canopy structure is complex and/or poorly understood. In this regional study, we
examined the impact that GEDI-derived Canopy Structure variables have on the performance of
bird species distribution models (SDMs) in Sonoma County, California. We simulated GEDI
waveforms for a two-year period and then interpolated derived Canopy Structure variables to three
grid sizes of analysis. In addition to these variables, we also included Phenology, Climate, and other
Auxiliary variables to predict the probability of occurrence of 25 common bird species. We used a
weighted average ensemble of seven individual machine learning models to make predictions for
each species and calculated variable importance. We found that Canopy Structure variables were,
on average at our finest resolution of 250 m, the second most important group (32.5%) of
predictor variables after Climate variables (35.3%). Canopy Structure variables were most
important for predicting probability of occurrence of birds associated with Conifer forest habitat.
Regarding spatial analysis scale, we found that finer-scale models more frequently performed better
than coarser-scale models, and the importance of Canopy Structure variables was greater at finer
spatial resolutions. Overall, GEDI Canopy Structure variables improved SDM performance for at
least one spatial resolution for 19 of 25 species and thus show promise for improving models of
bird species occurrence and mapping potential habitat.

1. Introduction

Due to the widespread impacts of land cover
change, pollution, wildlife exploitation, and climate
change on species and ecosystems across the world,
biodiversity assessment andmonitoring is imperative.
The United Nations’ latest global assessment report
on biodiversity and ecosystem services estimates that

the number of species threatened from extinction
now reaches an unprecedented 1 million, rates of
extinction are accelerating, and current actions are
insufficient to reverse these trends (IPBES 2019).
Monitoring biodiversity across large areas through
rapid, scalable, and accurate remote sensing meth-
ods will greatly improve our understanding of species
distributions, loss and resilience, drivers of changes,
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and impacts at multiple ecosystem levels (Pereira et al
2013, Corbane et al 2015, He et al 2015, Rocchini et al
2015). Proenca and colleagues (2017) reviewed sci-
entific approaches to global biodiversity monitoring,
with a focus on GEO BON’s Essential Biodiversity
Variables, and highlight the use of remote sensing for
characterizing ecosystem structure and function. In
terrestrial applications, remote sensors provide meas-
urements of vegetation properties, including chem-
istry, structure and phenology, which are related
to species habitat requirements, specifically shelter
and food resources. In this regard, many unexplored
opportunities with new technologies remain open to
investigation. For example, NASA’s Global Ecosys-
tem Dynamics Investigation (GEDI; Dubayah et al
2020) is a light detection and ranging (lidar) sensor
that was installed on the International Space Station
(ISS) in December 2018. This sensor makes fine-scale
measurements of 3D vegetation structure, such as
overall canopy height and vertical distributions of
plant material. The acquisition of these structural
measurements over the majority of the land surface
is expected to lead to significant advances in biod-
iversity monitoring and modeling (Bergen et al 2009,
Goetz et al 2014, Bakx et al 2019). In this study, our
primary goal is to examine the importance and added
value of 3D canopy structure data derived from sim-
ulated GEDI lidar waveforms in regional-extent bird
species distribution models (SDM).

Bird species have been well-monitored relative to
other taxa (Troudet et al 2017), especially in North
America, and recent work incorporating long-term
surveys and radar remote sensing suggests a drastic
decline of 2.9 billion birds since 1970 (Rosenberg
et al 2019). Similar to other taxa, habitat loss is a
major driver of reduction in bird species abundance
and range (Jetz et al 2007). Suitable bird habitat
includes necessities like food, water, shelter, and nest-
ing sites. Habitats are characterized at various scales,
from broad associations to more descriptive micro-
habitats. Habitat associations are typically related
to land-cover classes, frequently broad vegetation
types (e.g. coniferous forest, grassland), which can be
extracted from existing national or global land-cover
maps (e.g. MODIS C6; Sulla-Menashe et al 2019).
Habitat associations can be further subdivided into
microhabitats (e.g. shaded ground beneath mature
canopy) which are characterized by fine-scale topo-
graphy, climate, and vegetation structure. Measure-
ments of vegetation structure are not widely available
at fine scales, but previous work suggests that struc-
tural complexity is associated with a greater variety of
microhabitats which can lead to higher diversity and
abundance due to more opportunities for foraging,
shelter, and nesting (Cody 1985, Hunter 1999, Whit-
taker et al 2001, Hill et al 2004).

Previous SDM applications have mainly
used remote sensing to derive spatially-explicit
environmental predictors, such as topography and

bioclimatic conditions (Wilson and Jetz 2016), or
land-cover classes (He et al 2015, Bradie and Leung
2017). When considering bird diversity, continental-
extent distributions are largely modeled with biocli-
matic variables (e.g. WorldClim; Fick and Hijmans
2017), which can predict overall physiological con-
straints, and correlate with broad vegetation patterns
that influence habitat (Stralberg et al 2009, Lawler
et al 2009). However, at regional extents and finer
spatial resolution (grain), information on vegeta-
tion structure is useful for characterizing micro-
habitats, particularly in areas with heterogeneous
vegetation patterns, for example from topographic
variation (Stralberg et al 2009) or land-use/land-
cover change (Sohl 2014). Bird species diversity is
known to respond to both vegetation structure and
floristic diversity (Macarthur and Macarthur 1961,
Rotenberry 1985, Adams and Matthews 2019), both
factors that have been missing in models operating
beyond the plot scale. Recent developments in air-
borne remote sensing have provided missing links
at regional to local extents, implying possibilities for
broader-extent applications when these technologies
are elevated to space.

Airborne lidar surveys of topography and veget-
ation structure are becoming more frequent, but are
still limited in areal extent due to operational costs.
While most airborne lidar sensors typically capture
discrete returns from small footprints (<1 m dia-
meter), airborne and spaceborne waveform sensors
capture the full vertical profile of vegetation structure,
typically using relatively larger footprints (>20 m dia-
meter) collected over a wider area (Lim et al 2003;
Anderson et al 2016; Hancock et al 2019). Lidar
data are already improving our understanding of how
vegetation structure influences bird species distribu-
tions at multiple spatial scales (Tattoni et al 2012,
Rechsteiner et al 2017, Carrasco et al 2019) and sev-
eral review papers have examined lidar-based stud-
ies that consider avian distributions (Vierling et al
2008, Davies and Asner 2014, Bakx et al 2019). In
general, current research tends to use airborne lidar
and derived metrics related to canopy height, ver-
tical and horizontal variability, and cover, as well
as understory density. Most studies report a posit-
ive effect of lidar metrics in explaining bird distribu-
tions and/or patterns of richness, however the extent
and scale of analysis are important factors. Species
sense and respond to a range of temporal and spatial
scales (Wiens 1989, Levin 1992), and this has import-
ant implications for parameterizing and interpret-
ing SDMs. (Mayor 2009) and McGarigal et al (2016)
review how hundreds of studies address the issue of
scale dependence, finding no consensus. At a min-
imum, they recommend testing SDMs at a variety of
spatial scales, ideally optimizing the scale of each vari-
able (multi-scale optimization).

In this study, we focus on implementing simu-
lated GEDI lidar—the first spaceborne lidar mission
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designed specifically to measure vegetation struc-
ture. The instrument is scheduled to collect data for
a minimum of two years, from 2019 to 2020. Ini-
tial GEDI data were released on January 22, 2020,
and so our analysis uses 2 years of GEDI data sim-
ulated from airborne lidar data. Previous research
using NASA’s airborne full waveform Land Veget-
ation and Ice Sensor (LVIS), a precursor to GEDI,
showed that lidar metrics were useful for modeling
bird species richness, abundance, and habitat qual-
ity at local extents (Goetz et al 2007, 2010). More
recent research has used space-based ICESat-1 wave-
form lidar at broader scales (Goetz et al 2014), corrob-
orating other studies showing vegetation properties
derived from multispectral satellites (e.g. MODIS),
such as percent tree cover and life form type, along
with bioclimatic variables were generally sufficient
predictors of breeding bird species richness.

We created SDMs for 25 species of birds in
Sonoma County (figure 1) using canopy structure
predictor variables as well as additional climate,
phenology, and other auxiliary geospatial predictors.
Our three objectives are to: (1) generate bird SDMs
and determine the importance of individual pre-
dictor variables and variable groups for 25 bird spe-
cies; (2) determine whether including Canopy Struc-
ture variables improve SDM performance, while also
exploring the impacts of spatial scale; and, (3) map
probability of bird species occurrence and associated
uncertainty of these predictions.

2. Methods

2.1. Spatial and temporal domain of SDMs
We focus on Sonoma County because there are a rel-
atively large number of geolocated bird species obser-
vations and the entire county is covered by airborne
lidar data (figure 1) which we used for the GEDI
simulation. A previous effort, the Sonoma County
Breeding Bird Atlas (U.S. Geological Survey 2019),
was based entirely on field observations and mapped
occurrence of bird species in Sonoma County at 5-km
spatial resolution. We sought to create finer spatial
resolution maps showing probability of occurrence
by generating three regularly-spaced square grids cov-
ering the county at 250-, 500- and 1000 m spatial
resolution.

The airborne lidar collection occurred from
September to November 2013 and is the primary
temporal constraint on our analysis. We chose water
years (starting in October and ending in Septem-
ber) 2013 to 2015 to bracket the lidar data collection.
Additional remote sensing datasets used for SDMs
were temporally-aggregated to the entire three-year
period. Due to the limited spatial coverage of species
observations from this three-year period, we exten-
ded the species observation window to ten years
(2006 to 2015).

2.2. Bird species data
2.2.1. Selecting species of interest
We gathered field observations from point count sur-
veys collected by Point Blue Conservation Science
(figure 1; appendix A) from the California Avian
Data Center (http://data.prbo.org/cadc2/) between
2006 and 2015, along with data from the citizen sci-
ence observation network eBird (Sullivan et al 2009),
and the Breeding Bird Survey (Sauer et al 2017).
eBird data comprised the majority of records. We
used data from all detailed survey events that recor-
ded all species present, and thus from which we
could discern detection or non-detection. If pres-
ence detections occurred in a given grid cell at a par-
ticular resolution then that cell response was clas-
sified as presence (value = 1). Grid cell surveys in
which the observer did not encounter the species of
interest were classified as absence (value = 0). We
selected the top 25 species based on number of grid
cell presences at 250 m spatial resolution (see table
1). Main species habitat associations (Conifer, Oak,
Shrub, Riparian, Grass, Urban, and Variable; table 1)
were determined from the Sonoma County Breeding
Bird Atlas, Audubon Guide to North American Birds
(https://www.audubon.org/bird-guide) and TheCor-
nell Lab of Ornithology Birds of North America guide
(https://birdsna.org; Rodewald 2015). A variable hab-
itat association means that the species does not spend
a majority of time in a given habitat.

2.3. GEDI lidar and canopy structure predictor
variables
2.3.1. GEDI Instrument Description
The GEDI lidar sensor measures vertical canopy
structure of forests between ±51.6 degrees latitude.
The instrument emits pulses of energy (1064-nm)
which reflect off of various canopy layers and/or the
Earth’s surface, and the returned energy of each pulse
is recorded as a short duration time series. Using the
speed of light, ISS orbital geometry, and precise posi-
tioning, this time series is geolocated on the Earth’s
surface and transformed into a waveform—a pro-
file of returned energy discretized into 15-cm vertical
height bins for each ∼22- to 25 m diameter footprint
(Dubayah et al 2020). Footprints are separated by
approximately 60 m along each of the 8 ground tracks
and by 600 m between tracks. GEDI, like other lidar
systems, is not able to make measurements through
clouds.

2.3.2. Canopy Structure predictor variables from
simulated GEDI
The primary GEDI data product (L1B) is a geolocated
lidar waveform. Variations of the main waveform and
waveform-derived metrics (L2; Tang et al 2012) are
output for each footprint.

We simulated two years of GEDI lidar observa-
tions from airborne lidar data by using the methods
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Figure 1. Sonoma County, California, USA dominant vegetation and land cover classes (a.) and vegetation height map (b.)
derived from airborne lidar survey in 2013 ( sonomavegmap.org ). All species observation locations from 2006 to 2015 (blue dots
in b.) and corresponding high density observation areas (orange outlines in b.) are shown as well.

Table 1. Species selected for distribution modeling and their habitat association.

Species Code Common Name Pres. Grid Cells at 250 m Abs. Grid Cells at 250 m Habitat Association

ACWO Acorn Woodpecker 189 718 Oak
AMGO American Goldfinch 114 486 Grass
BEWR Bewick’s Wren 98 615 Variable
BHGR Black-headed Grosbeak 106 517 Variable
BLPH Black Phoebe 193 478 Riparian
BRBL Brewer’s Blackbird 172 499 Urban
BUSH Bushtit 165 579 Oak
CALT California Towhee 306 438 Shrub
CAQU California Quail 193 520 Shrub
CBCH Chestnut-backed Chickadee 127 544 Conifer
DEJU Dark-eyed Junco 155 589 Conifer
HOFI House Finch 261 362 Urban
LEGO Lesser Goldfinch 164 459 Grass
MODO Mourning Dove 281 741 Urban
NOFL Northern Flicker 89 624 Conifer
NOMO Northern Mockingbird 214 808 Oak
NUWO Nuttall’s Woodpecker 152 471 Oak
OATI Oak Titmouse 181 490 Oak
RWBL Red-winged Blackbird 175 448 Riparian
SOSP Song Sparrow 213 610 Riparian
SPTO Spotted Towhee 137 486 Conifer
STJA Steller’s Jay 119 625 Conifer
WCSP White-crowned Sparrow 168 432 Shrub
WEBL Western Bluebird 132 491 Grass
WESJ Western Scrub-jay 257 414 Oak

Mean 174 538
Std. Deviation 57 108

described by (Hancock et al 2019). All simulated
L2 variables are based on a gaussian ground-finding
algorithm (Hofton et al 2000). The ‘Canopy Struc-
ture’ predictor variables used in this study are
described in appendix Table C1. Since GEDI is a
sampling instrument we used the ‘Moving Window
Kriging’ tool from ArcGIS Pro to produce predicted
Canopy Structure metric values at 50 m intervals. We

generated the geostatistical model for each Canopy
Structure metric using the ArcGIS Pro Geostatist-
ical Wizard and the ‘Simple’ Kriging method. We
resampled the 50 m prediction raster to our three
different analysis scales using an averaging method.
Additional details regarding airborne lidar data pro-
cessing, GEDI simulation processing and interpola-
tion can be found in appendix C.a.

4

https://sonomavegmap.org


Environ. Res. Lett. 15 (2020) 095002 P Burns et al

2.4. Additional predictor variables
2.4.1. Climate.
We selected six ‘Climate’ predictor variables from the
California Basin Characterization Model (BCM; Flint
et al 2013) to include in SDM: precipitation (Ppt),
average minimum temperature (TMn), average max-
imum temperature (TMx), potential evapotranspir-
ation (PET), actual evapotranspiration (AET), and
climatic water deficit (CWD). The monthly data for
water years 2013, 2014 and 2015 were resampled from
a native spatial resolution of 270 m to our three ana-
lytical spatial scales using an averaging method. Vari-
ables for each water year were then grouped and
averaged into four three-month periods: October-
December (Q1), January-March (Q2), April-June
(Q3), and July-September (Q4). Final SDM climate
variables were averages of the threewater years (2013–
2015) for each three-month BCM variable, resulting
in 24 total ‘Climate’ variables for each spatial analysis
scale.

2.4.2. Auxiliary variables
We used four ‘Auxiliary’ predictor variables as inputs
to SDMs: elevation, distance to ocean coast, distance
to streets, and distance to streams. Sonoma County
has a diverse topography, ranging from Pacific coast-
lines to mountains greater than 1000 m in eleva-
tion. Elevation can be a proximate determinant of
a species’ presence (Hof et al 2012). Elevation ras-
ters were derived from the USGS National Elevation
Dataset (NED; 1/3 arcsecond native spatial resolu-
tion). In Sonoma County, distance to coast is cor-
related with a longitudinal pattern of habitats. Closer
to the coast are mixed hardwood and conifer forests,
such as Coastal redwoods and Douglas fir, with inter-
spersed patches of chaparral, and further inland occur
conifer patches, oak woodlands, chaparral and grass-
lands. Distance to coast was also calculated initially as
a 30 m raster from a coastal vector layer using Arc-
GIS. Distance to streets was incorporated as a proxy
gradient for human influence. We used the Sonoma
County streets vector layer to calculate distances in a
30m raster. Distances to streamswere incorporated as
an additional predictor related to moisture and water
availability. Numerous species of birds prefer habit-
ats along or near streams (Rottenborn 1999, Mcclure
et al 2015). We used the lidar-derived streams vector
layer from the Sonoma County Vegetation Mapping
and Lidar program (https://sonomavegmap.org) to
calculate distances in a 30 m raster. All auxili-
ary variables were resampled to the spatial analysis
scales (250-, 500-, and 1000 m) using an averaging
method.

2.4.3. Phenology
Multispectral satellites like the Moderate Resolution
Imaging Spectroradiometer (MODIS) are particu-
larly useful for monitoring vegetation presence, vital-
ity, and phenology. We calculated Dynamic Habitat

Indices (DHI) Phenological predictor variables from
MODIS, most recently described by Hobi et al (2017)
and Radeloff et al (2019). These indices are meas-
ures of vegetation productivity over the course of a
year. We were limited to using MOD13 NDVI since
it is the only index measured at (approximately) our
finest analysis scale. The DHIs we calculated include:
(1) DHI sum—the area under the phenological curve
of a year, (2) DHI min—the minimum value of the
phenological curve of a year, (3) DHI var—the coef-
ficient of variation of the phenological curve of a year,
(4) DHI median—the median value of the composite
time series, (5) DHI 95p—the 95th percentile value
of the composite time series, and (6) DHI seasonal
difference—the difference between mean June and
mean November NDVI, a potential proxy for decidu-
ousness in this area. The six DHI metrics were calcu-
lated at their nominal spatial resolution (232-, 463-,
927 m) and then resampled to our analysis scales. See
appendix C.c. for additional details.

2.5. Species distributionmodel approach
2.5.1. Individual SDMs
We combined Climate (24), Canopy Structure (20),
Phenology (7), and Auxiliary (4) variables for a total
of 55 predictors covering Sonoma County at each
spatial resolution. We rescaled each predictor vari-
able by subtracting the mean and dividing by the
standard deviation. To account for potential multi-
collinearity we used a variance inflation factor (VIF)
analysis to remove the most correlated variables. We
used our highest spatial scale scenario (250 m) vari-
able values and set a VIF threshold value greater
than or equal to 10—equivalent to excluding vari-
ables that have an R-square of 0.9 or higher when
regressed against all other variables. We selected the
same variables for the other two model scales that use
Canopy Structure predictors. This model scenario is
referred to as ‘All with Canopy Structure’. For com-
parison we ran a scenario referred to as ‘All without
Canopy Structure’ which excluded Canopy Structure
variables.

We ran seven individual SDMs (Random Forests,
Support Vector Machine, Boosting, Extreme Gradi-
ent Boosting, Neural Network, Net Regularized Gen-
eralized Linear Models, and K-Nearest Neighbors)
500 times (bootstraps) for each species, resolution,
and model scenario combination. Each bootstrap
corresponded to a random sample (80% training,
20% testing) of spatially-thinned species observations
(Aiello-Lammens 2015) and associated predictor
variables. Cross-validation was used to tune models
and prevent overfitting. Additional details related to
individual model tuning and bootstrapping can be
found in appendix D. We focused on the area under
the receiver operator characteristic curve (AUC;
Fielding and Bell 1997) for individual model evalu-
ation. AUC values equal to 0.5 mean that the pre-
dicted values are equivalent to random guesses. AUC
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values greater than 0.5 and up to 1 (perfect) indicate
that the model has some level of predictive power.

2.5.2. Variable importance
We used a sensitivity analysis method from the
R package rminer (Cortez and Embrechts 2013,
Cortez 2016) to assess variable importance. We
selected the data-based sensitivity analysis (DSA)
method and associated average absolute deviation
from the median (AAD) for measuring importance.
We focused on the model scenario ‘All with Canopy
Structure’ and assessed variable importance for spe-
cies both in terms of individual variables and vari-
able groups (Climate, Canopy Structure, Phenology,
and Auxiliary). We also assessed variable importance
aggregated by habitat association.

2.5.3. Ensemble SDMs
We generated two different types of ensembles, an
individual iteration ensemble (IIE) and combined
iteration ensemble (CIE). The IIE for each species
calculates a weighted average prediction (Marmion
et al 2009) value from up to seven individual model
predictions for a single bootstrap (figure 2). To cre-
ate this ensemble we only selected individual mod-
els with AUC greater than 0.5 and then calculated
a weighted average prediction for each grid cell,
where the weights were based on adjusted AUC
(AUC score minus 0.5). All prediction averaging
was done following a logit transform of the model
predictions. Averaged values were then transformed
back to probability (0 to 1). Our second ensemble
method, CIE, aggregates species model predictions
from individual models across all 500 bootstraps,
again weighting the final prediction value by adjus-
ted AUC. The maximum number of individual pre-
diction values was 3500 (7 models ∗ 500 iterations),
assuming all individual models had AUC greater than
0.5. We used the weighted average prediction value
and associated weighted standard error to display
probability of occurrence and associated uncertainty
for each species (figure 2). All SDM analyses were
performed in R (R Core Team 2019). Appendix H
lists specific R packages used and associated
references.

2.6. Impact of Canopy Structure variables on
model performance
2.6.1. Ensemble SDMs
Differences in predictive accuracy when contrast-
ing model constructs can be highly informative with
respect to the importance of a particular predictor for
understanding the niche of a species, and for man-
agement and decision-making (Austin and Van Niel
2011 Mod et al 2016, Bell and Schlaepfer 2016). How-
ever, consistency in identification of important envir-
onmental variables varies with the algorithm used
and other factors, so caution must be taken to ensure

models do not over-fit when tested with and without
a variable, as they may include variable interactions
that increase model complexity and may not correctly
reflect the ecology of the species (Aguirre-Gutiérrez
et al 2013, Bell and Schlaepfer 2016). This was noted
by (Araujo and Guisan 2006), who recommend the
use of carefully chosen predictors (see alsoAraújo et al
2019). We postulated that GEDI variables provide
ecologically-meaningful information about vegeta-
tion structural complexity that partly determines the
niche of several of our study species. We visually com-
pared the performance of SDMs that included and
omitted Canopy Structure variables. We expected the
algorithms used would adjust model complexity to
optimally predict with andwithout theCanopy Struc-
ture variables. However, we also expected Canopy
Structure variable importance would still be evident
as an increase in performance when they are included
in the model.

Though information from the full range of the
species has been noted as very important for SDM
performance (Kadmon et al 2003, Syphard and
Franklin 2010, Martínez-Freiría et al 2016; see review
in Engler et al 2017), the geographic coverage of
the airborne lidar dataset precluded us from run-
ning models outside Sonoma County. Relatively less
important than geographic bias and sample size
(Thibaud et al 2014), spatial autocorrelation will also
affect SDM performance and was not included in
our models. Since our goal was to evaluate the rel-
ative importance of the Canopy Structure variables
in SDMs, we focused on building relatively accurate
models and comparing among constructs that vary
only with respect to the variables used.

2.6.2. Logistic regression analyses
In order to provide additional evidence of the impact
of Canopy Structure variables, we used all the vari-
ables remaining after VIF to construct an additive
logistic regression model (the ‘All with Canopy Struc-
ture’ model scenario), and also fitted the ‘All without
Canopy Structure’ model scenario. For each boot-
strap sample, we then calculated the likelihood ratio
test statistic of the full model vs the restricted model
(i.e. with vs without Canopy Structure), and report
the range of values of the statistic in relation to the
value at which it is expected to occur fewer than 5%
of the times (the ‘statistically significant’ departure
value). Results of this logistic regression analysis are
provided for comparison in appendix E.c. since our
main focus is the use of Canopy Structure variables
in ensemble SDMs.

3. Results

3.1. Predictor variables and importance
The VIF method used to remove highly-correlated
predictor variables at 250 m spatial resolution
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Figure 2. Overview of SDM framework for the ‘All with Canopy Structure’ modelling scenario. VIF reduced the total number of
predictor variables to 23. Then for each of the 25 species we used seven different machine learning algorithms at three different
spatial scales. We ran 500 bootstraps for each species and scale. We calculated the aggregated variable importance for each species
and also produced weighted prediction and uncertainty maps.

reduced the number of predictor variables from 55
to 23. This reduction left 38% of Climate, 35% of
Canopy Structure, 100% of Auxiliary and 43% of
Phenology predictor variables. The following Cli-
mate variables remained: Actual Evapotranspira-
tion (AET) from Q1, Q2, Q3, and Q4, Potential
Evapotranspiration (PET) from Q1 and Q2, Pre-
cipitation from Q1 (PptQ1), Maximum Temperat-
ure from Q1 (TMxQ1), and Minimum Temperature
from Q1 (TMnQ1). The following Canopy Struc-
ture variables remained: Biomass (BM; referred to
as BM_2_1 in appendix Table C1), Leaf Area Index
0- to 10 m, 10- to 20 m, 20- to 30 m, and 30- to
40 m, Vertical Distribution Ratio Middle (VDRM)
and Vertical Distribution Ratio Bottom (VDRB). All
Auxiliary variables remained after VIF. The follow-
ing Phenology variables remained: NDVI Annual
95th Percentile (NDVI_Ann_95p), NDVI Seasonal
Difference (NDVI_Seas_Diff), and NDVI Variance
(NDVI_Var). The correlation matrix for the remain-
ing variables is shown in appendix figure C3 .

For all 500 bootstraps we summarized variable
importance by predictor variable group for hab-
itat associations (figure 3) and individual species
(appendix E). We ranked DSA variable importance
for each individual bootstrap and then selected the
top-5 most important variables from each boot-
strap. Figure 3 shows the relative distribution of all
top-5 variables by variable group and habitat asso-
ciation. From this perspective at 250 m, Canopy
Structure variables most frequently ranked in the
top-5 most important variables for Conifer, Shrub,
and Urban specialists. The importance of Canopy
Structure diminishes at coarser spatial resolutions,
such that Climate variables most frequently ranked
in the top-5 when considering Shrub and Urban
specialists at 1000 m. Across all spatial resolutions

and habitat associations, Climate variables most fre-
quently ranked in the top-5, but the relative frequen-
cies generally matched the proportion of Climate
variables available relative to the total number of vari-
ables. However, Oak, Riparian, and Grass specialists
had a higher frequency of Climate variables ranked
in the top-5. For all habitat associations, Phenology
variables ranked in the top-5 more frequently than
would be expected based on proportion of Phenology
variables available relative to the total number of vari-
ables. Across all habitat associations at 250 m, Auxili-
ary variables comprised 12.9%of the top-5 (vs. 17.4%
expected), Phenology 19.3% (vs. 13.0% expected),
Canopy Structure 32.5% (vs. 30.4% expected), and
Climate 35.3% (vs. 39.1% expected). These import-
ance patterns are corroborated by another perspective
in which we summed total importance for each res-
olution and predictor variable group (supplementary
figure E2 (stacks.iop.org/ERL/15/095002/mmedia)).

The DSA importance method also provided
insight into which individual predictor variables were
most important (appendix figure E3). Individual
Phenology variables were relatively more important
than median importance of variables from all mod-
els, regardless of habitat association. Canopy Struc-
ture variables were usually about as important as
the median variable importance. The two vertical
distribution ratios (VDRB and VDRM) were more
important than other canopy structure variables, with
VDRB showing noticeably higher relative importance
for all habitat associations. Canopy Structure vari-
ables BM, LAI 0- to 10 m, and LAI 10- to 20 m
were relatively more important for Conifer special-
ists, particularly at finer spatial resolution. Climate
variables were relatively homogenous in their import-
ance, but TMxQ1 showed noticeable deviation from
the median importance value. Precipitation from the
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Figure 3. The percent of time that individual variables from different groups were included in the top-5 most important (DSA
method) variables across all 500 bootstrap iterations. Percent Available is percentage of variables available from a group (Canopy
Structure, Climate, Phenology, Auxiliary) relative to the total number of variables remaining after VIF (n = 23) and can be
thought of as a baseline for comparison if all variables were equally important. The dashed vertical line corresponds to Canopy
Structure percent available and is used for assessing the relative importance of this variable group for different habitat
associations. We included all models (except XGBoost) which had AUC > 0.5 and used at least 5 variables.

first quarter (PptQ1) was another relatively import-
ant Climate variable. Importance of Climate variables
generally increased going from fine- to coarse-scale.

3.2. Model performance
3.2.1. Comparing performance of different model
scenarios
Ensemble models were most frequently the best per-
forming models over all bootstraps (appendix F.a.).
Figure 4 shows notched boxplots corresponding to
Ensemble Weighted Average (EWA) AUC values from
500 bootstraps for each species and resolution. These
boxplots are useful for visualizing differences among
bootstrap population medians. The ‘All with Canopy
Structure’ scenario showed median AUC improve-
ments (i.e. non-overlapping notches) for at least one
resolution for 19 species: CBCH(all), DEJU (250- and
500 m), NOFL (250- and 500 m), SPTO (250- and
500 m), STJA (all), AMGO (250- and 500 m), BUSH
(250 m), NOMO (500 m), NUWO (250- and 500 m),
OATI (250 m), WESJ (250 m), RWBL (500 m), SOSP
(250 m), CALT (all), CAQU (250 m), WCSP (500 m),
BRBL (all), BEWR (250- and 500 m), and BHGR
(250 m). Every Conifer specialist showed a median
AUC improvement for at least one spatial resolution.
Five of the six Oak specialists showed an improve-
ment in performance for at least one spatial resolu-
tion. Few of the Grass or Riparian specialists showed
improvement after incorporating Canopy Structure
variables. All three Shrub specialists showed a median
AUC improvement for at least one spatial resolution.
Lastly, two of four Urban species showed a median
AUC improvement for at least one spatial resolution.
Thresholded differences in AUC are shown in Supple-
mentary Table F1. For example, at 250 m, the median
AUC value increased by at least 0.02 AUC for 10 of 25
species, while the 95th percentile AUCvalue increased
for 14 of 25 species. Themaximum increase inmedian
AUC after incorporating Canopy Structure variables
was 0.04 for CBCH.

3.2.2. Influence of spatial resolution
We summarize ‘All with Canopy Structure’ median
model performance by spatial resolution in Supple-
mentary Table F2. Considering all 25 SDMs, most
(11) have the highest median AUC value at 250 m.
Grass and Riparian habitat specialists are notable
exceptions, with all of their highest median AUC
values at 500 m and 1000 m, respectively. Conifer,
Oak, and Shrub specialists generally have the highest
median AUC at 250 m spatial resolution. Supple-
mentary Table F2 also shows the difference between
the maximum and minimum AUC medians across
all spatial resolutions, providing insight into the scale
variability of each SDM. The average scale variab-
ility is 0.03 AUC, while the maximum variability is
0.067 AUC. Therefore, the effect of scale on median
model performance is similar to the effect of incor-
porating Canopy Structure variables.

3.3. Ensemble maps
We calculated CIE weighted average predictions from
individualmodels which hadAUCvalues greater than
0.5. Figure 5 shows species distributionmaps for birds
from a range of habitat associations as predicted by
the ensemble weighted average as well as the cor-
responding uncertainty. The uncertainty estimates
include variance due to the model used, the bootstrap
sampling, and unexplained variance by the model.
Because of the small sample sizes of the bird observa-
tion data, the total predicted error is relatively large.
All species maps are presented in appendix G.

4. Discussion

Our ability to describe, parameterize, and model spe-
cies’ habitat continues to improve with the addi-
tion and refinement of relevant geospatial datasets.
Our central objective was to determine the added
benefit of Canopy Structure variables from simu-
lated GEDI lidar in SDMs that also include relev-
ant Climate, Phenology, and Auxiliary variables. We
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Figure 4.Model performance comparison between two model scenarios—‘All with Canopy Structure’ vs. ‘All without Canopy
Structure’. Each boxplot corresponds to EWA AUC values from up to 500 bootstraps. Notches that do not overlap can be
interpreted as having different median values. ‘X’ points on each boxplot correspond to the 95th percentile value.

quantified the added benefit of these Canopy Struc-
ture variables by calculating variable importance of
the ‘All with Canopy Structure’ model scenario and
by comparing the performance of this model scen-
ario against the ‘All without Canopy Structure’ model
scenario using 500 bootstraps. The spatial scale at
which SDMs are generated is a very important consid-
eration and impacts our estimates of variable import-
ance and comparative assessment of model per-

formance. For this analysis we selected three prac-
tical SDM spatial scales which coincided with readily
available and ecologically-meaningful Climate, Phen-
ology, and Auxiliary predictor variables. Below we
discuss the variables that remained after the VIF pro-
cess, their importance, the change in SDM perform-
ance after incorporating Canopy Structure variables,
current constraints on the analysis, and ideas for
building on this work in the future.
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Figure 5. Ensemble maps of weighted average probability of occurrence and associated uncertainty of the mean for one species
from each habitat association at 250 m spatial resolution. Uncertainty of the mean prediction is shown as the range of the
standard error confidence interval, that is the upper 1 SE confidence interval minus the lower 1 SE confidence interval. Other
maps are presented in Supplementary Material Appendix G.
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4.1. Model variables and importance
Methods to reduce redundant information across
predictor variables, such as VIF, are useful for creating
models that are parsimonious and interpretable
in terms of variable importance. Furthermore, the
elimination of certain variables can provide insight
regarding unique information content relative to the
entire stack of environmental predictors. Considering
all variable groups, we found Climate variables to be
the most important overall. Maximum temperature
was the most important Climate variable for Grass
and Oak species, which agrees with previous stud-
ies (Howard et al 2015, Bradie and Leung 2017). Six
of nine Climate variables were associated with either
potential or actual evapotranspiration (ET), which
is related to a combination of temperature, mois-
ture availability, and plant productivity. Hawkins et al
(2003) and Coops et al (2018) found ET variables to
be important for predicting species richness at broad
spatial scales. Barbet-Massin and Jetz (2014) showed
that annual PET was among the most relevant vari-
ables for predicting bird species distributions in the
conterminous U.S. The ET variables do not appear to
be relatively as important when grouped by habitat
association, but still contain some unique informa-
tion. For example, PETQ2 is one of the most import-
ant variables for Bushtit and Mourning Dove.

Seven Canopy Structure variables remained fol-
lowing VIF reduction, and as a group were usually the
second most important variable group depending on
habitat association. Canopy structure is an import-
ant determinant of avian diversity, including the par-
titioning of niches for species coexistence, changes
in microclimate (Zellweger et al 2019) and refuge
from predation (Davies and Asner 2014). Müller et al
(2010) found that 3D structure measured with air-
borne lidar was the main statistical determinant of
bird assemblages in aGerman temperatemixed forest.
Macarthur and Macarthur (1961) first reported the
link between bird species diversity and foliage height
diversity (FHD). However, neither version of the
FHD metrics remained following VIF reduction. This
is not necessarily because the variable is without util-
ity, but rather some of its information content varied
linearly with other variables that also include inform-
ation about the vertical distribution of plants, like
vertical distribution ratios (VDRB and VDRM), LAI
profiles, and NDVI. VDRB was a particularly import-
ant variable for all habitat associations. This variable
was initially included to characterize how evenly plant
material is distributed, as it compares the overall can-
opy height to the height of 50% of the cumulative
waveform signal. In theory, values close to 0.5 indic-
ate an even distribution, while lower values should
indicate a higher concentration of plant material in
the understory, and vice versa. In actuality, when
examining the kriged raster we observe that the vari-
able shows spatial correspondencewith tall vegetation
or built-up structures, both of which could be useful

for perching or nesting. Some species SDMs may find
this variable useful for discriminating between can-
opy structure characteristics. For instance, this was
one of the most important variables for California
Towhee, which commonly uses dense shrub/scrub
areas that are low to the ground.

Canopy Structure variables were most important
for Conifer specialists (figure 3), suggesting that these
species seem to prefer locations with certain Can-
opy Structure characteristics (i.e. based on import-
ance metrics, more biomass at the canopy level and
denser foliage, or LAI, in the 0- to 10 m and 10- to
20 m strata). This agrees with our observations of
these conifer-associated species in Sonoma County.
For example, Dark-eyed Junco is often found in
areas with complex vegetation structure less than
5 m from the ground, but also forages in mid-
canopy. During the breeding season, males often
sing from exposed perches near the tops of con-
ifers and snags. Chestnut-backed Chickadee prefers
structurally-complex mature conifer forests, as cor-
roborated by the importance of the variable LAI 20-
to 30 m, and is often found gleaning small insects and
other arthropods from bark and twigs.

Phenology variables mainly capture temporal
cycling of top-of-canopy foliage status, but in some
cases (low to moderate forest cover) may contain
information about foliage density associated with the
near-infrared component of NDVI which is related to
the phenomenon of leaf additive reflectance (Jensen
1996). The Phenology variables had the highest top-
5 importance difference relative to their expected
importance (+6.3% overall at 250 m) suggesting that
these variables contain particularly useful informa-
tion for bird SDMs. Visually, the three Phenology
variables show some correspondence with broad land
cover and vegetation classes (figure 2), which may
provide sufficient predictive information for some
SDMs. Canopy Structure variables from GEDI also
had a positive top-5 importance difference (+2.1%
overall at 250 m) for all habitat associations. Can-
opy Structure variables likely complement Climate
and Phenology variables by adding 3D information
related to microhabitat structure that is not captured
by the other variables we used. This 3D perspective
has the greatest benefit for Conifer specialists (+9.5%
overall at 250 m).

4.2. SDM performance
4.2.1. Ensemble model performance perspective
Fewer than half of the ensemble SDMs had median
AUC greater than 0.7, a threshold for assessing SDM
quality (Pearce and Ferrier 2000, Duan et al 2014).
The overall performance of these 25 SDMs was
likely related to the bird observation data and the
large distribution range of the individual species
(Mcpherson and Jetz 2007). Although Sonoma
County is relatively diverse in terms of climate, topo-
graphy, and vegetation type, more bird observations
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spanning a wider range of the environmental pre-
dictor variables could lead to better presence/absence
separation and thus improved SDM performance.
Furthermore, the best performing SDMs were gener-
ally associated with Conifer and Oak species, which
are relatively more selective and less likely to occur
across multiple habitats in Sonoma County. Fairly
common species SDMs, such as Mourning Doves,
Song Sparrows, and House Finches did not benefit
much from the incorporation of Canopy Structure
information due to their high prevalence in multiple
habitats (Kadmon et al 2003, Brotons et al 2004, but
see Gavish et al 2017 for a counter-example).

Larger observation datasets and more certainty
in presence/absence records both help models to
more accurately depict the niche of common species
(Kadmon et al 2003). While there are a large num-
ber of survey events in Sonoma County (n = 10606),
these occurred largely in the same locations—when
aggregated within cells, only a few hundred cells were
surveyed (see table 1). However, because most cells
had many survey events, our determination of pres-
ence/absence within each cell is probably very accur-
ate, themore so for these common and easy to identify
generalist species. It is therefore likely that the rel-
atively poor performance of most models is due to
low sample sizes and associated lack of high-density
observations from different land-cover classes. These
are common limitations associated with citizen sci-
ence observations, such as those used in this study
(Boakes et al 2010, Beck et al 2014).

Although Canopy Structure variables frequently
improved median model performance, especially at
finer spatial resolution, the improvement in perform-
ance was relatively modest considering the number of
new variables (and potential amount of new inform-
ation) added to the models. The various machine
learning models used in the ensemble performed
well at discerning patterns and optimizing predic-
tions with relatively few predictor variables. Another
reason for modest improvements in performance
was related to correlation and information-overlap
between variables remaining following VIF. Even
after using VIF, there was still correlation among the
predictor variables (see appendix figure C3) suggest-
ing that some canopy structure information could be
explained by other variables. For examples we found
Pearson correlation coefficients greater than 0.6 when
regressing NDVI95p against three Canopy Structure
variables (Biomass, LAI 0- to 10 m, and LAI 10- to
20 m).

Lastly, spatial scale dependence cannot be ignored
in SDM analyses (Wiens 1989, Jackson and Fahrig
2015). In this study, we found an average scale
variability of 0.03 AUC (Supplementary Table F2)
which is similar to the effect of incorporating Canopy
Structure variables in some SDMs. When going
from fine to coarse spatial scale, we found Can-
opy Structure variable importance decreased and

incorporation of Canopy Structure variables less fre-
quently improved model performance. Mertes and
Jetz (2018) found resampling environmental pre-
dictor variables with fine spatial structure decreased
the performance of SDMs. Curry et al (2018) found
that spatially-explicit ensemble models with finer-
scale predictor variables consistently performed bet-
ter at predicting occurrence for 3 of 11 grassland bird
species. Our results, and those fromothers, are related
to the spatial structure and autocorrelation of Canopy
Structure variables (Mertes and Jetz 2018).Wedid not
explicitly factor in spatial autocorrelation of environ-
mental predictor variables into SDMs, but semivari-
ograms generated for each Canopy Structure vari-
able confirmed the spatial structure (semivariogram
range) of each variable was generally within 250-
to 1000 m (Supplementary Table C2). The major-
ity of semivariograms generated from GEDI simu-
lation subsets within Conifer and Oak forests have
ranges below 500 m. Additional SDM performance
improvements may be possible through exploration
of multi-scale optimization (e.g. Wan et al 2017,
Stevens and Conway 2019), especially when consider-
ing even finer-scale vertical (Seavy et al 2009, Gastón
et al 2017) and horizontal (Huang et al 2014, Carrasco
et al 2019) Canopy Structure variables.

4.3. Constraints on the current analysis
The primary limitations of this study are the quant-
ity and geographic distribution of bird observations,
as well as our ability to represent canopy structure at
optimal scales using simulated spaceborne lidar data.
The biggest limitation associated with the bird spe-
cies observation data is a lack of high-density, evenly-
distributed spatial observations. As shown in figure 1,
most observations occurred in urban/suburban areas.
Since we are primarily interested in how forest Can-
opy Structure variables improve SDMs, this was not
the ideal network of observations because relatively
few observations were distant from roads and inside
of intact forests. The impact of these Canopy Struc-
ture variables is likely more difficult to resolve when
urban features aremixedwith tree canopies at the grid
cell resolutions used in this analysis. We would expect
to receive a more consistent signal from a ‘natural’
forest canopy compared with a suburban or urban-
wildland interface canopy interspersed with built-up
structures.

Other limitations are associated with our ability
to represent canopy structure using simulated space-
borne lidar data. First, the simulated lidar data are
hypothetical geospatial observations—actual mission
footprint locations will vary as a function of orbital
geometry, which cannot be predicted exactly, and
local cloud cover patterns. Another major limitation
concerns interpolation from footprints (L2 products)
to grids (L3 products). There are numerous options
for interpolating point data to continuous grids
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depending on the nature of the dataset. As a start-
ing point, we used a kriging methodology similar to
the one outlined in the GEDI L3 Algorithm Theoret-
ical Basis Document (Dubayah et al 2020). Over the
course of two years, GEDI is expected to provide suf-
ficient coverage for generating L3 products at 1000 m
spatial resolution. However, coverage gaps will still be
present in 1000 m spatial resolution grids and would
be even more prevalent at the finer spatial resolu-
tions used in this study (see appendix figure C2).
For natural and continuous forest types, we expect
this kriging method to be a good option for inter-
polation as neighboring grid cells tend to have sim-
ilar geostatistical characteristics. For fragmented or
urban/suburban forests, this method may not be as
effective. More advanced interpolation methods such
as co-kriging (Tsui et al 2013) or fusion (Swatantran
et al 2012) with auxiliary data with continuous spatial
coverage, like Sentinel-1, Sentinel-2 or Landsat satel-
lite imagery, may prove to be better options for inter-
polating large areas or filling in sparsely-sampled grid
cells.

4.4. Future directions
We expect canopy structure measurements from
GEDI will be informative for modelling habitat for
a variety of forest-dependent taxa. Our modeling
approach is applicable to larger spatial extents and
taxa, but one important consideration would be the
source of Climate data, as BCM is a California-
wide climate product with an unusually fine spatial
resolution (270 m). Global climate variables from
WorldClim (Fick and Hijmans 2017), which have
approximately 1000 m spatial resolution, are more
commonly used for larger SDM extents outside of
the conterminous U.S. We note that this resolution
matches the planned GEDI L3 products. It will be
necessary to test the utility of these global climate
variables andGEDI L3metrics in SDMs at their native
resolution. However, for some species the tradeoff in
model performance as a function of spatial scale may
preclude the use of relatively coarse vegetation struc-
ture and/or climate data (Manzoor et al 2018). Altern-
atively, shifting to more of a microhabitat focus,
recent studies have proposed frameworks for dynam-
ically modeling microclimate using fine-scale topo-
graphy and vegetation structure datasets derived from
remote sensing (Kearney et al 2019, Lembrechts et al
2019). Using these finer spatial and temporal scale cli-
mate datasets in conjunction with vegetation struc-
ture measurements will improve our understanding
of the mechanistic interplay between the two, as well
as how species and ecosystems respond to changes in
climate (Zellweger et al 2019).

It will also be beneficial to explore data and
methods for increasing the quantity and coverage of
canopy structure measurements. GEDI is scheduled
for two years of data collection on the ISS but a dif-
ferent type of spaceborne lidar data, being collected

simultaneously from ICESat-2, may have some util-
ity in filling GEDI canopy structure coverage gaps.
The Advanced Topographic Laser Altimeter System
(ATLAS) instrument on-board ICESat-2 uses photon
counting technology which has limitations in dense
vegetation, especially during daytime observations
(Popescu et al 2018). Although vegetation measure-
ment is not the primary focus of the ICESat-2 mis-
sion, we still expect some useful canopy structure
observations in forests of sparse to moderate canopy
cover (Neuenschwander and Pitts 2019).

5. Conclusions

We incorporated Canopy Structure variables derived
from simulated GEDI lidar into 25 bird SDMs in
Sonoma County, CA. We found Canopy Structure
variables were generally the second most important
group of variables across a variety of habitats. Canopy
Structure was most important for Conifer and Shrub
habitat associations. The incorporation of Canopy
Structure variables into ensemble SDMs resulted in
performance improvements for the majority of spe-
cies across all spatial analysis resolutions. More SDMs
showed higher, albeit modest, performance improve-
ments at the finest spatial analysis scale suggesting
that Canopy Structure variables are more beneficial
at smaller scales which are more in line with micro-
habitats. Although this study covers a regional spatial
extent and limited number of species, it demonstrates
that Canopy Structure variables derived from space-
borne lidar have the potential to improve our ability
to map species distributions.

Our understanding of global forest canopy struc-
ture will grow by orders of magnitude over the
next decade as a result of the GEDI and ICESat-
2 spaceborne lidar missions. We encourage future
SDM efforts to explore the utility of operational
lidar products from these sensors across natural and
anthropogenic landscapes. Future SDM studies may
also benefit from fusion of spaceborne lidar with
other remote sensing data as this combination can
provide more continuous spatial coverage across a
broader range of spatial scales. SDMs generated at
even finer spatial scales may benefit more from lidar-
derived Canopy Structure variables, resulting in more
detailedmapproducts for landmanagement and con-
servation of species habitat.
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